
Tehniques for E�etively Exploiting a ZeroOverhead Loop Bu�erGang-Ryung Uh1, Yuhong Wang2, David Whalley2, Sanjay Jinturkar1, ChrisBurns1, and Vinent Cao11 Luent Tehnologies, Allentown, PA 18103, U.S.A.2 Computer Siene Dept., Florida State Univ., Tallahassee, FL 32306-4530, U.S.A.fuh,sjinturkar,pburns,vpaog�luent.om, fyuhong,whalleyg�s.fsu.eduAbstrat. A Zero Overhead Loop Bu�er (ZOLB) is an arhiteturalfeature that is ommonly found in DSP proessors. This bu�er an beviewed as a ompiler managed ahe that ontains a sequene of instru-tions that will be exeuted a spei�ed number of times. Unlike loop un-rolling, a loop bu�er an be used to minimize loop overhead without thepenalty of inreasing ode size. In addition, a ZOLB requires relativelylittle spae and power, whih are both important onsiderations for mostDSP appliations. This paper desribes strategies for generating ode toe�etively use a ZOLB. The authors have found that many ommon im-proving transformations used by optimizing ompilers to improve odeon onventional arhitetures an be exploited (1) to allow more loopsto be plaed in a ZOLB, (2) to further redue loop overhead of the loopsplaed in a ZOLB, and (3) to avoid redundant loading of ZOLB loops.The results given in this paper demonstrate that this arhitetural fea-ture an often be exploited with substantial improvements in exeutiontime and slight redutions in ode size.1 IntrodutionThe number of DSP proessors is growing every year at a muh faster rate thangeneral-purpose omputer proessors. For many appliations, a large perentageof the exeution time is spent in the innermost loops of a program [1℄. The exeu-tion of these loops inur signi�ant overhead, whih is due to the inrement andbranh instrutions to initiate a new iteration of a loop. Many ode improvingtransformations and arhitetural features used to improve exeution time forappliations in general-purpose omputers do so at the expense of substantialode growth and more power onsumption. For instane, loop unrolling is a pop-ular tehnique to derease loop overhead [2℄. Yet, this approah often requiresa signi�ant inrease in ode size. Likewise, VLIW instrutions an be used toredue loop overhead at the expense of more power. Spae inreasing transfor-mations and power ineÆient arhitetures are often unaeptable options formany DSP appliations due to these limitations.A zero overhead loop bu�er (ZOLB) is an arhitetural feature ommonlyfound in DSP proessors. This bu�er an be used to inrease the speed of applia-tions with no inrease in ode size and often with redued power onsumption. A

Gang-Ryung Uh, Yuhong Wang, David WhalleyZOLB is a bu�er that an ontain a �xed number of instrutions to be exeuteda spei�ed number of times under program ontrol. Depending on the implemen-tation of the DSP arhiteture, some instrutions may be fethed faster from aZOLB than from the onventional instrution memory. In addition, the samememory bus used to feth instrutions an sometimes be used to aess datawhen ertain registers are dereferened. Thus, memory bus ontention an beredued when instrutions are fethed from a ZOLB. Due to addressing ompli-ations, transfers of ontrol instrutions are not typially allowed in suh bu�ers.Therefore, a ompiler or assembly writer attempts to exeute many of the inner-most loops of programs from this bu�er. A ZOLB an be viewed as a ompilerontrolled ahe sine speial instrutions are used to load instrutions into it.This paper desribes strategies for exploiting the ZOLB that is available onthe DSP16000 arhiteture [3℄, whih ould also be applied to other DSP arhi-tetures that have ZOLBs. These strategies have the potential for being readilyadopted by ompiler writers for DSP proessors sine they rely on the use of tra-ditional ompiler improving transformations and data ow analysis tehniques.Figure 1 presents an overview of the ompilation proess used by the authorsto generate and improve ode for this arhiteture. Code is generated using a Compiler retargeted to the DSP16000 [4℄. Conventional improving transforma-tions in this C ompiler are applied and assembly �les are generated. Finally, thegenerated ode is then proessed by another optimizer, whih performs a num-ber of improving transformations inluding those that exploit the ZOLB on thisarhiteture. There are advantages of attempting to exploit a ZOLB using thisapproah. First, the exat number of instrutions in a loop will be known afterode generation, whih will ensure that the maximum number of instrutionsthat an be ontained in the ZOLB is not exeeded. While performing thesetransformations after ode generation sometimes resulted in more ompliatedalgorithms, the optimizer was able to apply transformations more frequentlysine it did not have to rely on onservative heuristis onerning the ratio ofintermediate operations to mahine instrutions. Seond, interproedural analy-sis and transformations also proved to be valuable in exploiting a ZOLB, as willbe shown later in this paper.
Optimization

Phase I

Optimization

Phase II
...

C Compiler

File 1
Assembly
Generated

C Compiler

Generated
Assembly

File n

C
Source
File n

C
Source
File 1

Improved
Assembly

File
...

