
Exhaustive Optimization Phase Order Space Exploration

Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson
Florida State University

Computer Science Department
Tallahassee, FL 32306-4530

{kulkarni,whalley,tyson}@cs.fsu.edu

Jack W. Davidson
University of Virginia

Department of Computer Science
Charlottesville, VA 22904-4740

jwd@virginia.edu

Abstract

The phase-ordering problem is a long standing issue for
compiler writers. Most optimizing compilers typically have
numerous different code-improving phases, many of which
can be applied in any order. These phases interact by
enabling or disabling opportunities for other optimization
phases to be applied. As a result, varying the order of ap-
plying optimization phases to a program can produce differ-
ent code, with potentially significant performance variation
amongst them. Complicating this problem further is the fact
that there is no universal optimization phase order that will
produce the best code, since the best phase order depends
on the function being compiled, the compiler, and the tar-
get architecture characteristics. Moreover, finding the opti-
mal optimization sequence for even a single function is hard
as the space of attempted optimization phase sequences is
huge and the interactions between different optimizations
are poorly understood.

Most previous studies performed to search for the most
effective optimization phase sequence assume the optimiza-
tion phase order search space to be extremely large, and
hence consider exhaustive exploration of this space infeasi-
ble. In this paper we show that even though the attempted
search space is extremely large, with careful and aggressive
pruning it is possible to limit the actual search space with
no loss of information so that it can be completely evaluated
in a matter of minutes or a few hours for most functions. We
were able to exhaustively enumerate all the possible func-
tion instances that can be produced by different phase or-
derings performed by our compiler for more than 98% of
the functions in our benchmark suite. In this paper we de-
scribe the algorithm we used to make exhaustive search of
the optimization phase order space possible. We then ana-
lyze this space to automatically calculate relationships be-
tween different phases. Finally, we show that the results of
this analysis can be used to reduce the compilation time for
a conventional batch compiler.

1. Introduction

Most current optimizing compilers contain tens of dif-
ferent optimization phases. Each optimization phase ana-
lyzes the program representation and performs one or more
transformations that will preserve the semantics of the pro-
gram, while attempting to improve program characteristics,
such as execution time, code size, and energy consumption.
Many of these optimization phases use and share resources,
such as registers, and most require specific conditions in the
code to be applicable. As a result these phases interact with
each other by enabling and disabling opportunities for other
optimizations.

Due to these interactions between optimization phases,
the final code produced differs depending on the order in
which optimizations are applied, leading to different pro-
gram performance. Most of these phase interactions are
difficult to predict since they are highly dependent on the
program being compiled, the underlying architecture, and
also on their specific implementation in the compiler. Most
command-line compilers provide the user with some spe-
cific flags (such as -O, -O2, -O3 for GCC) that applies op-
timization phases to all programs in one fixed order. How-
ever, it is widely acknowledged that a single order of op-
timization phases does not produce optimal code for every
application [1, 2, 3, 4, 5, 6]. Therefore, researchers have
long been trying to understand the properties of the opti-
mization phase order space so that near optimal optimiza-
tion sequences can be applied when compiling applications.

A naive solution to the phase ordering problem is to
exhaustively evaluate all orderings of optimization phases.
This solution quickly becomes infeasible in the face of tens
of different optimization phases typically present in most
current compilers and few restrictions on the ordering of
these phases. This problem is made more complex by the
fact that many optimizations are successful multiple times,
which makes it impossible to fix the sequence length for
all functions. The compiler used in this paper uses 15 dis-
tinct optimization phases, which over a sequence length of

n would result in 15
n possible attempted sequences. In fact,

the largest sequence length of phases changing the program
representation that we found in our study was 32 and 15

32

is a very large number of sequences. Due to the attempted
search space being so large, we are unaware of any prior
work to completely enumerate it.

While keeping the above statistics in mind, it is at the
same time important to realize that not all optimization
phase sequences that can be attempted will produce unique
code. Earlier studies [7] have suggested that the actual
search space might not be this large, which is partially
caused by many optimization phases often not being suc-
cessfully applied when attempted, i.e. they are not able to
apply transformations that will affect the generated code.
Likewise, many optimization phases are independent in that
the order in which successful phases are applied will have
no effect on the final code. We have found that it is possible
in many cases to exhaustively enumerate the actual opti-
mization phase order space for a variety of functions. Out
of the 111 functions we analyzed within six different bench-
marks, we were able to completely enumerate the search
space of different phase orderings performed by our com-
piler for all but two of the functions. These enumerations
were performed in a matter of a few minutes in most cases,
and a few hours for most of the remainder. Thus, the major
contributions of this work are: (1) a realization that the ac-
tual optimization phase order space is not as large as earlier
believed, is considerably smaller than the attempted space,
and hence can often be exhaustively enumerated; (2) the
first analysis of this space to capture probabilities of various
phase interactions, such as inter-phase enabling/disabling
relationships and inter-phase independence; and (3) the first
application of phase enabling/disabling probabilities to im-
prove compilation time for a conventional compiler.

The remainder of this paper is organized as follows. In
Section 2 we review a summary of other work related to this
topic. In Section 3 we give an overview of our experimental
framework. We describe our algorithm to enumerate the
optimization phase order space in Section 4. In Section 5
we present the results of our analysis of the space. We used
the analysis results in Section 6 to improve the compilation
time of our conventional batch compiler. In the last two
sections we list several directions for future work and our
conclusions.

2. Related Work

In prior work researchers have studied optimization
phase order and parameter characteristics by enumerating
the search space in certain limited contexts. The small area
of the transformation space formed by applying loop un-
rolling (with unroll factors from 1 to 20) and loop tiling
(with tile sizes from 1 to 100) was analyzed for a set of

three program kernels across three separate platforms [8].
This study found the search space to be highly non-linear,
containing many local minima and some discontinuities. As
the number of optimizations considered are increased, the
attempted search space grows exponentially. Enumerations
of search spaces formed by a larger set of distinct optimiza-
tion phases have also been investigated [9]. One impor-
tant deduction was that the search space generally contains
enough local minima that biased sampling techniques, such
as hill climbers and genetic algorithms, should find good so-
lutions. But even in this study the exhaustive search was not
allowed to span all the optimizations available in the com-
piler, and it took months to search even this limited space
when evaluating each benchmark.

Several groups have also worked on the problem of at-
tempting to find the best sequence of compiler optimization
phases and/or optimization parameters in an attempt to re-
duce execution time, code size, and/or energy consumption.
Specifications of code improving transformations have been
automatically analyzed to determine if one type of transfor-
mation could enable or disable another [10, 2]. This work
was limited by the fact that in cases where phases do inter-
act, it was not possible to automatically determine the order-
dependent phases without requiring detailed knowledge of
the compiler. Rather than changing the order of optimiza-
tion phases, other researchers have attempted to find the best
set of optimizations by turning on or off optimization flags
to a conventional compiler [11, 12].

