Techniques for Effectively Exploiting a Zero
Overhead Loop Buffer

Gang-Ryung Uh', Yuhong Wang?, David Whalley?, Sanjay Jinturkar!, Chris
Burns', and Vincent Cao®

! Lucent Technologies, Allentown, PA 18103, U.S.A.
2 Computer Science Dept., Florida State Univ., Tallahassee, FL 32306-4530, U.S.A.
{uh,sjinturkar,cpburns,vpcao}@lucent.com, {yuhong,whalley}@cs.fsu.edu

Abstract. A Zero Overhead Loop Buffer (ZOLB) is an architectural
feature that is commonly found in DSP processors. This buffer can be
viewed as a compiler managed cache that contains a sequence of instruc-
tions that will be executed a specified number of times. Unlike loop un-
rolling, a loop buffer can be used to minimize loop overhead without the
penalty of increasing code size. In addition, a ZOLB requires relatively
little space and power, which are both important considerations for most
DSP applications. This paper describes strategies for generating code to
effectively use a ZOLB. The authors have found that many common im-
proving transformations used by optimizing compilers to improve code
on conventional architectures can be exploited (1) to allow more loops
to be placed in a ZOLB, (2) to further reduce loop overhead of the loops
placed in a ZOLB, and (3) to avoid redundant loading of ZOLB loops.
The results given in this paper demonstrate that this architectural fea-
ture can often be exploited with substantial improvements in execution
time and slight reductions in code size.

1 Introduction

The number of DSP processors is growing every year at a much faster rate than
general-purpose computer processors. For many applications, a large percentage
of the execution time is spent in the innermost loops of a program [1]. The execu-
tion of these loops incur significant overhead, which is due to the increment and
branch instructions to initiate a new iteration of a loop. Many code improving
transformations and architectural features used to improve execution time for
applications in general-purpose computers do so at the expense of substantial
code growth and more power consumption. For instance, loop unrolling is a pop-
ular technique to decrease loop overhead [2]. Yet, this approach often requires
a significant increase in code size. Likewise, VLIW instructions can be used to
reduce loop overhead at the expense of more power. Space increasing transfor-
mations and power inefficient architectures are often unacceptable options for
many DSP applications due to these limitations.

A zero overhead loop buffer (ZOLB) is an architectural feature commonly
found in DSP processors. This buffer can be used to increase the speed of applica-
tions with no increase in code size and often with reduced power consumption. A

Gang-Ryung Uh, Yuhong Wang, David Whalley

ZOLB is a buffer that can contain a fixed number of instructions to be executed
a specified number of times under program control. Depending on the implemen-
tation of the DSP architecture, some instructions may be fetched faster from a
ZOLB than from the conventional instruction memory. In addition, the same
memory bus used to fetch instructions can sometimes be used to access data
when certain registers are dereferenced. Thus, memory bus contention can be
reduced when instructions are fetched from a ZOLB. Due to addressing compli-
cations, transfers of control instructions are not typically allowed in such buffers.
Therefore, a compiler or assembly writer attempts to execute many of the inner-
most loops of programs from this buffer. A ZOLB can be viewed as a compiler
controlled cache since special instructions are used to load instructions into it.

This paper describes strategies for exploiting the ZOLB that is available on
the DSP16000 architecture [3], which could also be applied to other DSP archi-
tectures that have ZOLBs. These strategies have the potential for being readily
adopted by compiler writers for DSP processors since they rely on the use of tra-
ditional compiler improving transformations and data flow analysis techniques.
Figure 1 presents an overview of the compilation process used by the authors
to generate and improve code for this architecture. Code is generated using a C
compiler retargeted to the DSP16000 [4]. Conventional improving transforma-
tions in this C compiler are applied and assembly files are generated. Finally, the
generated code is then processed by another optimizer, which performs a num-
ber of improving transformations including those that exploit the ZOLB on this
architecture. There are advantages of attempting to exploit a ZOLB using this
approach. First, the exact number of instructions in a loop will be known after
code generation, which will ensure that the maximum number of instructions
that can be contained in the ZOLB is not exceeded. While performing these
transformations after code generation sometimes resulted in more complicated
algorithms, the optimizer was able to apply transformations more frequently
since it did not have to rely on conservative heuristics concerning the ratio of
intermediate operations to machine instructions. Second, interprocedural analy-
sis and transformations also proved to be valuable in exploiting a ZOLB, as will
be shown later in this paper.

C C Compiler
Source Generated
Filel Assembly
Filel
Optimization Optimization Improved
Assembly
Phase | Phase Il File
C C Compiler
Source Generated
Filen Assembly
Filen

Fig. 1. Overview of the Compilation Process for the DSP16000

Techniques for Effectively Exploiting a Zero Overhead Loop Buffer

2 Related Work

A number of hardware and software techniques have been used to reduce loop
overhead. Common hardware techniques include branch prediction hardware to
reduce branch mispredictions and superscalar or VLIW execution to allow other
operations to execute in parallel with the loop overhead instructions [1]. However,
the use of complex hardware mechanisms to minimize branch overhead results in
the consumption of more power. Some current general-purpose processors have
a loop branch instruction that eliminates the incrementing of a loop counter and
a comparison, but still require the branch instruction. Common software tech-
niques include loop strength reduction with basic induction variable elimination
and loop unrolling. Note that loop unrolling can significantly increase code size.