Fig. 1. Overview of the Compilation Proess for the DSP16000

Tehniques for E�etively Exploiting a Zero Overhead Loop Bu�er2 Related WorkA number of hardware and software tehniques have been used to redue loopoverhead. Common hardware tehniques inlude branh predition hardware toredue branh mispreditions and supersalar or VLIW exeution to allow otheroperations to exeute in parallel with the loop overhead instrutions [1℄. However,the use of omplex hardware mehanisms to minimize branh overhead results inthe onsumption of more power. Some urrent general-purpose proessors havea loop branh instrution that eliminates the inrementing of a loop ounter anda omparison, but still require the branh instrution. Common software teh-niques inlude loop strength redution with basi indution variable eliminationand loop unrolling. Note that loop unrolling an signi�antly inrease ode size.Currently available versions of ZOLBs in TI, ADI, and Luent proessorshave been desribed [5℄. Assembly language programmers for DSPs ommonlyuse ZOLBs in the ode that they write. However, optimizing ompilers havebeen used only reently for DSP appliations and programmers still tend towrite ritial setions by hand [6℄. A preliminary version of this paper appearedin a workshop [12℄. To the best of our knowledge, no other work desribes howa ZOLB an be exploited by a ompiler, the interation of exploiting a ZOLBwith other improving transformations, and the performane bene�ts that an beahieved from using a ZOLB.3 Using the DSP16000 ZOLBThe target arhiteture for whih the authors generated ode was the DSP16000developed at Luent Tehnologies. This arhiteture ontains a ZOLB that anhold up to 31 instrutions. Two speial instrutions, the do and the redo, areused to ontrol the ZOLB on the DSP16000 [7℄. Figure 2(a) shows the assemblysyntax for using the do instrution, whih spei�es that the n instrutions en-losed between the urly braes are to be exeuted k times. The atual enodingof the do instrution inludes a value of n, whih an range from 1 to 31, indiat-ing the number of instrutions following the do instrution that are to be plaedin the ZOLB. The value k is also inluded in the enoding of the do instru-tion and represents the number of iterations assoiated with an innermost loopplaed in the ZOLB. When k is a ompile-time onstant less than 128, it maybe spei�ed as an immediate value sine it will be small enough to be enodedinto the instrution. Otherwise a value of zero is enoded and the number oftimes the instrutions in the ZOLB will be exeuted is obtained from the loopregister. The �rst iteration results in the instrutions enlosed between the urlybraes being fethed from the memory system, exeuted, and loaded into theZOLB. The remaining k-1 iterations are exeuted from the ZOLB. The redoinstrution shown in Figure 2(b) is similar to the do instrution, exept that theurrent ontents of the ZOLB are exeuted k times. Figure 3 depits some ofthe hardware used for a ZOLB, whih inludes a 31 instrution bu�er, a loopregister initially assigned the number of iterations and impliitly deremented

Gang-Ryung Uh, Yuhong Wang, David Whalleyon eah iteration, and a state register ontaining the number of instrutionsin the loop and the pointer to the urrent instrution to load or exeute. Per-formane bene�ts are ahieved whenever the number of iterations exeuted isgreater than one.
...

Using the redo Instruction

redo k

(b) Assembly Syntax for

...instruction 1

}

(a) Assembly Syntax for

...

...

Using the do Instruction

...

do k {

instruction nFig. 2. DSP16000 Assembly Syntax forUsing the ZOLB
instruction 1

instruction 2

buffer cloop

k

cstate

...

instruction

...
instruction 31 nzolbpcFig. 3. Example of Using the ZOLB onthe DSP16000Figure 4 shows a simple example of exploiting the ZOLB on the DSP16000.Figure 4(a) ontains the soure ode for a simple loop. Figure 4(b) depits theorresponding ode for the DSP16000 without plaing instrutions in the ZOLB.The e�ets of these instrutions are also shown in this �gure. The array in Fig-ure 4(a) and the arrays in the other examples in the paper are of type shortThus, the postinrement auses r0 to be inremented by 2. Many DSP arhite-tures use an instrution set that is highly speialized for known DSP applia-tions. The DSP16000 is no exeption and its instrution set has many omplexfeatures, whih inlude separation of address (r0-r7) and aumulator (a0-a7)registers, postinrements of address registers, and impliit sets of ondition odesfrom aumulator operations. Figure 4(b) also shows that the loop variable isset to a negative value before the loop and is inremented on eah loop iteration.This strategy allows an impliit omparison to zero with the inrement to avoidperforming a separate omparison instrution. Figure 4() shows the equivalentode after plaing the loop in the ZOLB. The branh in the loop is deleted sinethe loop will be exeuted the desired number of iterations. After applying basiindution variable elimination and dead store elimination, the inrement andinitialization of a1 are removed. Thus, the loop overhead has been eliminated.

(a) Source Code of Loop

 a[i] = 0;
for (i = 0; i < 10000; i++)

 r0 = _a # r[0]=ADDR(_a);
 a2 = 0 # a[2]=0;