Research has also be done to find an effective optimiza-
tion phase sequence by aggressive pruning and/or evalu-
ation of only a portion of the search space. A method,
called Optimization-Space Exploration [6], uses static per-
formance estimators to reduce the search time. In order to
prune the search they limited the number of configurations
of optimization-parameter value pairs to those that are likely
to contribute to performance improvements. This area has
also seen the application of other search techniques to intel-
ligently search the optimization space. Hill climbers [9, 5]
and grid-based search algorithms [13] have been employed
during iterative algorithms to find optimization phase se-
quences better than the default one used in their compil-
ers. Other researchers have used genetic algorithms [3, 4]
with aggressive pruning of the search space [14] to make
searches for effective optimization phase sequences faster
and more efficient.

3. Experimental Framework

The research in this paper uses the Very Portable Op-
timizer (VPO) [15], which was a part of the DARPA and
NSF co-sponsored National Compiler Infrastructure project
to produce and distribute a compiler infrastructure to be
used by researchers in universities, government, and indus-

Optimization Phase Id Description

branch chaining b Replaces a branch or jump target with the target of the last jump in the jump chain.
common subexpression
elimination

c Performs global analysis to eliminate fully redundant calculations, which also includes global constant and
copy propagation.

remove unreachable code d Removes basic blocks that cannot be reached from the function entry block.
loop unrolling g Loop unrolling to potentially reduce the number of comparisons and branches at runtime and to aid schedul-

ing at the cost of code size increase.
dead assignment elim. h Uses global analysis to remove assignments when the assigned value is never used.
block reordering i Removes a jump by reordering blocks when the target of the jump has only a single predecessor.
minimize loop jumps j Removes a jump associated with a loop by duplicating a portion of the loop.
register allocation k Uses graph coloring to replace references to a variable within a live range with a register.
loop transformations l Performs loop-invariant code motion, recurrence elimination, loop strength reduction, and induction vari-

able elimination on each loop ordered by loop nesting level.
code abstraction n Performs cross-jumping and code-hoisting to move identical instructions from basic blocks to their common

predecessor or successor.
evaluation order deter. o Reorders instructions within a single basic block in an attempt to use fewer registers.
strength reduction q Replaces an expensive instruction with one or more cheaper ones. For this version of the compiler, this

means changing a multiply by a constant into a series of shift, adds, and subtracts.
reverse branches r Removes an unconditional jump by reversing a conditional branch branching over the jump.
instruction selection s Combines pairs or triples of instructions together where the instructions are linked by set/use dependencies.

After combining the effects of the instructions, it also performs constant folding and checks if the resulting
effect is a legal instruction before committing to the transformation.

remove useless jumps u Removes jumps and branches whose target is the following positional block.

Table 1. Candidate Optimization Phases with Their Designations

try. VPO is a compiler back end that performs all its op-
timizations on a single low-level intermediate representa-
tion called RTLs (Register Transfer Lists) [16]. Because
VPO uses a single representation, it can apply most analy-
ses and optimization phases repeatedly and in an arbitrary
order. VPO has been targeted to produce code for a variety
of different architectures. For this study we used the com-
piler to generate code for the StrongARM SA-100 processor
using Linux as its operating system.

Table 1 describes each of the 15 candidate code-
improving phases that we used during the exhaustive ex-
ploration of our optimization phase order search space. In
addition, register assignment, which is a compulsory phase
that assigns pseudo registers to hardware registers, must be
performed. VPO implicitly performs register assignment
before the first code-improving phase in a sequence that re-
quires it. Two other phases, merge basic blocks and elim-
inate empty blocks, were removed from the optimization
list used for the exhaustive search since these phases only
change the internal control-flow representation as seen by
the compiler and do not directly affect the final generated
code. These phases are now implicitly performed after any
transformation that has the potential of enabling them. After
applying the last code-improving phase in a sequence, VPO
performs another compulsory phase that inserts instructions
at the entry and exit of the function to manage the activa-
tion record on the runtime stack. Finally, the compiler also
performs predication and instruction scheduling before gen-
erating the final output code. These last two optimizations
should only be performed late in the compilation process,

and so are not included in our set of phases used for ex-
haustive optimization space exploration.

A few dependences between some optimization phases
in VPO makes it illegal for them to be performed at certain
points in the optimization sequence. The first restriction is
that evaluation order determination can only be performed
before register assignment. This optimization is meant to
reduce the number of temporaries that register assignment
later allocates to registers. VPO also restricts some opti-
mizations that analyze values in registers, such as loop un-
rolling, loop strength reduction, induction variable elimi-
nation and recurrence elimination, to be performed after
register allocation. These phases can be performed in any
order after register allocation is applied. Register alloca-
tion itself can only be performed after instruction selection
so that candidate load and store instructions can contain the
addresses of arguments or local scalars.

In our study we are only investigating the phase ordering
problem and do not vary parameters for how phases should
be applied. For instance, we do not attempt different config-
urations of loop unrolling, but always attempt it with a loop
unroll factor of two since we are generating code for an em-
bedded processor where code size can be a significant issue.
The fifteen candidate code-improving phases used in VPO
represent commonly used code-improving phases in com-
piler back ends. Many other optimizations not performed
by VPO, such as loop tiling/interchange, inlining, and some
other interprocedural optimizations are typically performed
in a compiler frontend, and so are not present in our com-
piler. We also do not perform ILP (frequent path) optimiza-

tions since the ARM is typically a single issue processor
and ILP transformations would be less beneficial. In ad-
dition, frequent path optimizations require a profile-driven
compilation process that would complicate the study.

Note that some phases in VPO represent multiple opti-
mizations in many compilers. However, there exists com-
pilers, such as GCC, that have a greater number of distinct
optimization phases. Unlike VPO, most compilers are much
more restrictive regarding the order in which optimizations
phases are performed. In addition, the more obscure a phase
is, the less likely that it will be successfully applied and af-
fect the search space. While one can always claim that addi-
tional phases can be added to a compiler or that some phases
can be applied with different parameters (e.g., different un-
roll factors for loop unrolling), completely enumerating the
optimization phase order space for the number of phases in
our compiler has never before been accomplished to the best
of our knowledge.

We used a subset of the MiBench benchmarks, which are
C applications targeting specific areas of the embedded mar-
ket [17], in our study. We evaluated one benchmark from
each of the six categories of applications. Table 2 contains
descriptions of these programs.