Currently available versions of ZOLBs in TI, ADI, and Lucent processors
have been described [5]. Assembly language programmers for DSPs commonly
use ZOLBs in the code that they write. However, optimizing compilers have
been used only recently for DSP applications and programmers still tend to
write critical sections by hand [6]. A preliminary version of this paper appeared
in a workshop [12]. To the best of our knowledge, no other work describes how
a ZOLB can be exploited by a compiler, the interaction of exploiting a ZOLB
with other improving transformations, and the performance benefits that can be
achieved from using a ZOLB.

3 Using the DSP16000 ZOLB

The target architecture for which the authors generated code was the DSP16000
developed at Lucent Technologies. This architecture contains a ZOLB that can
hold up to 31 instructions. Two special instructions, the do and the redo, are
used to control the ZOLB on the DSP16000 [7]. Figure 2(a) shows the assembly
syntax for using the do instruction, which specifies that the n instructions en-
closed between the curly braces are to be executed k times. The actual encoding
of the do instruction includes a value of n, which can range from 1 to 31, indicat-
ing the number of instructions following the do instruction that are to be placed
in the ZOLB. The value k is also included in the encoding of the do instruc-
tion and represents the number of iterations associated with an innermost loop
placed in the ZOLB. When £k is a compile-time constant less than 128, it may
be specified as an immediate value since it will be small enough to be encoded
into the instruction. Otherwise a value of zero is encoded and the number of
times the instructions in the ZOLB will be executed is obtained from the cloop
register. The first iteration results in the instructions enclosed between the curly
braces being fetched from the memory system, executed, and loaded into the
ZOLB. The remaining k-1 iterations are executed from the ZOLB. The redo
instruction shown in Figure 2(b) is similar to the do instruction, except that the
current contents of the ZOLB are executed k times. Figure 3 depicts some of
the hardware used for a ZOLB, which includes a 31 instruction buffer, a cloop
register initially assigned the number of iterations and implicitly decremented

Gang-Ryung Uh, Yuhong Wang, David Whalley

on each iteration, and a cstate register containing the number of instructions
in the loop and the pointer to the current instruction to load or execute. Per-
formance benefits are achieved whenever the number of iterations executed is
greater than one.

instruction
do k { buffer cloop
instruction 1 - -
redo k instruction 1 ‘ k ‘
instruction n K -
} (b) Assembly Syntax for instruction 2
Using the redo Instruction
(a) Assembly Syntax for ’ il cotate
Using the do Instruction instruction 31 ‘ . ‘ zol pr ‘ n ‘

Fig. 2. DSP16000 Assembly Syntax for Fig.3. Example of Using the ZOLB on
Using the ZOLB the DSP16000

Figure 4 shows a simple example of exploiting the ZOLB on the DSP16000.
Figure 4(a) contains the source code for a simple loop. Figure 4(b) depicts the
corresponding code for the DSP16000 without placing instructions in the ZOLB.
The effects of these instructions are also shown in this figure. The array in Fig-
ure 4(a) and the arrays in the other examples in the paper are of type short
Thus, the postincrement causes r0 to be incremented by 2. Many DSP architec-
tures use an instruction set that is highly specialized for known DSP applica-
tions. The DSP16000 is no exception and its instruction set has many complex
features, which include separation of address (r0-r7) and accumulator (a0-a7)
registers, postincrements of address registers, and implicit sets of condition codes
from accumulator operations. Figure 4(b) also shows that the loop variable is
set to a negative value before the loop and is incremented on each loop iteration.
This strategy allows an implicit comparison to zero with the increment to avoid
performing a separate comparison instruction. Figure 4(c) shows the equivalent
code after placing the loop in the ZOLB. The branch in the loop is deleted since
the loop will be executed the desired number of iterations. After applying basic
induction variable elimination and dead store elimination, the increment and
initialization of al are removed. Thus, the loop overhead has been eliminated.

for (i = 0; i < 10000; i++)
a[i] =0;
(a) Source Code of Loop

ro = _a # r[0] =ADDR(_a) ; cl oop = 10000
a2 = 0 # a[2] =0; ro = _a
al = -9999 # a[1] = -9999; a2 =0
L5: *rO0++ = a2 # Mr[0]]=a[2]; r[0Q]=r[0]+2; do cloop {
al = al +1 # a[1] =a[1] +1; | C=a[1] +170; *ro++ = a2
if le goto L5 # PC=I C<=07?L5: PC; }
(b) DSP16000 Assembly and Corresponding RTLs without Using the ZOLB (c) After Using the ZOLB

Fig. 4. ZOLB Hardware

Techniques for Effectively Exploiting a Zero Overhead Loop Buffer
4 Placing More Loops in a ZOLB

The limiting factors that can prevent exploiting a ZOLB for an innermost loop
are (1) transfers of control other than the loop branch, (2) the number of instruc-
tions in the loop exceeding the ZOLB limit, and (3) the number of iterations
being unknown at run-time. In this section we describe techniques that can often
address each of these factors.