L5: *r0++ = a2 # M[r[0]]=a[2]; r[0]=r[0]+2;

r0 = _a
a2 = 0

*r0++ = a2

(c) After Using the ZOLB(b) DSP16000 Assembly and Corresponding RTLs without Using the ZOLB

 if le goto L5 # PC=IC<=0?L5:PC;
 a1 = a1 + 1 # a[1]=a[1]+1; IC=a[1]+1?0;

 a1 = -9999 # a[1]= -9999;

cloop = 10000

do cloop {

}Fig. 4. ZOLB Hardware

Tehniques for E�etively Exploiting a Zero Overhead Loop Bu�er4 Plaing More Loops in a ZOLBThe limiting fators that an prevent exploiting a ZOLB for an innermost loopare (1) transfers of ontrol other than the loop branh, (2) the number of instru-tions in the loop exeeding the ZOLB limit, and (3) the number of iterationsbeing unknown at run-time. In this setion we desribe tehniques that an oftenaddress eah of these fators.One limiting fator that prevents the exploitation of a ZOLB for many loopsis that transfers of ontrol annot be exeuted from a ZOLB. This limitationan be partially overome by the use of onditional instrutions. Consider theexample soure ode in Figure 5(a), whih shows a loop with an assignmentthat is dependent on a ondition. The assembly ode in Figure 5(b) annot beplaed into a ZOLB sine there is a onditional branh that is not assoiatedwith the exit ondition of the loop.1 Our ompiler used prediated exeutionwhen possible to avoid this problem [1℄. Figure 5() depits the same loop witha onditional instrution and this loop an be transformed to be exeuted froma ZOLB. Unfortunately, many potential loops ould not be plaed in a ZOLBsine prediates are assigned to a single ondition ode register on the DSP16000and only a subset of the DSP16000 instrutions an be onditionally exeuted.
 a1 = -9999
L5: a0 = *r0
 a0 = a0

 r0 = r0 + 2
 a1 = a1 + 1
 if le goto L5

 r0 = _a

(c) DSP16000 Assembly

 if le a2 = a2 + a0 if (a[i] > 0)
 sum += a[i];

(a) Original Source Code

for (i = 0; i < 10000;

with Conditional Instructions

 i++)

 r0 = _a
 a1 = -9999
L5: a0 = *r0
 a0 = a0

L4: r0 = r0 + 2
 a1 = a1 + 1
 if le goto L5

(b) DSP16000 Assembly
without Conditional Instructions

 if gt goto L4
 a2 = a2 + a0

Fig. 5. Example of Using Conditional Instrutions to Plae More Loops in a ZOLBA all instrution is another transfer of ontrol that annot be plaed inthe DSP16000 ZOLB. Consider the soure ode and orresponding DSP16000assembly in Figures 6(a) and 6(b). The loop annot be plaed in a ZOLB sineit ontains a all to abs. However, the funtion an be inlined as shown inFigure 6() and the ZOLB an be used for the resulting loop. The DSP16000optimizer does not inline indisriminately due to potential growth in ode size.However, the optimizer inlines funtions that are alled from a loop when theloop after inlining an be plaed in the ZOLB (i.e. limited ode growth formeasurable performane bene�ts). Likewise, inlining of a funtion is performedwhen the funtion is only alled from one site (i.e. no ode growth) [8℄.Another fator that sometimes prevented loops from being plaed in theDSP16000 ZOLB was the limit of 31 instrutions in the bu�er. The authors1 The a0 = a0 instrution is used to set the ondition odes, whih are not set by theprevious load instrution.

Gang-Ryung Uh, Yuhong Wang, David Whalley
 r4 = _a
 a5 = 0

L5: a0 = *r4++

 a5 = a5 + a0
 a4 = a4 + 1
 if le goto L5

(b) Before Inlining

int abs(int v)
{
 if (v < 0)

 return v;
}

sum = 0;
for (i = 0; i < 10000; i++)
 sum += abs(a[i]);

(a) Source Code

 if le goto L5

(c) After Inlining

 a4 = a4 + 1
 a5 = a5 + a0

L5:a0 = *r4++

 a5 = 0
 r4 = _a

...

...

_abs: a0 = a0
 if lt a0 = -a0
 return
 ...

 call _abs

 a4 = -9999
 a4 = -9999

 a0 = a0
 if lt a0 = -a0

 v = -v;

Fig. 6. Example of Inlining a Funtion to Allow a Loop to Be Plaed in a ZOLBimplemented loop distribution to address this problem. The optimizer splitsloops exeeding the ZOLB limit if the sets of dependent instrutions an bereorganized into separate loops that an all be plaed in a ZOLB. The optimizer�rst �nds all of the sets of dependent instrutions. The onditional branh andthe instrutions that ontribute to setting the ondition odes for that branhare treated separately sine they will be plaed with eah set. Note that theseinstrutions will typially be deleted one loops are plaed in the ZOLB and thebasi indution variable elimination and dead store elimination transformationsare applied. The optimizer then heks if eah set of instrutions will �t in theZOLB and ombines multiple sets together when they would not exeed themaximum instrutions that the ZOLB an hold.A �nal fator preventing the use of the ZOLB is that often the number ofiterations assoiated with a loop is unknown at run-time. However, sometimessuh loops an still be plaed in the ZOLB on the DSP16000. Consider the soureode shown in Figure 7(a) and the orresponding DSP16000 assembly shown inFigure 7(b). The number of iterations is unknown sine it is not known whihwill be the �rst element of array a that will be equal to n. For eah iteration of aZOLB loop on the DSP16000 the loop register is impliitly deremented by oneand then tested. The ZOLB is exited when this register is equal to zero. Thus,assigning a value of one to the loop register will ause the loop to exit afterthe urrent iteration ompletes. The loop in Figure 7(b) an be transformed tobe plaed in the ZOLB sine the loop register an be onditionally assigned avalue in a register. Figure 7() depits the transformed ode. The loop registeris initially set to the maximum value to whih it an be assigned and a register,a3, is alloated to hold the value 1. The a[i℄ != n test is aomplished by thelast three instrutions in Figure 7(b). To fore an exit from the ZOLB on theDSP16000, the loop register must be assigned a value of 1 at least three instru-tions before the end of the loop due to the lateny requirements of the mahine.Moving three instrutions after the branh, omparison, and instrutions thata�et the omparison often required the optimizer to perform register renamingand adjust the displaements of memory referenes, as shown in Figure 7().Sine the loop an eventually exit due to the loop register being derementedto zero without being set in the onditional assignment, another loop is plaedafter the ZOLB loop that will repeatedly redo the ZOLB loop until the exit