Category Program Description

auto bitcount test processor bit manipulation abilities
network dijkstra Dijkstra’s shortest path algorithm
telecomm fft fast fourier transform
consumer jpeg image compression / decompression
security sha secure hash algorithm
office string-

search
searches for given words in phrases

Table 2. MiBench Benchmarks Used

4. Approach for Exhaustive Enumeration of
the Phase Order Space

In this section we explain the approach we used to ex-
haustively search the space for all possible optimization
phase orders. As noted earlier, an important realization is
that the actual phase order space is many orders of magni-
tude smaller than an exhaustive enumeration of all combi-
nations of attempted optimization phases. It is also worth-
while to note that any such attempt to enumerate all com-
binations of optimizations is in principle restricted by our
lack of knowledge of the optimal sequence length for that
particular function. The sequence length changes since op-
timization phases may be successful multiple times in the
same sequence due to the enabling relationships between
optimization phases. Previous studies have identified a large
variation in the successful sequence lengths for different

functions [4]. Hence, choosing a conservative sequence
length might allow us to generate all possible combina-
tions, but may not lead to an optimal phase sequence. Like-
wise, a long optimization sequence length would prove to be
overkill for most functions and make it impractical to even
enumerate attempted search spaces for smaller functions.

Interestingly, another way of viewing the phase ordering
problem is to enumerate all possible function instances that
can be produced by any combination of optimization phases
for any possible sequence length. A function instance is a
version of the code that can be generated from applying a
sequence of phases. This approach to the same problem
clearly makes the solution much more practical. For any
given function there are certainly many fewer distinct func-
tion instances than there are optimization phase orderings
since different orderings can lead to the same resulting code.
Two or more sequences produce the same function instance
when the generated instructions are identical. So the prob-
lem now is to delineate all possible function instances that
can be produced by a compiler by changing the phase order.

Our solution to this problem divides the phase ordering
space into multiple levels, as shown in Figure 1 for four dis-
tinct optimization phases. At the root (level 0) we have the
unoptimized function instance. For level 1, we generate the
function instances produced by an optimization sequence
length of 1, by applying each optimization phase individu-
ally to the base unoptimized function instance. For all other
higher levels, optimization phase sequences are generated
by appending each optimization phase to all the sequences
at the preceding level. Thus, for each level n, we in effect
generate all combinations of optimizations of length n. As
can be seen from Figure 1, this space grows exponentially
and would very quickly become infeasible to traverse. This
exponentially growing search space can often be tractable
without losing any information due to using two pruning
techniques which we describe in the next two sections.

4.1. Detecting Dormant Phases

The first pruning technique exploits the fact that not all
optimization phases are successful at all levels and at all
positions. We call applied phases active when they pro-
duce changes to the program representation. A phase when
applied is said to be dormant when it could not find any
opportunities to be successful. Detecting dormant phases
eliminate entire branches of the tree in Figure 1. The search
space taking this factor into account can be envisioned as
shown in Figure 2. The optimization phases found to be in-
active are shown by dotted lines. Note that an active phase
at one level is not even attempted at the next level since no
phase in our compiler can be applied successfully more than
once consecutively.

Level 2

Level 1

Level 0
a

c
d

a b c
d a b c

d a
b c

d a
b c

d

b

Figure 1. Naive Optimization Phase Order Space for Four Distinct Optimizations

a
b c

d

b c
d a d a dc b

Level 0

Level 1

Level 2

Figure 2. Effect of Detecting Dormant Phases
on the Search Space in Figure 1

original code segmentoriginal code segment
r[2]=1; r[2]=1;

r[3]=r[4]+r[2];r[3]=r[4]+r[2];

after dead assignment elimination
r[3]=r[4]+1;

after constant propagation
r[2]=1;
r[3]=r[4]+1;

after instruction selection
r[3]=r[4]+1;

Figure 3. Diff. Opts. Having the Same Effect

4.2. Detecting Identical Function Instances

The second pruning technique relies on the assertion that
many different optimizations at various levels produce func-
tion instances that are identical to those already encountered
at previous levels or those generated by previous sequences
at the same level. There are a couple of reasons why differ-
ent optimization sequences would produce the same code.
The first reason is that some optimization phases are inher-
ently independent. For example, the order in which branch
chaining and register allocation are done does not typically
affect the final code. These optimizations do not share re-
sources, are mutually complementary, and work on differ-
ent aspects of the code. Secondly, different optimization
phases may produce the same code. This can be seen from
Figure 3. Instruction selection symbolically merges the in-
structions and checks to see if the resulting instruction is
valid. In this case, the same effect can be produced by
constant propagation (part of common subexpression elim-

ination in VPO) followed by dead assignment elimination.
The effect of different optimization sequences producing
the same code is to transform the tree structure of the search
space as seen in Figures 1 and 2 to a directed acyclic graph
(DAG) structure as shown in Figure 4. By comparing Fig-
ures 1, 2 and 4, it is apparent how these two characteris-
tics of the optimization search space help to make exhaus-
tive search feasible. Note that the optimization phase or-
der space for functions processed by our compiler is acyclic
since no phase in VPO undoes the effect of another. How-
ever, a cyclic phase order space could also be exhaustively
enumerated using our approach since identical function in-
stances are detected.

a
b c

c
a d d

Level 0

Level 1

Level 2

a
d

Figure 4. Detecting Identical Code Trans-
forms the Tree in Figure 2 to a DAG

4.2.1 Efficient Detection of Identical Instances

In order to reduce the search overhead it is essential to be
able to quickly compare different function instances. To
check for a match we potentially need to compare each
function instance with all previous function instances. A
search may result in thousands of unique function instances,
which may be too large to store in memory and very expen-
sive to access on disk. Instead of comparing all function
instances on a per-instruction basis every time, we calculate
multiple hash values for each function instance and compare
the hash values to make such comparisons efficient. For
each function instance we store three numbers: a count of
the number of instructions, byte-sum of all instructions, and
the CRC (cyclic-redundancy code) checksum on the bytes
of the RTLs in that function. This approach has been used
in previous studies to detect redundant sequences when ap-

plying a genetic algorithm to search for effective phase se-
quences [14, 7]. CRCs are commonly used to check the
validity of data transmitted over a network and have an ad-
vantage over conventional checksums in that the order of the
bytes of data does affect the result [18]. CRCs are useful in
our case since function instances can be identical except for
different order of instructions. We have verified that when
using all the three checks in combination it is extremely rare
(we have never encountered an instance) that distinct func-
tion instances would be detected as identical.

From previous studies we have realized that it is possi-
ble for different function instances to be identical except for
register numbers used in the instructions [14, 7]. This situa-
tion can occur since different optimization phases compete
for registers. It is also possible that a difference in the order
of optimizations may create and/or delete basic blocks in
different orders causing them to have different labels. For
example, consider the source code in Figure 5(a). Figures
5(b) and 5(c) show two possible translations given two dif-
ferent orderings of optimization phases that consume regis-
ters and modify the control flow.

