Effective Exploitation of a Zero Overhead Loop Buffer

Gang-Ryung Uh
Yuhong Wang
David Whalley
Sanjay Jinturkar
Chris Burns
Vincent Cao

HARDWARE LOOPING SUPPORT (cont.)

```
for (i = 0; i < 10000; i++)
a[i] = 0;
```

Source Code of Loop

DSP16000 Assembly and Corresponding RTLs without Using the ZOLB

HARDWARE LOOPING SUPPORT (cont.)

```
cloop = 10000
r0 = _a
a2 = 0
do cloop {
  *r0++ = a2
}
```

After Using the ZOLB

LOOP SPLITTING

```
for (i = 0; i < 10000; i++) {
    a[i] += a[i]*x;
    b[i] += b[i]*y;
    c[i] += c[i]*x;
    d[i] += d[i]*y;
    x = x+1;
    y = y+2;
}</pre>
```

Source Code before Loop Splitting

```
for (i = 0; i < 10000; i++) {
    a[i] += a[i]*x;
    c[i] += c[i]*x;
    x = x+1;
}
for (i = 0; i < 10000; i++) {
    b[i] += b[i]*y;
    d[i] += d[i]*y;
    y = y+2;
}</pre>
```

Source Code after Loop Splitting

LOOP COLLAPSING

```
int a[50][100];
for (i = 0; i < 50; i++)
  for (j = 0; j < 100; j++)
    a[i][j] = 0;</pre>
```

Original Nested Loops

```
int a[5000];
for (i = 0; i < 5000; i++)
   a[i] = 0;</pre>
```

After Loop Collapsing

Example of Loop Collapsing

LOOP INTERCHANGE

```
extern int a[200][100];

for (i=0; i<200; i++)
   for (j=0; j<50; j++)
      a[i][j]=0;</pre>
```

Source Code of Nested Loops

```
extern int a[200][100];

for (j=0; j<50; j++)
   for (i=0; i<200; i++)
    a[i][j]=0;</pre>
```

Source Code after Loop Interchange

RESULTS and CONCLUSIONS

- (1) Description of Test Programs
- (2) Contrasting Loop Unrolling and Using the ZOLB
- (3) Impact of
 Improving Transformations
 on Using the ZOLB

TEST PROGRAMS

Program	Description		
add8	add two 8-bit integers		
сору8	copy one 8-bit image to another		
fir	finite impulse response filter		
fire	fire encoder		
inverse8	invert an 8-bit image		
lms	lms adaptive filter		
sumabsd	sum of absolute diff of images		
vec_mpy	simple vector multiply		
conv	convolution code		
fft	128 point complex fft		
fir_no	fir filter with no redundant		
	load		
iir	iir filter		
jpegdct	jpeg discrete cosine		
	transformation		
scale8	scale an 8-bit image		
trellis	trellis convolutional encoder		

PERFORMANCE RESULTS

Program	Unrolling(4)	ZOLB
add8	-23.11%	-36.33%
conv	-47.56%	-47.84%
сору8	-42.32%	-62.44%
fft	-10.56%	-8.69%
fir	-35.25%	-48.42%
fir_no	-7.07%	-31.35%
fire	-4.22%	-26.88%
iir	-15.43%	-19.61%
inverse8	-37.34%	-55.50%
jpegdct	-8.44%	0.00%
lms	-10.52%	-8.33%
scale8	-9.37%	-14.28%
sumabsd	-19.57%	-58.83%
trellis	-19.10%	-20.16%
vec_mpy	-28.49%	-38.16%
Average	-24.22%	-31.79%

Results 29

CODE SIZE RESULTS

Program	Unrolling(4)	ZOLB
add8	+62.75%	-3.92%
conv	+29.03%	-3.23%
сору8	+12.50%	-4.17%
fft	+92.86%	-3.57%
fir	+147.37%	-10.53%
fir_no	+109.30%	-4.65%
fire	+110.78%	-21.57%
iir	+51.04%	-4.17%
inverse8	+18.37%	-4.08%
jpegdct	+ 59.54%	0.00%
lms	+1.78%	-0.04%
scale8	+93.85%	-1.54%
sumabsd	+25.71%	-8.57%
trellis	+0.33%	-0.17%
vec_mpy	+336.84%	-15.79%
Average	+76.80%	-5.73%

Results 30