Tehniques for E�etively Exploiting a Zero Overhead Loop Bu�erondition has been satis�ed. Note that unlike ZOLB loops with a known num-ber of iterations, the number of instrutions in this ZOLB loop is not less thanthe number of instrutions before the loop was plaed in the ZOLB. However,onditional branhes on the DSP16000 require more yles than onditional as-signments. Other potential bene�ts inlude reduing ontention to the memorysystem in the loop. Thus, there is a performane bene�t on the DSP16000 fromplaing loops with an unknown number of iterations in the ZOLB.
for (i = 0; a[i] != n; i++)
 sum += a[i]*2;

(a) Source Code of Loop

sum = 0;

 if eq goto L3

 a3 = 1
 do cloop {

 a0 = *r0++
 a0 = a0 <<< 1
 a2 = a2 + a0
 }
 goto L01

 redo cloop

 if ne goto L02
L3:

after Using the ZOLB
(c) DSP16000 Assembly

L3:

(b) DSP16000 Assembly
without Using the ZOLB

 a2 = a2 + a0
 a0 = a0 <<< 1
L5: a0 = *r0++
 if eq goto L3

 a1 = *r1
 a0 = *r0
 r1 = _n
 a2 = 0
 r0 = _a

 a0 - a1

 a0 = *r0
 a0 - a1
 if ne goto L5

 ...

 cloop = <max value>

 a4 = *(r0+2)
 a4 - a1
 if eq cloop = a3

L02: cloop = <max value>

L01: a4 - a1

Fig. 7. Example of Plaing a Loop with an Unknown Number of Iterations in a ZOLB5 Further Reduing Loop OverheadAs shown previously in Figure 4(), basi indution variable and dead storeelimination are invoked after plaing a loop in a ZOLB sine often assignmentsto the loop variable beome unneessary due to the branh no longer being in theloop. When the value of the basi indution variable is used after the loop and isused for no other purpose in the loop, the optimizer extrats these inrements ofthe variable from the loop. First, the inrements in the loop are deleted. Next,a new inrement of the variable is plaed after the loop that is the produt ofthe original inrement and the number of loop iterations.Another approah that is often used to redue the overhead assoiated withouter level loops is to ollapse nested loops. Figure 8(a) shows perfetly nestedloops that initialize every element of a matrix. Figure 8(b) shows how the arrayis oneptually aessed after these loops are ollapsed by our optimizer into asingle loop. After the optimizer plaes the ollapsed loop into the ZOLB, the loopoverhead for both original loops are entirely eliminated. The optimizer ollapsesnested loops whenever possible. Even when the inner loop annot be plaed ina ZOLB, the loop overhead is redued sine the outer loop is eliminated.Figures 9(a) and 9() show the soure and orresponding assembly ode foran example of a loop nest that annot be ollapsed by our optimizer sine not all

Gang-Ryung Uh, Yuhong Wang, David Whalley
for (i = 0; i < 5000; i++)
 a[i] = 0;

(b) After Loop Collapsing

int a[5000];
int a[50][100];

 for (j = 0; j < 100; j++)
for (i = 0; i < 50; i++)

 a[i][j] = 0;

(a) Original Nested LoopsFig. 8. Example of Loop Collapsing to Eliminate Additional Loop Overheadof the elements of eah row of the matrix are aessed. However, these two loopsan be interhanged, as shown in Figures 9(b) and 9(d). After interhangingthe two loops, the inner loop now has a greater number of loop iterations, whihan be exeuted from the ZOLB as shown in Figure 9(e). More loop overhead isnow eliminated by plaing the interhanged inner loop in the ZOLB as opposedto the original inner loop. The optimizer attempts to interhange nested loopswhen the loops annot be ollapsed, the loops are perfetly nested, the numberof iterations for the original inner loop is less than the number of iterations forthe original outer loop, the number of instrutions in the inner loop does notinrease, and the resulting inner loop an be plaed in the ZOLB. Figure 9(d)shows that register k was alloated to hold the value of the inrement 200 soan additional instrution to inrement r0 would be unneessary. This exampleillustrates the advantage of performing loop interhange after ode generationsine otherwise it would not be known if a register was available to be used tohold the inrement and the transformation may result in more instrutions in theinner loop. Interhanging loops will not degrade the performane of the memoryhierarhy for the DSP16000 sine it has no data ahe or virtual memory system.
 r1 = _aextern int a[200][100];

extern int a[200][100];

 a3 = 0

L5: r0 = r1

 a1 = a1 + 1
 if le goto L9

 a2 = a2 + 1
 if le goto L5

(d) DSP16000 Assembly
after Loop Interchange

 r1 = _a
 a3 = 0
 a2 = -49

 r0 = r1
 j = 200

 *r0++k = a3

 r1 = r1 + 2
 a2 = a2 + 1
 if le goto L5

(e) DSP16000 Assembly
after Using the ZOLB

for (i=0; i<200; i++)
 for (j=0; j<50; j++)
 a[i][j]=0;