(a) Source Code
 sum += a[i];
for (i = 0; i < 1000; i++)
sum = 0;

(b) Register Allocation
before Code Motion

IC=r[1]?r[9];

Register Allocation
(c) Code Motion before

IC=r[1]?r[9];

r[1]=r[1]+4;

r[8]=M[r[1]];

(d) After Mapping
Registers

r[1]=r[1]+4;

r[1]= ;

r[8]=M[r[1]];

r[12]

 = +r[8];r[10] r[10]

 =0;

 =HI[a];

 = +LO[a];

r[1]= ;

r[9]=4000+ ;

 = +r[8];

r[11]
r[10]
r[10] r[10]
 r[10]
 r[10]

r[11] r[11]

L3: L5: L01:

PC=IC<0, ; PC=IC<0, ; PC=IC<0, ;

r[1]
r[2]

r[5]=M[r[3]];

r[3]=r[3]+4;

IC=r[3]?r[4];

 r[2]
r[4]=4000+ ; r[2]

r[1] r[1]

 = +LO[a];

 r[12]r[9]=4000+ ;

r[10]

 r[12]

 =0;

r[12] r[12]
 =HI[a];

 =0;

 =HI[a];

r[2] r[2] = +LO[a];

r[3]= ;

 L3 L5 L01

 = +r[5];

Figure 5. Different Functions with Equivalent
Code

To detect this situation when calculating the CRC check-
sum, we map each register and block label-number to a dif-
ferent number depending on when it is encountered in the
control flow. We start scanning the function from the top ba-
sic block. Each time a register is encountered we map it to
a distinct number starting from 1. This register would keep
the same mapping throughout the function. Note that this
is different from register remapping of live ranges [14, 7],
and is in fact much more naive. Although a complete live
range register remapping might detect more instances as be-
ing equivalent, we recognize that a live range remapping
at intermediate points in an optimization phase sequence
would be unsafe as it changes the register pressure which
might affect other optimizations applied later. During this
function traversal we simultaneously remap block labels as
well, which also involves mapping the labels used in the

actual RTLs. Figure 5(d) shows that the same function
instance is obtained after remapping of function instances
5(b) and 5(c). This approach of detecting equivalent func-
tion instances enables us to do more aggressive pruning of
the search space.

4.3. Improvements for Faster Searches

During the search process we have to compile the same
function with thousands of different optimization phase se-
quences. Evaluating every new optimization sequence in-
volves discarding the previous compiler state (which was
produced by the preceding sequence), reading the unopti-
mized function back from disk, applying all the optimiza-
tions in the current sequence, and then comparing the func-
tion instance produced with previous code instances. We re-
alized that it is possible to optimize a few steps in our search
algorithm to reduce the evaluation time for each optimiza-
tion sequence. The first enhancement is to keep a copy of
the unoptimized function instance in memory to avoid disk
accesses for all optimization sequence evaluations, except
the first. Our second enhancement exploits a property of
our search algorithm. During the search algorithm, the se-
quences at any level are generated by appending each opti-
mization phase to all active sequences at the preceding level.
Thus, many optimization sequences at any level share com-
mon prefixes. By storing function instances after each ac-
tive phase and by arranging the sequences to promote prefix
phase sharing, it is possible to reduce the number of opti-
mization phases applied for evaluating each sequence. This
can be illustrated from Figure 6, which shows the phases
that are applied before and after our enhancements. We
found that these enhancements reduced the search time at
least by a factor of 5 to 10.

Disk Opt. Phases Attempted

Yes b c d e h i j k l d

Yes b c d e h i j k l k

Yes b c d e h i j k m b
Yes b c d e h i j k m c

Yes b c d e h i j k l c
Yes b c d e h i j k l b

Yes b c d e i k c l c d

Yes b c d e i k c l c l

Yes b c d e i k c l c b

Disk Opt. Phases Attempted

Yes b c d e h i j k l b
 No c
 No d

 No k
 No m b
 No c

 No l
 No i k c l c b
 No d

(a) Naive Evaluation of
 Optimization Sequences

(b) Optimization Phases Attempted
 after Enhancements

Figure 6. Enhancements for Faster Searches

4.4. Search Space Enumeration Results

Table 3 displays results when enumerating the actual
search space for each function by our compiler. The func-
tions are sorted by the number of instructions (Insts) in the
unoptimized version of the function. The results clearly il-
lustrate that while our technique would seem to only apply
to small functions, it also works well for many large func-
tions. Note that our compiler optimizes each function indi-
vidually and in isolation of all others in the same program.
Since it was not possible to list information for all the 111
functions we evaluated, we show the averages for the func-
tions we could not display. During this set of experiments
we terminated the search any time the number of optimiza-
tion sequences to apply at any particular level (see Figure 4)
grew to more than a million. For such functions we mark
the search space as too big to be exhaustively enumerated
in a reasonable amount of time. We found that we could
not completely enumerate the space for only two of the 111
functions, which are indicated in Table 3.

Studying the results in Table 3 allows us to make many
interesting observations about the optimization space. The
number of attempted phases is larger than the number of
function instances in Table 3 since the compiler also needs
to attempt phases to detect when they are dormant. The
numbers in the column of maximum active phase sequence
length indicate that the optimization phase order search
space is 15

12 on average, and can grow to 15
32 in the worst

case for the compiler and benchmarks used in this study.
Thus, we can also see that although the attempted search
space is extremely large, the number of distinct function
instances is only a tiny fraction of this number. This is pre-
cisely the reason which makes our technique of exhaustive
phase order search space enumeration possible. The leaf
function instances are those for which no further phases in
our compiler are successful in changing the program repre-
sentation. The small number of leaf instances in each case
suggests that after getting considerably wide, the optimiza-
tion space dag (see Figure 4) typically converges later. The
last three columns show the range of the static number of
instructions for the leaf function instances. This number is
significant as it illustrates the maximum difference in code
size that is possible due to different phase orderings in our
compiler. Thus, we can see that on average there is a gap of
37.8% in code size between the best and the worst phase or-
dering. The numbers in the table also suggest that although
functions with more instructions have larger search spaces,
it is the control-flow characteristics of the function, more
than the number of instructions, that determine the width of
the DAG. Many large functions with simple control flows
have search spaces which are deep, instead of being wide,
which allows faster enumeration of the space.

5. Optimization Phase Interaction Analysis

Exhaustive enumeration of the optimization phase order
search space for a sizable number of functions has given
us a large data set that we can analyze to gather informa-
tion about how optimization phases interact. In this section
we present some of our analysis results. To assemble these
statistics we first represented the search space in the form
of a DAG. The nodes in the DAG represent distinct func-
tion instances and the arcs are marked by the optimization
phase that was applied from one node (function instance) to
the next. This representation is illustrated in Figure 7. The
nodes of the DAG are weighted by their position in the DAG
and the number of children that it can have. The leaf nodes
have a weight of 1. The weight of each interior node is the
summation of the weights of all its child nodes. Thus, the
weight of each interior node gives the number of distinct se-
quences that are active beyond that point. Active phases at
each node (indicated in brackets for interior nodes) in Fig-
ure 7 are simply the active phases that are applied on out-
going edges of that node. We studied three different phase
interactions: enabling, disabling and independence relation-
ships between optimization phases. The following sections
describe the results of this study.