One limiting factor that prevents the exploitation of a ZOLB for many loops
is that transfers of control cannot be executed from a ZOLB. This limitation
can be partially overcome by the use of conditional instructions. Consider the
example source code in Figure 5(a), which shows a loop with an assignment
that is dependent on a condition. The assembly code in Figure 5(b) cannot be
placed into a ZOLB since there is a conditional branch that is not associated
with the exit condition of the loop.! Our compiler used predicated execution
when possible to avoid this problem [1]. Figure 5(c) depicts the same loop with
a conditional instruction and this loop can be transformed to be executed from
a ZOLB. Unfortunately, many potential loops could not be placed in a ZOLB
since predicates are assigned to a single condition code register on the DSP16000
and only a subset of the DSP16000 instructions can be conditionally executed.

ro = _a
al = -9999 ro = _a
L5: a0 = *r0 al = -9999
for (i =0; i < 10000; a0 = a0 L5: a0 = *r0
i++) if gt goto L4 a0 = a0
if (a[i] > 0) a2 = a2 + a0 if le a2 = a2 + a0
sum += a[i]; L4: rO =r0 + 2 ro =r0 + 2
(a) Original Source Code al =al +1 al =al +1
if le goto L5 if le goto L5
(b) DSP16000 Assembly (c) DSP16000 Assembly
without Conditional Instructions with Conditional Instructions

Fig. 5. Example of Using Conditional Instructions to Place More Loops in a ZOLB

A call instruction is another transfer of control that cannot be placed in
the DSP16000 ZOLB. Consider the source code and corresponding DSP16000
assembly in Figures 6(a) and 6(b). The loop cannot be placed in a ZOLB since
it contains a call to _abs. However, the function can be inlined as shown in
Figure 6(c) and the ZOLB can be used for the resulting loop. The DSP16000
optimizer does not inline indiscriminately due to potential growth in code size.
However, the optimizer inlines functions that are called from a loop when the
loop after inlining can be placed in the ZOLB (i.e. limited code growth for
measurable performance benefits). Likewise, inlining of a function is performed
when the function is only called from one site (i.e. no code growth) [8].

Another factor that sometimes prevented loops from being placed in the
DSP16000 ZOLB was the limit of 31 instructions in the buffer. The authors

! The a0 = a0 instruction is used to set the condition codes, which are not set by the
previous load instruction.

Gang-Ryung Uh, Yuhong Wang, David Whalley

_abs: a0 = a0
int abs(int v) if It a0 = -a0
{ return
if (v<0) r4d = _a
Vo= -v; r4 = _a a5 =0
return v; ab =0 a4 = -9999
} a4 = -9999 L5:a0 = *r4++
L5: a0 = *ré++ a0 = a0
sum = 0; call _abs if It a0 = -a0
for (i = 0; i < 10000; i++) a5 = a5 + a0 a5 = a5 + a0
sum += abs(a[i]); a4 = a4 + 1 a4 = a4 + 1
if le goto L5 if le goto L5
(a) Source Code (b) Before Inlining () After Inlining

Fig. 6. Example of Inlining a Function to Allow a Loop to Be Placed in a ZOLB

implemented loop distribution to address this problem. The optimizer splits
loops exceeding the ZOLB limit if the sets of dependent instructions can be
reorganized into separate loops that can all be placed in a ZOLB. The optimizer
first finds all of the sets of dependent instructions. The conditional branch and
the instructions that contribute to setting the condition codes for that branch
are treated separately since they will be placed with each set. Note that these
instructions will typically be deleted once loops are placed in the ZOLB and the
basic induction variable elimination and dead store elimination transformations
are applied. The optimizer then checks if each set of instructions will fit in the
ZOLB and combines multiple sets together when they would not exceed the
maximum instructions that the ZOLB can hold.

A final factor preventing the use of the ZOLB is that often the number of
iterations associated with a loop is unknown at run-time. However, sometimes
such loops can still be placed in the ZOLB on the DSP16000. Consider the source
code shown in Figure 7(a) and the corresponding DSP16000 assembly shown in
Figure 7(b). The number of iterations is unknown since it is not known which
will be the first element of array a that will be equal to n. For each iteration of a
ZOLB loop on the DSP16000 the cloop register is implicitly decremented by one
and then tested. The ZOLB is exited when this register is equal to zero. Thus,
assigning a value of one to the cloop register will cause the loop to exit after
the current iteration completes. The loop in Figure 7(b) can be transformed to
be placed in the ZOLB since the cloop register can be conditionally assigned a
value in a register. Figure 7(c) depicts the transformed code. The cloop register
is initially set to the maximum value to which it can be assigned and a register,
a3, is allocated to hold the value 1. The a[i] != n test is accomplished by the
last three instructions in Figure 7(b). To force an exit from the ZOLB on the
DSP16000, the cloop register must be assigned a value of 1 at least three instruc-
tions before the end of the loop due to the latency requirements of the machine.
Moving three instructions after the branch, comparison, and instructions that
affect the comparison often required the optimizer to perform register renaming
and adjust the displacements of memory references, as shown in Figure 7(c).
Since the loop can eventually exit due to the cloop register being decremented
to zero without being set in the conditional assignment, another loop is placed
after the ZOLB loop that will repeatedly redo the ZOLB loop until the exit