(a) Source Code of Nested Loops

for (j=0; j<50; j++)
 for (i=0; i<200; i++)
 a[i][j]=0;

 r1 = _a
 a3 = 0

L5: r0 = r1

L9: *r0++ = a3
 a1 = a1 + 1
 if le goto L9

 a2 = a2 + 1
 if le goto L5

(c) DSP16000 Assembly
before Loop Interchange

 a2 = -199

 a1 = -49

 r1 = r1 + 200

 a2 = -49

 a1 = -199
 k = 200
L9: *r0++k = a3

 r1 = r1 + 2

L5: cloop = 200

 do cloop {

 }

(b) Source Code after Loop InterchangeFig. 9. Example of Loop Interhange to Inrease the Iterations Exeuted in the ZOLB6 Avoiding Redundant Loads of the ZOLBThe do instrution indiates that a spei�ed number of instrutions followingthe do will be loaded into the ZOLB. Depending upon the implementation of

Tehniques for E�etively Exploiting a Zero Overhead Loop Bu�erthe DSP arhiteture, instrutions may be fethed faster from a ZOLB than theonventional memory system. In addition, ontention for the memory systemmay be redued when a ZOLB is used. The redo instrution has similar semantisas the do instrution, exept that the redo does not ause any instrutions tobe loaded into the ZOLB. Instead, the urrent ontents of the ZOLB are simplyexeuted the spei�ed number of iterations.The redo instrution an be used to avoid redundant loads of loops into theZOLB. Consider the soure ode shown in Figure 10(a). It would appear thatthe two loops are quite di�erent sine they iterate a di�erent number of times,aess di�erent variables, and aess di�erent types of data. However, the bodyof the two loops are idential as shown in Figure 10(b). The reason is that muhof the harateristis of the loops have been abstrated out of the loop bodies.The number of iterations for ZOLB loops is enoded in the do instrution orassigned to the loop register preeding the loop. The addresses of the arraysare assigned to registers assoiated with basi indution variables preeding theloop after loop strength redution is performed. In addition, data moves of thesame size between registers and memory are aomplished in the same manneron the DSP16000, regardless of the data types. Figure 10() shows the assemblyode after the redundant loop is eliminated using the redo instrution.
r1 = _a
r0 = _b
do 100 {

}

cloop = 200
r1 = _c
r0 = _d
do cloop {

}

(b) DSP16000 Assembly
after Using the ZOLB

extern int a[100], b[100];
extern float c[200], d[200];

for (i = 0; i < 100; i++)
 a[i] = b[i];

for (i = 0; i < 200; i++)
 c[i] = d[i];

(a) Source Code of Two Different Loops

r1 = _a
r0 = _b
do 100 {

}

cloop = 200
r1 = _c
r0 = _d

(c) DSP16000 Assembly
after Avoiding the

Redundant ZOLB Load

...

...

...

...

a0 = *r0++

a0 = *r0++
*r1++ = a0

a0 = *r0++
*r1++ = a0

...

redo cloop

*r1++ = a0

Fig. 10. Example of Avoiding a Redundant Load of the ZOLBThe optimizer determines whih ZOLB loops an reah eah point in theontrol ow without the ontents of the ZOLB being hanged. The authorsused ow analysis to determine if the loading of eah ZOLB loop was neessary.A bit was assoiated with eah ZOLB loop and one bit was also reserved toindiate that no ZOLB loops ould reah a given point. Equations (1) and (2)are used to to determine whih ZOLB loops ould possibly reah eah point in theontrol ow within a funtion.2 In the atual implementation, interproeduralow analysis was used to avoid redundant loading of ZOLB loops aross funtionalls and returns. An adjustment was required when ZOLB loop information waspropagated from a return blok of a funtion. This adjustment prevented ZOLBloops that are propagated into the entry blok of a funtion at one all site from2 Note that B represents a basi blok in the program