1

2

5

a b c

1 2

1 1 1

1

b c
c

a b

a d

[abc]

[bc] [c] [ab]

[a] [d]

Figure 7. Weighted DAG Showing Enabling,
Disabling, and Independence Relations

5.1. Enabling Interaction between Phases

A phase x is said to enable another phase y, if y was dor-
mant (inactive) at the point just before x was applied, but
then becomes active again after application of x. For exam-
ple, b enables a along the path a-b-a in Figure 7. Note that
it is possible that a phase could enable some other phase on
some sequence but not on others. Thus, it could be seen
that a is not enabled by b along the path c-b. Likewise, it
is also possible for phases to be dormant at the start of the
compilation process, and become active later (e.g., phase d
along the path b-c-d). As a result we represent this informa-
tion in the form of the probability of each phase enabling

Function Insts Blk Brch Loop Fn inst
Attempt

Len CF Leaf
Codesize

Phases Max. Min. % Diff

start inp...(j) 1,371 88 69 2 74,950 1,153,279 20 153 587 463 426 8.7
parse swi...(j) 1,228 198 144 1 200,397 2,990,221 18 53 2365 592 490 20.8
start inp...(j) 1,009 72 55 1 39,152 597,147 16 18 324 370 285 29.8
start inp...(j) 971 82 67 1 64,571 999,814 18 47 591 319 301 6.0
start inp...(j) 795 63 50 1 7,018 106,793 15 37 52 281 259 8.5
fft float(f) 680 45 32 4 N/A N/A N/A N/A N/A N/A N/A N/A
main(f) 624 50 35 5 N/A N/A N/A N/A N/A N/A N/A N/A
sha trans...(h) 541 33 25 6 343,162 5,119,947 26 95 2964 280 138 102.9
read scan...(j) 480 59 52 2 34,270 511,093 15 57 540 230 164 40.2
LZWRea...(j) 472 44 33 2 49,412 772,864 20 41 159 210 138 52.2
main(j) 465 40 28 1 33,620 515,749 17 12 153 156 151 3.3
dijkstra(d) 354 30 22 3 86,370 1,361,960 20 18 1168 165 91 81.3
usage(j) 344 3 1 0 34 511 7 1 3 81 79 2.5
GetCode(j) 339 14 11 1 56,166 850,977 18 20 75 94 85 10.6
bmhi init(s) 309 30 22 4 10,235 156,378 20 11 145 166 90 84.4
preload i...(j) 268 29 22 2 5,356 80,715 13 10 38 132 85 55.3
get inter...(j) 249 20 17 1 16,880 258,690 19 10 78 90 58 55.2
bmha init(s) 248 31 22 3 32,446 486,024 20 56 438 143 66 116.7
read quan...(j) 239 25 21 2 8,016 119,749 14 28 304 109 79 38.0
load inte...(j) 235 19 13 2 3,516 52,419 13 8 14 111 60 85.0
main(b) 220 22 15 2 92,834 1,367,101 21 91 171 92 77 19.5
get word ...(j) 220 11 7 1 1,882 29,563 15 4 53 98 44 122.7
read colo...(j) 218 20 16 2 1,166 18,035 14 8 24 162 91 78.0
set sampl...(j) 209 38 33 2 22,735 337,928 21 53 279 112 79 41.8
bmha search(s) 201 29 24 3 659,222 9,937,042 32 468 2779 98 51 92.2
bmh init(s) 194 21 15 3 5,693 86,157 20 11 137 108 54 100.0
bmhi search(s) 184 29 24 3 232,367 3,466,408 27 331 965 88 49 79.6
bmh search(s) 181 29 24 3 400,805 5,977,825 27 601 1643 93 48 93.8
main(s) 175 19 12 3 30,975 477,277 19 12 175 81 70 15.7
main(d) 175 21 15 3 8,566 127,688 18 28 143 86 68 26.5
get 8bit ...(j) 171 8 5 1 2,345 35,412 13 4 33 66 34 94.1
get scale...(j) 166 11 7 1 1,139 17,690 15 4 29 70 37 89.2
get 16bit...(j) 158 8 5 1 844 13,020 12 4 25 62 29 113.8
set quant...(j) 156 30 25 2 10,245 151,068 15 49 59 86 60 43.3
preload i...(j) 156 14 9 1 664 10,053 10 8 9 73 44 65.9
sha final(h) 155 7 4 0 1,738 26,457 13 3 64 39 33 18.2
select fi...(j) 149 25 21 0 400 6,118 10 10 12 72 68 5.9
byte reve...(h) 146 8 5 1 1,661 24,898 13 11 24 68 26 161.5
get 24bit...(j) 145 8 5 1 2,002 30,194 12 4 39 54 29 86.2
get word ...(j) 144 11 7 1 2,043 32,660 15 4 49 60 33 81.8
read text...(j) 141 21 16 2 48,301 728,287 17 34 358 66 42 57.1
read scan...(j) 139 27 22 1 42,712 648,832 19 47 207 54 48 12.5
ntbl bitc...(b) 138 3 1 0 48 720 7 1 8 30 27 11.1
read pbm ...(j) 134 27 21 2 3,174 48,461 13 19 42 66 50 32.0
remaining 67 60.4 7.6 4.5 0.4 1,870.2 28,178.6 8.8 7.7 38.8 24.0 17.6 24.0
average 166.7 16.9 12.0 0.9 25,362.6 381,857.7 12.0 27.5 182.9 69.0 49.9 37.8

Function - function name followed by benchmark indicator [(s)-stringsearch, (b)-bitcount, (h)-sha, (f)-fft, (d)-dijkstra, (j)-jpeg], Inst -
number of instructions in the unoptimized function, Blk - number of basic blocks, Brch - number of conditional and unconditional transfers
of control, Loop - number of loops, Fn inst - number of distinct function instances, Attempt Phases - number of optimization phases
attempted, Len - largest active optimization phase sequence length, CF - number of distinct control flows, Leaf - number of leaf function
instances, Codesize - max., min., and % difference in number of instructions for leaf function instances, N/A - search space of function
exceeded our search criteria limit

Table 3. Function-Level Search Space Statistics for MiBench Benchmarks Used in the Experiments

each other phase. We calculate the enabling probabilities
by considering dormant→ active and dormant→ dormant
transitions of phases between nodes, adjusted by the weight
of the child node. The probability is the ratio of the num-
ber of dormant→ active transitions to the sum of dor-
mant→ active and dormant→ dormant transitions between
optimization phases. We do not consider active→ active
and active→ dormant transitions since phases already ac-
tive cannot be enabled. We summarize the enabling infor-
mation we collected for all the functions in Table 4, where
each row represents the probability of that phase being en-
abled by other phases represented in columns.