Techniques for Effectively Exploiting a Zero Overhead Loop Buffer

condition has been satisfied. Note that unlike ZOLB loops with a known num-
ber of iterations, the number of instructions in this ZOLB loop is not less than
the number of instructions before the loop was placed in the ZOLB. However,
conditional branches on the DSP16000 require more cycles than conditional as-
signments. Other potential benefits include reducing contention to the memory
system in the loop. Thus, there is a performance benefit on the DSP16000 from
placing loops with an unknown number of iterations in the ZOLB.

if eq goto L3
ro = _a cloop = <max val ue>
a2 =0 a3 =1
rl =_n do cloop {
a0 = *r0 ad = *(r0+2)
al = *rl a4 - al
a0 - al if eq cloop = a3
sum = 0;)) if eq goto L3 a0 = *rO++
for (i =0; a[i] '=n; i++) L5 a0 = *rO++ a0 = a0 <<< 1
sum += a[i]*2; a0 = a0 <<< 1 a2 = a2 + a0
(a) Source Code of Loop a2 = a2 + a0 }
a0 = *r0 goto LO1
a0 - al L02: cloop = <max val ue>
if ne goto L5 redo cl oop
L3: LO1: a4 - al
(b) DSP16000 Assembly if ne goto LO2
without Using the ZOLB L3:
(c) DSP16000 Assembly
after Using the ZOLB

Fig. 7. Example of Placing a Loop with an Unknown Number of Iterations in a ZOLB

5 Further Reducing Loop Overhead

As shown previously in Figure 4(c), basic induction variable and dead store
elimination are invoked after placing a loop in a ZOLB since often assignments
to the loop variable become unnecessary due to the branch no longer being in the
loop. When the value of the basic induction variable is used after the loop and is
used for no other purpose in the loop, the optimizer extracts these increments of
the variable from the loop. First, the increments in the loop are deleted. Next,
a new increment of the variable is placed after the loop that is the product of
the original increment and the number of loop iterations.

Another approach that is often used to reduce the overhead associated with
outer level loops is to collapse nested loops. Figure 8(a) shows perfectly nested
loops that initialize every element of a matrix. Figure 8(b) shows how the array
is conceptually accessed after these loops are collapsed by our optimizer into a
single loop. After the optimizer places the collapsed loop into the ZOLB, the loop
overhead for both original loops are entirely eliminated. The optimizer collapses
nested loops whenever possible. Even when the inner loop cannot be placed in
a ZOLB, the loop overhead is reduced since the outer loop is eliminated.

Figures 9(a) and 9(c) show the source and corresponding assembly code for
an example of a loop nest that cannot be collapsed by our optimizer since not all

Gang-Ryung Uh, Yuhong Wang, David Whalley

int a[50][100];
int a[5000];
for (i =0; i < 50; i++)
for (j =0; j < 100; j++) for (i =0; i < 5000; i++)
al[il[j] = 0; a[i] =0;
(8) Original Nested Loops (b) After Loop Collapsing

Fig. 8. Example of Loop Collapsing to Eliminate Additional Loop Overhead

of the elements of each row of the matrix are accessed. However, these two loops
can be interchanged, as shown in Figures 9(b) and 9(d). After interchanging
the two loops, the inner loop now has a greater number of loop iterations, which
can be executed from the ZOLB as shown in Figure 9(e). More loop overhead is
now eliminated by placing the interchanged inner loop in the ZOLB as opposed
to the original inner loop. The optimizer attempts to interchange nested loops
when the loops cannot be collapsed, the loops are perfectly nested, the number
of iterations for the original inner loop is less than the number of iterations for
the original outer loop, the number of instructions in the inner loop does not
increase, and the resulting inner loop can be placed in the ZOLB. Figure 9(d)
shows that register k was allocated to hold the value of the increment 200 so
an additional instruction to increment rO would be unnecessary. This example
illustrates the advantage of performing loop interchange after code generation
since otherwise it would not be known if a register was available to be used to
hold the increment and the transformation may result in more instructions in the
inner loop. Interchanging loops will not degrade the performance of the memory
hierarchy for the DSP16000 since it has no data cache or virtual memory system.

extern int a[200][100]; rl = _a rl = _a
rl = _a a3 =0 a3 =0
for (i=0; i<200; i++) a3 =0 a2 = -49 a2 = -49
for (j=0; j<50; j++) a2 = -199 L5: r0 =r1 L5: cloop = 200
ali][j]=0; L5: r0 =r1 al = -199 ro =ri1
() Source Code of Nested Loops al = -49 k = 200 j =200
L9: *r0++ = a3 L9: *rO++k = a3 do cloop {
al =al + 1 al = al +1 *ro++k = a3
if le goto L9 if le goto L9 }
X rl =rl + 200 rl=rl1+2 rl=rl1+2
extern int a[200][100]; a2 = a2 + 1 a2 = a2 + 1 a2 = a2 + 1
X . . if le goto L5 if le goto L5 if le goto L5
for (j=0; j<50; j++)
for (i=0; i<200; i++) (c) DSP16000 Assembly (d) DSP16000 Assembly (e) DSPl§000A$embly
a[i][j]=0; before Loop Interchange after Loop Interchange after Using the ZOLB
(b) Source Code after Loop Interchange