Gang-Ryung Uh, Yuhong Wang, David Whalleybeing propagated to the blok following a all to the same funtion at a di�erentall site. Likewise, it was assumed that no ZOLB loops ould reah the pointafter a library all sine it was not known if the ZOLB would be used for adi�erent ZOLB loop in the alled library funtion.in[B℄ =8<: Null if B is a funtion entry blok[P 2 pred[B℄ out[P℄ otherwise (1)out[B℄ = (Null if B ontains a allB if B ontains a ZOLB loopin[B℄ otherwise (2)After all of the ZOLB loop reahing information is alulated, the optimizerdetermines whih ZOLB loops do not need to be loaded into the ZOLB. If thein[℄ of a urrent blok ontaining a ZOLB loop indiates that only a singleother ZOLB loop is guaranteed to reah that point and if all of the instrutionsin the other ZOLB loop are idential with the instrutions in the urrent ZOLBloop, then the entire urrent ZOLB loop is replaed with a redo instrution.Even after using ow analysis to avoid redundant loads of ZOLB loops, manyloops are repeatedly loaded into the ZOLB beause they are in nested loops. Theoptimizer was modi�ed to have the ability to avoid these redundant loads aswell. The optimizer avoids the repeated loading of the inner loop in the ZOLBby peeling an iteration of the outer loop. Only in the peeled iteration is theZOLB loaded. All remaining iterations exeute from the ZOLB using the redoinstrution. The optimizer only performs the loop peeling transformation whenthe inrease in ode size is small and there are expeted performane bene�ts(i.e. reduing memory bus ontention onits on the DSP16000) from avoidingthe repeated load of the inner loop into the ZOLB.7 Analysis and TransformationsThe order in whih these transformations are applied an a�et how e�etively aZOLB an be exploited. Figure 11 shows the order of the pertinent analysis andtransformations that are applied on the assembly ode in the seond optimizationphase shown in Figure 1. The omplete list of types of analysis and improvingtransformations performed in this phase of optimization and a more thoroughdesription and rationale for this order may be found elsewhere [9℄. Likewise,a more general desription of these analyses and transformations an also beobtained [13℄.Basi bloks are merged (#2) when possible. This transformation does notusually improve the ode diretly but may provide additional opportunities forother improving transformations. For instane, plaing loops in a ZOLB (#13)is only applied to loops ontaining a single basi blok. Merging basi bloks(#2) also redues the overhead of most types of global analysis.

Tehniques for E�etively Exploiting a Zero Overhead Loop Bu�erAnalysis is performed to allow optimizations to be performed A all graph(#1) is built to perform various types of interproedural improving transforma-tions [8℄, whih inludes inlining (#8) to support plaing loops in a ZOLB. Loopsin the program are deteted (#3) to support a variety of improving transforma-tions, whih of ourse inludes plaing loops in a ZOLB (#13). Live registerinformation is alulated (#4) sine many improving transformations requirealloation of registers. For instane, plaing a loop with an unknown numberof iterations in the ZOLB (#13) requires renaming registers to newly alloatedregisters to aomplish the sheduling required to fore an exit from the loop atthe appropriate time. Loop invariant values and basi indution variables are de-teted (#6) so the number of iterations for a loop may be alulated (#7). Notethat deteting the number of loop iterations is a muh more hallenging task atthe assembly level as ompared to examining soure level loop statements.Some instrutions with immediate values annot be exeuted onditionally.When these instrutions are inside a loop and a register is available, the om-piler replaes the immediate value with the register and assigns the immediatevalue to the register outside the loop. Therefore, branhes are onverted intoonditional assignments (#5) after �nding loops (#3) and alulating live regis-ter information (#4). Branhes are onverted into onditional assignments (#5)before analysis is performed to determine if a loop an be plaed in the ZOLB(#13) sine loops with branhes not assoiated with the exit ondition of theloop annot be plaed in the ZOLB.Inlining (#8) also removes transfers of ontrol from a loop, namely a allinstrution. Inlining (#8) was performed after deteting the number of loopiterations (#7) sine it ould be determined at this point if the inlining wouldallow the loop to be plaed in the ZOLB (#13) so unneessary ode growthould be avoided.Ranges of addresses were alulated (#9) for eah memory referene to al-low independent instrutions in a loop to be separated via loop distribution(#10). Both loop attening (#11) and loop interhange (#12) are performedafter alulating the number of loop iterations (#7) sine these transformationsrequire this information. Perfetly nested loops are attened (#11) before loopinterhange (#12) is performed sine attening loops plaes more iterations ina ZOLB than interhanging loops.Basi indution variable elimination (#14) was performed after plaing loopsin the ZOLB (#13) sine the assignments were often unneessary at that point.The remaining assignments to basi indution variables are extrated from loops(#15) after basi indution variable elimination (#14) to prevent unneessaryextrations of instrutions.Avoiding redundant loading of the ZOLB using ow analysis was performedafter loops were plaed in the ZOLB so redundant loads ould be deteted.Finally, loop peeling was only onsidered for the loops whose loading ould notbe avoided using ow analysis sine loop peeling requires a ode size inrease.

Gang-Ryung Uh, Yuhong Wang, David Whalley1. Build all graph for the program 10. Perform loop distribution to plaemore loops in the ZOLB2. Merge onseutive bloks 11. Flatten perfetly nested loops3. Find the loops in the program 12. Perform loop interhange4. Calulate live register info 13. Plae loops in the ZOLB5. Convert branhes into onditional 14. Eliminate basi indution variableassignments6. Find loop invariant & indution 15. Extrat loop indution variablevariables assignment7. Calulate the number of loop 16. Avoid redundant loading of the ZOLBiterations8. Perform inlining to support 17. Perform loop peeling to furtherplaing more loops in the ZOLB avoid redundant ZOLB loading9. Calulate ranges of addressesaessed by eah memory refereneFig. 11. Order of the Analysis and Transformations Used to Exploit a ZOLB8 ResultsTable 1 desribes the benhmarks and appliations used to evaluate the impatof using the ZOLB on the DSP16000. All of these test programs are either DSPbenhmarks used in industry or typial DSP appliations. Many DSP benh-marks represent kernels of programs where most of the yles our. Suh kernelsin DSP appliations have been historially optimized in assembly ode by handto ensure high performane [6℄. Thus, many established DSP industrial benh-marks are small sine they were traditionally hand oded. Standard benhmarks(e.g. SPEC) were not used sine the DSP16000 was not designed to supportoperations on oating-point values or integers larger than two bytes.Table 1. Test ProgramsProgram Desription Program Desriptionadd8 add two 8-bit images onv onvolution odeopy8 opy one 8-bit image to another �t 128 point omplex �t�r �nite impulse response �lter �r no �r �lter with�re �re enoder redundant load eliminationinverse8 invert an 8-bit image iir iir �lteringlms lms adaptive �lter jpegdt jpeg disrete osine transformsumabsd sum of absolute di�erenes of sale8 sale an 8-bit imagetwo images trellis trellis onvolutional enoderve mpy simple vetor multiplyTable 2 ontrasts the results for loop unrolling and exploiting the DSP16000ZOLB.3 Exeution measurements were obtained by aessing a yle ount froma DSP16000 simulator [10℄. Code size measurements were gathered by obtainingdiagnosti information provided by the assembler [11℄. The authors ompared3 Only relative performane results ould be given due to dislosure restritions forthese test programs.