A few points regarding the enabling information are
worth noting. For our benchmarks instruction selection(s)
and common subexpression elimination(c) are always active
initially. In contrast, register allocation(k) requires instruc-
tion selection(s) to be enabled in VPO so that the loads and
stores contain the addresses of local scalars. Instruction
selection(s) is frequently enabled by register allocation(k)
since loads and stores are replaced by register-to-register
moves, which can typically be collapsed by instruction se-
lection(s). In contrast, control flow optimizations (e.g.,
branch chaining(b)) are never enabled by register alloca-
tion(k), which does not affect the control flow. The num-
bers in the table also indicate that many optimizations have
a very low probability of being enabled by any other opti-
mization phase. Such optimizations will typically be active
at most once in each optimization sequence. Remove un-
reachable code(d) is never active for the functions in our
benchmark suite, which indicates the need for a larger set
of functions. Note that, unreachable code occasionally left
behind by branch chaining is removed during branch chain-
ing itself, since we found such code hindering some analy-
sis which caused later optimizations to miss some code im-
proving opportunities.

5.2. Disabling Interaction between Phases

Another related measure is the probability of each phase
disabling some other phase. This relationship can be seen in
Figure 7 along path b-c-d, where a is active at the root node,
but is disabled after b. The statistics regarding the disabling
interaction between optimization phases is illustrated in Ta-
ble 5. Each value in this table is the weighted ratio of ac-
tive→ dormant transitions to the sum of active→ dormant
and active→ active transitions. We do not consider dor-
mant→ dormant and dormant→ active transitions since a
phase has to be active to be disabled.

From Table 5 it can be seen that phases are much more
likely to be disabled by themselves than by other phases.
We can also see that phases such as register allocation(k)
and common subexpression elimination(c) always disable
evaluation order determination(o) since they require reg-

ister assignment, and evaluation order determination can
only be performed before register assignment. In our test
suite all jumps eliminated by useless jump elimination(u)
are always also eliminated by block reordering(i). Thus,
disabling information could be used to detect when one
phase may always subsume another.

5.3. Optimization Phase Independence

The third interaction we measured was the probability of
independence between any two optimization phases. Two
phases can be considered to be independent if their order
does not matter to the final code that is produced. This
is illustrated in the Figure 7 along the paths a-c and c-a.
Both orders of phases a and c in these sequences produce
identical function instances, which would mean that they
are independent in this situation. In contrast, sequences b-
c and c-b do not produce the same code. Thus, they are
considered dependent in this situation. If two optimizations
are detected to be completely independent, then we would
never have to evaluate them in different orders. This ob-
servation can lead to the potential of even greater pruning
of the search space. Table 6 shows the probability of each
phase being independent of some other phase. This is a
weighted ratio of the times two consecutively active phases
produced the same code to the number of times they were
consecutively active.

Unlike the enabling and disabling relationships shown in
Tables 4 and 5, independence is a symmetric relationship,
as shown in Table 6. In addition, Table 6 is less sparse in-
dicating that many phases are typically independent of each
other. For instance, it can be seen that register allocation(u)
is highly independent of most control flow optimizations.
Instruction selection(s) and common subexpression elimi-
nation(c) frequently act on the same code sequences, and
so we see a low level of independence between them. Since
most of the phases are independent of each other most of
the time it is frequently possible to reorder phases without
any side-effect. Consequently, many different optimization
sequences produce the same code resulting in greater con-
vergence in the DAG and fewer leaf function instances for
most functions, as seen from Table 3.

6. Probabilistic Batch Optimization

The analysis results and observations assembled during
our experiments can be further used to improve upon var-
ious compiler features. As a case study, we use some of
these results to support faster compilations in this section.
The VPO compiler applies optimization phases to all func-
tions in one default order. To allow aggressive optimiza-
tions, VPO applies many optimization phases in a loop un-
til there are no further program changes produced by any

Phase St b c d g h i j k l n o q r s u

b 0.62 0.01 0.15 0.06
c 1.00 0.02 0.23 0.14 0.12 0.99 0.72 0.38 0.33 1.00 0.05 0.32
d
g 0.01 0.18 0.01
h 0.06 0.70 0.02 0.01 0.03 0.46
i 0.61 0.01 0.01 0.61
j 0.03 0.01 0.13
k 0.01 0.11 0.81
l 0.59 0.06 0.02 0.01 0.03 0.06
n 0.42 0.04 0.22 0.01 0.04 0.01 0.01 0.03 0.05 0.03
o 0.87 0.01
q 0.16 0.08
r 0.45 0.02 0.15 0.05 0.01
s 1.00 0.29 0.16 0.23 0.97 0.53 0.20 1.00
u 0.73 0.03

Blank cells indicate an enabling probability of less than 0.005. St represents the probability of a phase being
active at the start of compilation.

Table 4. Enabling Interaction between Optimization Phases

Phase b c d g h i j k l n o q r s u

b 1.00 0.15 0.02 0.08 0.05 0.31
c 1.00 0.02 0.15
d 1.00
g 0.35 1.00 0.19 0.02 0.03
h 0.01 1.00
i 0.08 0.06 1.00 0.14 0.14 0.55
j 0.13 1.00 0.49 0.14
k 0.04 0.01 1.00
l 0.71 0.07 0.30 1.00 0.73
n 0.33 0.49 0.09 0.25 0.07 0.31 0.53 1.00 0.02 0.33
o 1.00 1.00 1.00 1.00 1.00 1.00 0.21
q 1.00 0.12
r 0.05 0.01 0.03 0.53 1.00
s 0.11 1.00
u 0.08 1.00 0.20 1.00

Blank cells indicate a disabling probability of less than 0.005.

Table 5. Disabling Interaction between Optimization Phases

Phase b c d g h i j k l n o q r s u

b 0.84 0.94 0.97 0.95 0.82 0.96 0.95
c 0.96 0.91 0.45 0.44 0.65 0.12 0.98 0.99 0.22
d
g 0.84 0.96 0.98 0.84 0.96 0.98 0.96
h 0.91 0.98 0.79 0.95 0.88 0.59 0.98 0.96
i 0.94 0.84 0.98 0.97 0.96 0.71 0.50
j 0.98 0.97 0.98
k 0.97 0.45 0.79 0.97 0.87 0.81 0.30 0.99 0.82 0.97
l 0.95 0.44 0.96 0.95 0.96 0.87 0.78 0.45 0.45
n 0.82 0.65 0.98 0.88 0.81 0.78 0.58 0.61
o 0.12 0.59 0.30 0.45 0.58 0.39
q 0.98 0.89
r 0.96 0.99 0.98 0.71 0.97 0.99 0.94
s 0.22 0.96 0.96 0.82 0.45 0.61 0.39 0.89 0.94
u 0.95 0.50 0.98 0.97

Blank cells indicate an independence probability of greater than 0.995.

Table 6. Independence Relationship between Optimization Phases

optimization phase. Thus, although VPO can attempt a dif-
ferent number of phases for different functions, the order in
which they are attempted still remains the same. Applying
optimizations in a loop also means that many optimization
phases when attempted are dormant.