Fig. 9. Example of Loop Interchange to Increase the Iterations Executed in the ZOLB

6 Avoiding Redundant Loads of the ZOLB

The do instruction indicates that a specified number of instructions following
the do will be loaded into the ZOLB. Depending upon the implementation of

Techniques for Effectively Exploiting a Zero Overhead Loop Buffer

the DSP architecture, instructions may be fetched faster from a ZOLB than the
conventional memory system. In addition, contention for the memory system
may be reduced when a ZOLB is used. The redo instruction has similar semantics
as the do instruction, except that the redo does not cause any instructions to
be loaded into the ZOLB. Instead, the current contents of the ZOLB are simply
executed the specified number of iterations.

The redo instruction can be used to avoid redundant loads of loops into the
ZOLB. Consider the source code shown in Figure 10(a). It would appear that
the two loops are quite different since they iterate a different number of times,
access different variables, and access different types of data. However, the body
of the two loops are identical as shown in Figure 10(b). The reason is that much
of the characteristics of the loops have been abstracted out of the loop bodies.
The number of iterations for ZOLB loops is encoded in the do instruction or
assigned to the cloop register preceding the loop. The addresses of the arrays
are assigned to registers associated with basic induction variables preceding the
loop after loop strength reduction is performed. In addition, data moves of the
same size between registers and memory are accomplished in the same manner
on the DSP16000, regardless of the data types. Figure 10(c) shows the assembly
code after the redundant loop is eliminated using the redo instruction.

rl = _a rl = _a
ro = _b ro = _b
extern int a[100], b[100]; do 100 { do 100 {
extern float c¢[200], d[200]; a0 = *ro++ a0 = *ro++
*ri++ = a0 *ri++ = a0
for (i =0; i < 100; i++) } }
ali] = b[i];
cloop = 200 cloop = 200
for (i =0; i < 200; i++) rlt = ¢ rl = c
cli] =d[i]; ro = _d ro = _d
do cloop { redo cl oop
(a) Source Code of Two Different Loops *aO = *r0++ (c) DSP16000 Assembly
ri++ = a0 after Avoiding the
} Redundant ZOLB Load
(b) DSP16000 Assembly
after Using the ZOLB

Fig. 10. Example of Avoiding a Redundant Load of the ZOLB

The optimizer determines which ZOLB loops can reach each point in the
control flow without the contents of the ZOLB being changed. The authors
used flow analysis to determine if the loading of each ZOLB loop was necessary.
A bit was associated with each ZOLB loop and one bit was also reserved to
indicate that no ZOLB loops could reach a given point. Equations (1) and (2)
are used to to determine which ZOLB loops could possibly reach each point in the
control flow within a function.? In the actual implementation, interprocedural
flow analysis was used to avoid redundant loading of ZOLB loops across function
calls and returns. An adjustment was required when ZOLB loop information was
propagated from a return block of a function. This adjustment prevented ZOLB
loops that are propagated into the entry block of a function at one call site from

% Note that B represents a basic block in the program

Gang-Ryung Uh, Yuhong Wang, David Whalley

being propagated to the block following a call to the same function at a different
call site. Likewise, it was assumed that no ZOLB loops could reach the point
after a library call since it was not known if the ZOLB would be used for a
different ZOLB loop in the called library function.

Null if B is a function entry block
in[B] = U out [P] otherwise (1)
P € pred[B]
Null if B contains a call
out [B] = {B if B contains a ZOLB loop (2)
in[B] otherwise

After all of the ZOLB loop reaching information is calculated, the optimizer
determines which ZOLB loops do not need to be loaded into the ZOLB. If the
in[] of a current block containing a ZOLB loop indicates that only a single
other ZOLB loop is guaranteed to reach that point and if all of the instructions
in the other ZOLB loop are identical with the instructions in the current ZOLB
loop, then the entire current ZOLB loop is replaced with a redo instruction.

Even after using flow analysis to avoid redundant loads of ZOLB loops, many
loops are repeatedly loaded into the ZOLB because they are in nested loops. The
optimizer was modified to have the ability to avoid these redundant loads as
well. The optimizer avoids the repeated loading of the inner loop in the ZOLB
by peeling an iteration of the outer loop. Only in the peeled iteration is the
ZOLB loaded. All remaining iterations execute from the ZOLB using the redo
instruction. The optimizer only performs the loop peeling transformation when
the increase in code size is small and there are expected performance benefits
(i.e. reducing memory bus contention conflicts on the DSP16000) from avoiding
the repeated load of the inner loop into the ZOLB.