Tehniques for E�etively Exploiting a Zero Overhead Loop Bu�erthe performane of using the ZOLB against loop unrolling, whih is a ommonapproah for reduing loop overhead. The loop unrolling showed in Table 2 wasperformed on all innermost loops when the number of iterations was knownstatially or dynamially. As shown in the results, using the ZOLB typially re-sulted in fewer exeution yles as ompared to loop unrolling. Sometimes loopunrolling did have bene�ts over using a ZOLB. This ourred when an inner-most loop had too many instrutions or had transfers of ontrol that wouldprevent it from being plaed in a ZOLB. In addition, sometimes loop unrollingprovided other bene�ts, suh as additional sheduling and instrution seletionopportunities, that would not otherwise be possible.4 However, the average per-formane bene�ts of using a ZOLB are impressive, partiularly when ode sizeis important. As shown in the table, loop unrolling aused signi�ant ode sizeinreases, while using the ZOLB resulted in slight ode size dereases. The odesize dereases when using the ZOLB ame from the ombination of eliminat-ing branhes by plaing the loops in the ZOLB and applying indution variableelimination and dead store elimination afterwards. Oasionally, ode size de-reases were obtained by avoiding redundant loads of the ZOLB loops using theow analysis desribed in Setion 5. Loop peeling, whih inreases ode size, wasrarely applied sine memory ontentions did not our that frequently.Table 2. Contrasting Loop Unrolling and Using a ZOLB
Program

conv -33.42% +22.58% -47.56% +29.03% -54.63% +41.94% -47.84% -3.23%

iir -11.10% +14.58% -15.43% +51.04% -15.67% +88.54% -19.61% -4.17%

 Cycles Code Size Cycles Code Size Cycles Code Size Cycle Code Size

Unroll Factor = 2 Unroll Factor = 4 Unroll Factor = 8 Exploiting ZOLB

add8 -11.47% +7.84% -23.11% +62.75% -27.46% +90.20% -36.33% -3.92%

copy8 -23.11% +6.25% -42.32% +12.50% -51.92% +25.00% -62.44% -4.17%

inverse8 -20.27% +8.16% -37.34% +18.37% -46.64% +48.98% -55.50% -4.08%

sumabsd -14.69% +8.57% -19.57% +25.71% -22.03% +60.00% -58.83% -8.57%

fir_no -3.97% +34.88% -7.07% +109.30% -9.14% +258.14% -31.35% -4.65%

scale8 -4.90% +38.46% -9.37% +93.85% -11.60% +204.62% -14.28% -1.54%

trellis -11.52% +0.11% -19.10% +0.33% -22.79% +0.78% -20.16% -0.17%

Average -12.72% +20.81% -21.22% +76.80% -24.86% +142.44% -31.79% -5.73%

fft -6.22% +32.14% -10.56% +92.86% -12.73% +214.29% -8.69% -3.57%
fir -20.35% +21.05% -35.25% +147.37% -41.98% +255.26% -48.42% -10.53%

fire -0.75% +36.27% -4.22% +110.78% -6.20% +255.88% -26.88% -21.57%

jpegdct -8.26% +17.56% -8.44% +59.54% -8.44% +59.54% 0.00% 0.00%
lms -1.75% +0.48% -10.52% +1.78% -10.52% +1.78% -8.33% -0.04%

vec_mpy -19.08% +63.16% -28.49% +336.84% -31.15% +531.58% -38.16% -15.79%Table 3 depits the bene�t of applying the improving transformations de-sribed in Setions 4 and 5. Only some of the improving transformations applied4 The prodution version of the optimizer does limited unrolling of loops. For instane,loop unrolling is applied when memory referenes and multiplies an be oalesed.However, unrolling is not performed when it would ause the number of instrutionsto exeed the limit that the ZOLB an hold [9℄. Note the measurements presentedin this paper did not inlude loop unrolling while plaing loops in the ZOLB sine itwould make the omparison of applying loop unrolling and using a ZOLB less lear.Likewise, the prodution version of the optimizer performs other optimizations, suhas multiply and memory oalesing and software pipelining, that were not appliedfor the results in this paper.