We use information about the probability of phases en-
abling and disabling each other to dynamically select opti-
mizations phases depending on which previous ones were
active. The probability of each optimization phase being
active by default is used at the start of the optimization pro-
cess. Using these probabilities as initial values, we dynami-
cally determine which phase should be applied next depend-
ing on which phase has the highest probability of being ac-
tive. After each active optimization phase, we update the
probabilities of all other phases depending on the probabil-
ity that the last phase would enable or disable it. This algo-
rithm is depicted in Figure 8. We denote the compiler using
this new algorithm of dynamically selecting optimization
phases as the probabilistic batch compiler.

p[i] - current probability of phase i being active
e[i][j] - probability of phase j enabling phase i
d[i][j] - probability of phase j disabling phase i
foreach phase i do

p[i] = e[i][st]; # start phase probabilities (see Table 4)

while any p[i] > 0 do
Select j as the current phase with highest probability of
being active;
Apply phase j;
if j was active then

foreach phase i do
if i != j then

p[i] += ((1-p[i]) * e[i][j]) - (p[i] * d[i][j]);

p[j] = 0;

Figure 8: Probabilistic Compilation Algorithm

From Table 7 it can be seen that the new probabilistic
mode of compilation achieves performance comparable to
the old batch mode of compilation and requires less than
one-third of the compilation time on average. Although
the probabilistic approach reduces the number of attempted
phases from 230, on average, to just 48, the number of ac-
tive phases is in fact greater in the new approach. Many
phases attempted in the old compiler were found by the
probabilistic compiler to be disabled and were therefore not
attempted. Presently, the probabilistic compiler selects the
next phase only on the basis of the probability of it being ac-
tive. Our method does not consider the benefits each phase
can potentially provide when applied. This is the main rea-
son for the slight degradation in performance, on average,
over the old method. Thus, the probabilistic compilation
paradigm, even though promising, can be further improved
by taking phase benefits into account.

7. Future Work

There is a variety of enhancements that we plan to make
in the future. First, we would like to examine methods to
further speed up the enumeration algorithm. The phase
order space can be reduced by changing the implementa-
tion of some compiler analysis and optimizations, so that
false dependences due to incomplete analysis are no longer
present. Phase interaction information, such as indepen-
dence relationships, could also be used to more aggres-
sively prune the enumeration space. Second, we plan to
improve nonexhaustive searches of the phase order space.
The enabling/disabling relationships between phases could
be used for faster genetic algorithm searches [14]. Presently
the only feedback we get from each optimization phase was
whether it was active or dormant. We do not keep track of
the number and type of actual changes for which each phase
is responsible. Keeping track of this information would be
very useful to get more accurate phase interaction informa-
tion. Third, we plan to study additional methods to enhance
conventional compilers for both compilation time and the
efficiency of generated code by using probabilistic phase
interaction relationships in determining the next phase to
be applied. Finally, the eventual goal is to find the func-
tion instance giving near-optimal execution performance in
a reasonable amount of time. Achieving this goal requires
gathering execution results, which would be very time con-
suming when there are hundreds of thousands of executions
required. The small number of distinct control flows of
functions (see column CF in Table 7) can be used to in-
fer the dynamic instruction count of one execution from an-
other. Dynamic instruction counts, unlike cycle counts, are
a crude approximation of execution efficiency. However,
these counts could be used to prune function instances from
being simulated that are likely to produce inefficient code.

8. Conclusions

The phase ordering problem has been an old and as yet
unresolved problem in compiler optimizations. Hitherto, it
was assumed that the optimization phase order space is too
large to be completely enumerated in a reasonable amount
of time. In this paper we have shown, for most of the
functions in our benchmark suite, that exhaustive enumera-
tion of all optimization phase sequences is possible for the
phases in our compiler. This enumeration was made possi-
ble by detecting which phases were active and whether or
not the generated code was unique, making the actual opti-
mization phase order space much smaller than the attempted
space. Using an innovative enumeration algorithm and ag-
gressive search space pruning techniques, we were able to
find all possible function instances that can be produced by
different phase orderings for 109 out of the 111 total func-

Function
Old Compilation Prob. Compilation Prob/Old

Attempted Active
Time

Attempted Active
Time Time Size Speed

Phases Phases Phases Phases

start inp...(j) 233 16 3.10 55 14 1.45 0.469 1.014 N/A
parse swi...(j) 233 14 7.52 53 12 2.79 0.371 1.016 0.972
start inp...(j) 270 15 2.20 55 14 0.78 0.353 1.010 N/A
start inp...(j) 233 14 1.83 49 13 0.77 0.420 1.003 N/A
start inp...(j) 231 11 1.21 53 12 0.53 0.436 1.004 1.000
fft float(f) 463 28 2.65 99 25 1.20 0.451 1.012 0.974
main(f) 284 20 1.83 73 18 1.01 0.550 1.007 1.000
sha trans...(h) 284 17 0.68 67 16 0.41 0.605 0.965 0.953
read scan...(j) 233 13 0.99 43 10 0.34 0.342 1.018 N/A
LZWReadByte(j) 268 12 0.64 45 11 0.21 0.325 1.014 N/A
main(j) 270 12 1.04 57 14 0.39 0.375 1.007 1.000
dijkstra(d) 231 9 0.37 43 9 0.15 0.409 1.010 1.000
usage(j) 188 3 0.17 47 6 0.07 0.428 1.025 N/A
GetCode(j) 270 15 0.36 61 13 0.18 0.508 1.000 N/A
bmhi init(s) 231 10 0.34 53 11 0.15 0.440 1.011 N/A
preload i...(j) 233 12 0.33 43 12 0.11 0.337 1.012 N/A
bmha init(s) 268 12 0.40 85 17 0.28 0.704 1.024 N/A
get inter...(j) 233 14 0.21 51 12 0.09 0.401 0.967 N/A
read quan...(j) 233 9 0.32 43 10 0.10 0.317 1.013 N/A
load inte...(j) 233 11 0.22 43 12 0.08 0.349 1.000 N/A
main(b) 233 14 0.29 59 14 0.14 0.489 1.026 1.000
get word ...(j) 233 10 0.18 51 11 0.07 0.377 0.918 N/A
read colo...(j) 233 12 0.21 57 13 0.12 0.593 0.986 N/A
set sampl...(j) 231 13 0.24 61 12 0.11 0.474 1.012 N/A
bmha search(s) 231 11 0.17 63 14 0.08 0.495 1.078 N/A
bmh init(s) 231 8 0.17 53 11 0.07 0.440 1.000 N/A
bmhi search(s) 231 10 0.16 49 12 0.07 0.398 1.082 N/A
bmh search(s) 231 11 0.16 63 14 0.08 0.484 1.083 N/A
main(s) 268 14 1.99 67 14 1.54 0.774 1.013 1.000
main(d) 245 13 0.20 59 13 0.09 0.438 1.015 1.000
get 8bit ...(j) 233 11 0.15 51 11 0.05 0.366 0.944 N/A
get scale...(j) 233 10 0.15 51 11 0.05 0.349 1.000 N/A
get 16bit...(j) 233 9 0.13 51 11 0.05 0.405 1.034 N/A
preload i...(j) 231 10 0.15 45 11 0.04 0.297 1.000 N/A
sha final(h) 233 8 0.13 41 9 0.04 0.276 1.000 1.000
set quant...(j) 233 15 0.20 55 12 0.07 0.367 1.016 N/A
select fi...(j) 231 9 0.25 43 10 0.07 0.289 1.029 1.071
byte reve...(h) 270 11 0.15 75 15 0.11 0.722 1.030 1.000
get 24bit...(j) 233 10 0.13 51 11 0.04 0.344 1.000 N/A
get word ...(j) 233 9 0.13 51 11 0.04 0.321 0.943 N/A
ntbl bitc...(b) 188 4 0.11 39 7 0.04 0.363 1.037 1.036
read text...(j) 268 14 0.18 67 14 0.07 0.395 1.000 N/A
read scan...(j) 231 12 0.15 57 13 0.06 0.390 1.061 N/A
bitcount(b) 188 5 0.09 37 6 0.02 0.263 1.333 1.321
remaining 67 217.9 6.9 0.09 42.1 7.6 0.02 0.206 0.998 0.996
average 230.3 8.9 0.34 47.7 9.6 0.14 0.297 1.015 1.005