7 Analysis and Transformations

The order in which these transformations are applied can affect how effectively a
ZOLB can be exploited. Figure 11 shows the order of the pertinent analysis and
transformations that are applied on the assembly code in the second optimization
phase shown in Figure 1. The complete list of types of analysis and improving
transformations performed in this phase of optimization and a more thorough
description and rationale for this order may be found elsewhere [9]. Likewise,
a more general description of these analyses and transformations can also be
obtained [13].

Basic blocks are merged (#2) when possible. This transformation does not
usually improve the code directly but may provide additional opportunities for
other improving transformations. For instance, placing loops in a ZOLB (#13)
is only applied to loops containing a single basic block. Merging basic blocks
(#2) also reduces the overhead of most types of global analysis.

Techniques for Effectively Exploiting a Zero Overhead Loop Buffer

Analysis is performed to allow optimizations to be performed A call graph
(#1) is built to perform various types of interprocedural improving transforma-
tions [8], which includes inlining (#8) to support placing loops in a ZOLB. Loops
in the program are detected (#3) to support a variety of improving transforma-
tions, which of course includes placing loops in a ZOLB (#13). Live register
information is calculated (#4) since many improving transformations require
allocation of registers. For instance, placing a loop with an unknown number
of iterations in the ZOLB (#13) requires renaming registers to newly allocated
registers to accomplish the scheduling required to force an exit from the loop at
the appropriate time. Loop invariant values and basic induction variables are de-
tected (#6) so the number of iterations for a loop may be calculated (#7). Note
that detecting the number of loop iterations is a much more challenging task at
the assembly level as compared to examining source level loop statements.

Some instructions with immediate values cannot be executed conditionally.
When these instructions are inside a loop and a register is available, the com-
piler replaces the immediate value with the register and assigns the immediate
value to the register outside the loop. Therefore, branches are converted into
conditional assignments (#5) after finding loops (#3) and calculating live regis-
ter information (#4). Branches are converted into conditional assignments (#5)
before analysis is performed to determine if a loop can be placed in the ZOLB
(#13) since loops with branches not associated with the exit condition of the
loop cannot be placed in the ZOLB.

Inlining (#8) also removes transfers of control from a loop, namely a call
instruction. Inlining (#8) was performed after detecting the number of loop
iterations (#7) since it could be determined at this point if the inlining would
allow the loop to be placed in the ZOLB (#13) so unnecessary code growth
could be avoided.

Ranges of addresses were calculated (#9) for each memory reference to al-
low independent instructions in a loop to be separated via loop distribution
(#10). Both loop flattening (#11) and loop interchange (#12) are performed
after calculating the number of loop iterations (#7) since these transformations
require this information. Perfectly nested loops are flattened (#11) before loop
interchange (#12) is performed since flattening loops places more iterations in
a ZOLB than interchanging loops.

Basic induction variable elimination (#14) was performed after placing loops
in the ZOLB (#13) since the assignments were often unnecessary at that point.
The remaining assignments to basic induction variables are extracted from loops
(#15) after basic induction variable elimination (#14) to prevent unnecessary
extractions of instructions.

Avoiding redundant loading of the ZOLB using flow analysis was performed
after loops were placed in the ZOLB so redundant loads could be detected.
Finally, loop peeling was only considered for the loops whose loading could not
be avoided using flow analysis since loop peeling requires a code size increase.

Gang-Ryung Uh, Yuhong Wang, David Whalley

—_

. Build call graph for the program

. Merge consecutive blocks

. Find the loops in the program

. Calculate live register info

. Convert branches into conditional

assignments

6. Find loop invariant & induction
variables

7. Calculate the number of loop
iterations

8. Perform inlining to support
placing more loops in the ZOLB

9. Calculate ranges of addresses

accessed by each memory reference

T W N

10.
11.
12.
13.
14.
15.
16.

17.

Perform loop distribution to place
more loops in the ZOLB

Flatten perfectly nested loops
Perform loop interchange

Place loops in the ZOLB
Eliminate basic induction variable

Extract loop induction variable
assignment
Avoid redundant loading of the ZOLB

Perform loop peeling to further
avoid redundant ZOLB loading

Fig. 11. Order of the Analysis and Transformations Used to Exploit a ZOLB

8 Results

Table 1 describes the benchmarks and applications used to evaluate the impact
of using the ZOLB on the DSP16000. All of these test programs are either DSP
benchmarks used in industry or typical DSP applications. Many DSP bench-
marks represent kernels of programs where most of the cycles occur. Such kernels
in DSP applications have been historically optimized in assembly code by hand
to ensure high performance [6]. Thus, many established DSP industrial bench-
marks are small since they were traditionally hand coded. Standard benchmarks
(e.g. SPEC) were not used since the DSP16000 was not designed to support
operations on floating-point values or integers larger than two bytes.