Gang-Ryung Uh, Yuhong Wang, David Whalleywithout using a ZOLB (olumn 2) had a performane bene�t on their own.These transformations inlude the use of onditional instrutions, inlining, andloop ollapsing. The harateristis of the DSP16000 prevented onditional in-strutions from being used frequently. Inlining only had oasional bene�ts forthe test programs sine the optimizer only inlined funtions when the funtionwas alled from a loop and inlining would allow the loop to be plaed in theZOLB. Inlining was not performed when a funtion had transfers of ontrolother than a return instrution, whih was the ommon ase. Loop ollapsingwas applied most frequently of these transformations. The results shown in ol-umn 3 inlude basi indution variable elimination sine it was quite obviousthat this transformation ould almost always be applied when a loop is plaedin the ZOLB. The ombination of using the ZOLB with the improving trans-formations (olumn 4) sometimes resulted in greater bene�ts than the sum ofthe bene�ts (olumns 2 and 3) when applied separately. Most of the additionalbene�t ame from the new opportunities for plaing more loops in the ZOLB(transformations desribed in Setion 4).Table 3. The Impat of Improving Transformations on Using a ZOLB
Transformations

Using the ZOLB
without

Using the ZOLB
with
Transformations

Using the ZOLB

Transformations
without

Impact on Execution Cycles

conv -8.22% -43.48% -52.13%
add8 -2.24% -35.09% -37.76%

copy8 -1.84% -60.39% -63.13%

fir 0.00% -48.42% -48.42%
fir_no -0.03% -31.37% -31.37%

iir 0.00% -19.61% -19.61%
inverse8 -1.64% -53.80% -56.23%

vec_mpy 0.00% -38.16% -38.16%

Average -3.83% -25.34% -32.97%

Program

fft 0.00% -8.69% -8.69%

jpegdct 0.00% 0.00% 0.00%

fire -7.44% 0.00% -32.31%

sumabsd -23.11% 0.00% -51.70%
trellis -8.75% -7.36% -20.16%

scale8 -3.79% -16.92% -17.52%
lms 0.00% -8.33% -8.33%

The authors also obtained the perentage of the innermost loops that wereplaed in the ZOLB. On average 71.56% of the innermost loops ould be plaedin the ZOLB without applying the improving transformations desribed in Se-tion 4. However, 84.89% of the innermost loops ould be plaed in the ZOLBwith these improving transformations applied. Transfers of ontrol was the mostommon fator that prevented the use of a ZOLB. The use of onditional in-strutions, inlining, and the transformation on loops with an unknown number ofiterations all oasionally resulted in additional loops being plaed in the ZOLB.

Tehniques for E�etively Exploiting a Zero Overhead Loop Bu�er9 ConlusionThis paper desribed strategies for generating ode and utilizing improvingtransformations to exploit a ZOLB. The authors found that many onventionalimproving transformations used in optimizing ompilers had signi�ant e�etson how a ZOLB an be exploited. The use of prediated exeution, loop dis-tribution, and funtion inlining allowed more loops to be plaed in a ZOLB.The overhead of loops plaed in a ZOLB was further redued by basi indutionvariable elimination and extration, loop ollapsing, and loop interhange. Theauthors also found that a ZOLB an improve performane in ways probably notintended by the arhitets who originally designed this feature. The use of on-ditional instrutions and instrution sheduling with register renaming allowedsome loops with an unknown number of iterations to be plaed in a ZOLB. In-terproedural ow analysis and loop peeling were used with the redo instrutionto avoid redundant loading of a ZOLB. The results obtained from test programsindiate that these transformations allowed a ZOLB to be often exploited withsigni�ant improvements in exeution time and small redutions in ode size.Referenes1. Hennessy, J., Patterson, D.: Computer Arhiteture: A Quantitative Approah, Se-ond Edition, Morgan Kaufmann, San Franiso, CA (1996).2. Davidson, J.W., Jinturkar, S.: Aggressive Loop Unrolling in a Retargetable, Opti-mizing Compiler. Proeedings of Compiler Constrution Conferene. 59{73 (April1996).3. Luent Tehnologies.: DSP16000 Digital Signal Proessor Core Information Manual(1997).4. Luent Tehnologies: DSP16000 C Compiler User Guide (1997).5. Lapsley, P., Bier, J., Lee, E.: DSP Proessor Fundamentals - Arhiteture and Fea-tures, IEEE Press (1996).6. Eyre, J., Bier, J.: DSP Proessors Hit the Mainstream, IEEE Computer 31(8),51{59 (August 1998).7. Luent Tehnologies.: DSP16000 Digital Signal Proessor Core Instrution Set Man-ual (1997).8. Wang, Y.: Interproedural Optimizations for Embedded Systems, Masters Projet,Florida State University, Tallahassee, FL (1999).9. Whalley, D.: DSP16000 C OPtimizer Overview and Rationale, Luent Tehnologies,Allentown, PA (1998).10. Luent Tehnologies.: DSP16000 LuxWorks Debugger (1997).11. Luent Tehnologies.: DSP16000 Assembly Language User Guide (1997).12. Uh, G.R., Wang, Y., Whalley, D. Jinturkar, S., Burns, C., and Cao, V.: E�etiveExploitation of a Zero Overhead Loop Bu�er, ACM SIGPLAN 1999 Workshop onLanguages, Compilers, and Tools for Embedded Systems, 10{19 (1999).13. Baon, D., Graham, S., Sharp, O.: Compiler Transformations for High-PerformaneComputing, ACM Computing Surveys, Volume 26 Number 4, 345{420 (1994).