Old Compilation - original batch compilation, Prob. Compilation - new probabilistic mode of compilation, Attempted Phases
- number of attempted phases, Active Phases - number of active phases, Time - compilation time in seconds, Prob/Old - ratio
of probabilistic to old compilation for compilation time, code size, and dynamic instruction counts, respectively.

Table 7. Comparison between the Old Batch and the New Probabilistic Approaches of Compilation

tions we evaluated. It is now possible to find the optimal
phase ordering for some characteristics. For instance, we
are able to find the minimal code size for most of the func-
tions in our benchmark suite. This enumeration study also
provided us with a large data set, which we showed can
be analyzed to study various optimization phase interac-
tions. Automatically calculating probabilities is much more
reliable than relying on a compiler writer’s intuition since
it is very difficult for even the most experienced compiler
writer to envision all of the possible interactions between
phases [14]. We used the enabling/disabling probabilities
to reduce the compilation time for a conventional compiler
to about one-third of the time originally required, while
maintaining comparable performance. We have also de-
scribed several other potential applications of using phase
interaction information. In summary, we believe that our
approach for efficient and exhaustive enumeration of opti-
mization phase order space has opened a new area of com-
piler research.

9. Acknowledgements

We thank the anonymous reviewers for their constructive
comments and suggestions. This research was supported
in part by NSF grants EIA-0072043, CCR-0208892, CCR-
0312493, CCF-0444207, and CNS-0305144.

References

[1] Steven R. Vegdahl. Phase coupling and constant generation
in an optimizing microcode compiler. In Proceedings of the
15th annual workshop on Microprogramming, pages 125–
133. IEEE Press, 1982.

[2] D. Whitfield and M. L. Soffa. An approach to ordering opti-
mizing transformations. In Proceedings of the second ACM
SIGPLAN symposium on Principles & Practice of Parallel
Programming, pages 137–146. ACM Press, 1990.

[3] Keith D. Cooper, Philip J. Schielke, and Devika Subrama-
nian. Optimizing for reduced code space using genetic al-
gorithms. In Workshop on Languages, Compilers, and Tools
for Embedded Systems, pages 1–9, May 1999.

[4] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyungh-
wan Cho, David Whalley, Jack Davidson, Mark Bailey, Yun-
heung Paek, and Kyle Gallivan. Finding effective optimiza-
tion phase sequences. In Proceedings of the 2003 ACM SIG-
PLAN conference on Language, Compiler, and Tool for Em-
bedded Systems, pages 12–23. ACM Press, 2003.

[5] T. Kisuki, P. Knijnenburg, and M.F.P. O’Boyle. Combined
selection of tile sizes and unroll factors using iterative com-
pilation. In Proc. PACT, pages 237–246, 2000.

[6] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachhara-
jani, and David I. August. Compiler optimization-space ex-
ploration. In Proceedings of the international symposium on

Code Generation and Optimization, pages 204–215. IEEE
Computer Society, 2003.

[7] Prasad A. Kulkarni, Stephen R. Hines, David B. Whalley,
Jason D. Hiser, Jack W. Davidson, and Douglas L. Jones.
Fast and efficient searches for effective optimization-phase
sequences. ACM Trans. Archit. Code Optim., 2(2):165–198,
2005.

[8] T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, F. Bodin,
and H.A.G. Wijshoff. A feasibility study in iterative compi-
lation. In Proc. ISHPC’99, volume 1615 of Lecture Notes in
Computer Science, pages 121–132, 1999.

[9] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J.
Harvey, Steven W. Reeves, Devika Subramanian, Linda Tor-
czon, and Todd Waterman. Finding effective compilation se-
quences. In LCTES ’04: Proceedings of the 2004 ACM SIG-
PLAN/SIGBED conference on Languages, Compilers, and
Tools for Embedded Systems, pages 231–239, New York,
NY, USA, 2004. ACM Press.

[10] Deborah L. Whitfield and Mary Lou Soffa. An approach
for exploring code improving transformations. ACM Trans.
Program. Lang. Syst., 19(6):1053–1084, 1997.

[11] Elana D. Granston and Anne Holler. Automatic recommen-
dation of compiler options. 4th Workshop of Feedback-
Directed and Dynamic Optimization, December 2001.

[12] K. Chow and Y. Wu. Feedback-directed selection and char-
acterization of compiler optimizatons. Proc. 2nd Workshop
on Feedback Directed Optimization, 1999.

[13] F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle,
and E. Rohou. Iterative compilation in a non-linear optimi-
sation space. Proc. Workshop on Profile and Feedback Di-
rected Compilation. Organized in conjuction with PACT’98,
1998.

[14] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and
D. Jones. Fast searches for effective optimization phase se-
quences. In Proceedings of the ACM SIGPLAN ’04 Con-
ference on Programming Language Design and Implemen-
tation, pages 171–182, June 2004.

[15] M. E. Benitez and J. W. Davidson. A portable global opti-
mizer and linker. In Proceedings of the SIGPLAN’88 con-
ference on Programming Language Design and Implemen-
tation, pages 329–338. ACM Press, 1988.

[16] M. E. Benitez and J. W. Davidson. The advantages of
machine-dependent global optimization. In Proceedings of
the 1994 International Conference on Programming Lan-
guages and Architectures, pages 105–124, March 1994.

[17] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst,
Todd M. Austin, Trevor Mudge, and Richard B. Brown.
MiBench: A free, commercially representative embedded
benchmark suite. IEEE 4th Annual Workshop on Workload
Characterization, December 2001.

[18] W. Peterson and D. Brown. Cyclic codes for error detec-
tion. In Proceedings of the IRE, volume 49, pages 228–235,
January 1961.