Table 1. Test Programs

Program Description | Program Description
add8 add two 8-bit images conv convolution code
copy8 copy one 8-bit image to another | fft 128 point complex fIt
fir finite impulse response filter fir_no fir filter with
fire fire encoder redundant load elimination
inverse8 invert an 8-bit image iir iir filtering
Ims Ims adaptive filter jpegdct jpeg discrete cosine transform
sumabsd sum of absolute differences of scale8 scale an 8-bit image

two images trellis trellis convolutional encoder
vec.mpy simple vector multiply

Table 2 contrasts the results for loop unrolling and exploiting the DSP16000
ZOLB.? Execution measurements were obtained by accessing a cycle count from
a DSP16000 simulator [10]. Code size measurements were gathered by obtaining
diagnostic information provided by the assembler [11]. The authors compared

% Only relative performance results could be given due to disclosure restrictions for

these test programs.

Techniques for Effectively Exploiting a Zero Overhead Loop Buffer

the performance of using the ZOLB against loop unrolling, which is a common
approach for reducing loop overhead. The loop unrolling showed in Table 2 was
performed on all innermost loops when the number of iterations was known
statically or dynamically. As shown in the results, using the ZOLB typically re-
sulted in fewer execution cycles as compared to loop unrolling. Sometimes loop
unrolling did have benefits over using a ZOLB. This occurred when an inner-
most loop had too many instructions or had transfers of control that would
prevent it from being placed in a ZOLB. In addition, sometimes loop unrolling
provided other benefits, such as additional scheduling and instruction selection
opportunities, that would not otherwise be possible.* However, the average per-
formance benefits of using a ZOLB are impressive, particularly when code size
is important. As shown in the table, loop unrolling caused significant code size
increases, while using the ZOLB resulted in slight code size decreases. The code
size decreases when using the ZOLB came from the combination of eliminat-
ing branches by placing the loops in the ZOLB and applying induction variable
elimination and dead store elimination afterwards. Occasionally, code size de-
creases were obtained by avoiding redundant loads of the ZOLB loops using the
flow analysis described in Section 5. Loop peeling, which increases code size, was
rarely applied since memory contentions did not occur that frequently.

Table 2. Contrasting Loop Unrolling and Using a ZOLB

Unrol |l Factor = 2 Unroll Factor = 4 Unrol |l Factor = 8 Expl oi ting ZOLB
Program
Cycles Code Size Cycl es Code Size Cycles Code Size Cycle Code Size
add8 -11. 47% +7.84% | -23.11% +62.75% | -27.46% +90.20% |-36.33% -3.92%
conv -33.42% +22.58% | -47.56% +29.03% | -54.63% +41.94% |-47.84% -3.23%
copy8 -23.11% +6.25% | -42.32% +12.50% | -51.92% +25.00% |-62.44% -4.17%
fft -6.22% +32.14% | -10.56% +92.86% | -12.73% +214.29% -8.69% -3.57%
fir -20.35% +21.05% | -35.25% +147.37% | -41.98% +255.26% | -48.42% -10.53%
ir_no -3.97% +34.88% -7.07% +109. 30% -9.14% +258.14% |-31.35% -4.65%
ire -0.75% +36.27% -4.22% +110.78% -6.20% +255.88% |-26.88% -21.57%
ir -11.10% +14.58% | -15.43% +51.04% | -15.67% +88.54% |-19.61% -4.17%
nverse8| -20.27% +8.16% | -37.34% +18.37% | -46.64% +48.98% | -55.50% -4.08%

j pegdct -8.26% +17.56% -8.44% +59.54% -8.44% +59. 54% 0. 00% . 00%
ns -1.75% +0.48% | -10.52% +1.78% | -10.52% +1. 78% -8.33% . 04%
scal e8 -4.90% +38.46% -9.37% +93.85% | -11.60% +204.62% |-14.28%

sumabsd -14.69% +8.57% | -19.57% +25.71% | -22.03% +60.00% | -58.83%
trellis -11.52% +0.11% | -19. 10% +0.33% | -22.79% +0.78% | -20.16%

-8.57%
vec_npy -19.08% +63.16% | -28.49% +336.84% | -31.15% +531.58% |-38.16% -1

L 17%

0
0
1. 54%
8
0
5.79%

Aver age -12.72% +20.81% | -21.22% +76.80% | -24.86% +142.44% |-31.79% -5.73%

Table 3 depicts the benefit of applying the improving transformations de-
scribed in Sections 4 and 5. Only some of the improving transformations applied

* The production version of the optimizer does limited unrolling of loops. For instance,
loop unrolling is applied when memory references and multiplies can be coalesced.
However, unrolling is not performed when it would cause the number of instructions
to exceed the limit that the ZOLB can hold [9]. Note the measurements presented
in this paper did not include loop unrolling while placing loops in the ZOLB since it
would make the comparison of applying loop unrolling and using a ZOLB less clear.
Likewise, the production version of the optimizer performs other optimizations, such
as multiply and memory coalescing and software pipelining, that were not applied
for the results in this paper.

Gang-Ryung Uh, Yuhong Wang, David Whalley

without using a ZOLB (column 2) had a performance benefit on their own.
These transformations include the use of conditional instructions, inlining, and
loop collapsing. The characteristics of the DSP16000 prevented conditional in-
structions from being used frequently. Inlining only had occasional benefits for
the test programs since the optimizer only inlined functions when the function
was called from a loop and inlining would allow the loop to be placed in the
ZOLB. Inlining was not performed when a function had transfers of control
other than a return instruction, which was the common case. Loop collapsing
was applied most frequently of these transformations. The results shown in col-
umn 3 include basic induction variable elimination since it was quite obvious
that this transformation could almost always be applied when a loop is placed
in the ZOLB. The combination of using the ZOLB with the improving trans-
formations (column 4) sometimes resulted in greater benefits than the sum of
the benefits (columns 2 and 3) when applied separately. Most of the additional
benefit came from the new opportunities for placing more loops in the ZOLB
(transformations described in Section 4).

Table 3. The Impact of Improving Transformations on Using a ZOLB

I npact on Execution Cycles
Transformations | Using the ZOLB Using the ZOLB
Program | without wi t hout with
Using the ZOLB Transformations Transformations

add8 -2.24% -35.09% -37.76%
conv -8.22% -43.48% -52.13%
copy8 -1.84% -60.39% -63.13%
ff 0. 00% -8.69% -8.69%
fir 0. 00% -48.42% -48. 42%
fir_no -0.03% -31.37% -31.37%
fire -7.44% 0. 00% -32.31%
iir 0. 00% -19.61% -19.61%
i nverse8 -1.64% -53. 80% -56.23%
j pegdct 0. 00% 0. 00% 0. 00%
I ms 0. 00% -8.33% -8.33%
scal e8 -3.79% -16.92% -17.52%
sumabsd |-23.11% 0. 00% -51.70%
trellis -8.75% -7.36% -20.16%
vec_npy 0. 00% -38.16% -38.16%
Aver age -3.83% -25.34% -32.97%

The authors also obtained the percentage of the innermost loops that were
placed in the ZOLB. On average 71.56% of the innermost loops could be placed
in the ZOLB without applying the improving transformations described in Sec-
tion 4. However, 84.89% of the innermost loops could be placed in the ZOLB
with these improving transformations applied. Transfers of control was the most
common factor that prevented the use of a ZOLB. The use of conditional in-
structions, inlining, and the transformation on loops with an unknown number of
iterations all occasionally resulted in additional loops being placed in the ZOLB.

Techniques for Effectively Exploiting a Zero Overhead Loop Buffer

9 Conclusion

This paper described strategies for generating code and utilizing improving
transformations to exploit a ZOLB. The authors found that many conventional
improving transformations used in optimizing compilers had significant effects
on how a ZOLB can be exploited. The use of predicated execution, loop dis-
tribution, and function inlining allowed more loops to be placed in a ZOLB.
The overhead of loops placed in a ZOLB was further reduced by basic induction
variable elimination and extraction, loop collapsing, and loop interchange. The
authors also found that a ZOLB can improve performance in ways probably not
intended by the architects who originally designed this feature. The use of con-
ditional instructions and instruction scheduling with register renaming allowed
some loops with an unknown number of iterations to be placed in a ZOLB. In-
terprocedural flow analysis and loop peeling were used with the redo instruction
to avoid redundant loading of a ZOLB. The results obtained from test programs
indicate that these transformations allowed a ZOLB to be often exploited with
significant improvements in execution time and small reductions in code size.

References

1. Hennessy, J., Patterson, D.: Computer Architecture: A Quantitative Approach, Sec-
ond Edition, Morgan Kaufmann, San Francisco, CA (1996).

2. Davidson, J.W., Jinturkar, S.: Aggressive Loop Unrolling in a Retargetable, Opti-
mizing Compiler. Proceedings of Compiler Construction Conference. 59-73 (April
1996).

3. Lucent Technologies.: DSP16000 Digital Signal Processor Core Information Manual
(1997).

4. Lucent Technologies: DSP16000 C Compiler User Guide (1997).

5. Lapsley, P., Bier, J., Lee, E.: DSP Processor Fundamentals - Architecture and Fea-
tures, IEEE Press (1996).

6. Eyre, J., Bier, J.: DSP Processors Hit the Mainstream, IEEE Computer 31(8),
51-59 (August 1998).

7. Lucent Technologies.: DSP16000 Digital Signal Processor Core Instruction Set Man-
ual (1997).

8. Wang, Y.: Interprocedural Optimizations for Embedded Systems, Masters Project,
Florida State University, Tallahassee, FL (1999).

9. Whalley, D.: DSP16000 C OPtimizer Overview and Rationale, Lucent Technologies,
Allentown, PA (1998).

10. Lucent Technologies.: DSP16000 LuxWorks Debugger (1997).

11. Lucent Technologies.: DSP16000 Assembly Language User Guide (1997).

12. Uh, G.R., Wang, Y., Whalley, D. Jinturkar, S., Burns, C., and Cao, V.: Effective
Exploitation of a Zero Overhead Loop Buffer, ACM SIGPLAN 1999 Workshop on
Languages, Compilers, and Tools for Embedded Systems, 10-19 (1999).

13. Bacon, D., Graham, S., Sharp, O.: Compiler Transformations for High-Performance
Computing, ACM Computing Surveys, Volume 26 Number 4, 345420 (1994).

