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t. A Zero Overhead Loop Bu�er (ZOLB) is an ar
hite
turalfeature that is 
ommonly found in DSP pro
essors. This bu�er 
an beviewed as a 
ompiler managed 
a
he that 
ontains a sequen
e of instru
-tions that will be exe
uted a spe
i�ed number of times. Unlike loop un-rolling, a loop bu�er 
an be used to minimize loop overhead without thepenalty of in
reasing 
ode size. In addition, a ZOLB requires relativelylittle spa
e and power, whi
h are both important 
onsiderations for mostDSP appli
ations. This paper des
ribes strategies for generating 
ode toe�e
tively use a ZOLB. The authors have found that many 
ommon im-proving transformations used by optimizing 
ompilers to improve 
odeon 
onventional ar
hite
tures 
an be exploited (1) to allow more loopsto be pla
ed in a ZOLB, (2) to further redu
e loop overhead of the loopspla
ed in a ZOLB, and (3) to avoid redundant loading of ZOLB loops.The results given in this paper demonstrate that this ar
hite
tural fea-ture 
an often be exploited with substantial improvements in exe
utiontime and slight redu
tions in 
ode size.1 Introdu
tionThe number of DSP pro
essors is growing every year at a mu
h faster rate thangeneral-purpose 
omputer pro
essors. For many appli
ations, a large per
entageof the exe
ution time is spent in the innermost loops of a program [1℄. The exe
u-tion of these loops in
ur signi�
ant overhead, whi
h is due to the in
rement andbran
h instru
tions to initiate a new iteration of a loop. Many 
ode improvingtransformations and ar
hite
tural features used to improve exe
ution time forappli
ations in general-purpose 
omputers do so at the expense of substantial
ode growth and more power 
onsumption. For instan
e, loop unrolling is a pop-ular te
hnique to de
rease loop overhead [2℄. Yet, this approa
h often requiresa signi�
ant in
rease in 
ode size. Likewise, VLIW instru
tions 
an be used toredu
e loop overhead at the expense of more power. Spa
e in
reasing transfor-mations and power ineÆ
ient ar
hite
tures are often una

eptable options formany DSP appli
ations due to these limitations.A zero overhead loop bu�er (ZOLB) is an ar
hite
tural feature 
ommonlyfound in DSP pro
essors. This bu�er 
an be used to in
rease the speed of appli
a-tions with no in
rease in 
ode size and often with redu
ed power 
onsumption. A
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an 
ontain a �xed number of instru
tions to be exe
uteda spe
i�ed number of times under program 
ontrol. Depending on the implemen-tation of the DSP ar
hite
ture, some instru
tions may be fet
hed faster from aZOLB than from the 
onventional instru
tion memory. In addition, the samememory bus used to fet
h instru
tions 
an sometimes be used to a

ess datawhen 
ertain registers are dereferen
ed. Thus, memory bus 
ontention 
an beredu
ed when instru
tions are fet
hed from a ZOLB. Due to addressing 
ompli-
ations, transfers of 
ontrol instru
tions are not typi
ally allowed in su
h bu�ers.Therefore, a 
ompiler or assembly writer attempts to exe
ute many of the inner-most loops of programs from this bu�er. A ZOLB 
an be viewed as a 
ompiler
ontrolled 
a
he sin
e spe
ial instru
tions are used to load instru
tions into it.This paper des
ribes strategies for exploiting the ZOLB that is available onthe DSP16000 ar
hite
ture [3℄, whi
h 
ould also be applied to other DSP ar
hi-te
tures that have ZOLBs. These strategies have the potential for being readilyadopted by 
ompiler writers for DSP pro
essors sin
e they rely on the use of tra-ditional 
ompiler improving transformations and data 
ow analysis te
hniques.Figure 1 presents an overview of the 
ompilation pro
ess used by the authorsto generate and improve 
ode for this ar
hite
ture. Code is generated using a C
ompiler retargeted to the DSP16000 [4℄. Conventional improving transforma-tions in this C 
ompiler are applied and assembly �les are generated. Finally, thegenerated 
ode is then pro
essed by another optimizer, whi
h performs a num-ber of improving transformations in
luding those that exploit the ZOLB on thisar
hite
ture. There are advantages of attempting to exploit a ZOLB using thisapproa
h. First, the exa
t number of instru
tions in a loop will be known after
ode generation, whi
h will ensure that the maximum number of instru
tionsthat 
an be 
ontained in the ZOLB is not ex
eeded. While performing thesetransformations after 
ode generation sometimes resulted in more 
ompli
atedalgorithms, the optimizer was able to apply transformations more frequentlysin
e it did not have to rely on 
onservative heuristi
s 
on
erning the ratio ofintermediate operations to ma
hine instru
tions. Se
ond, interpro
edural analy-sis and transformations also proved to be valuable in exploiting a ZOLB, as willbe shown later in this paper.
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Fig. 1. Overview of the Compilation Pro
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hniques for E�e
tively Exploiting a Zero Overhead Loop Bu�er2 Related WorkA number of hardware and software te
hniques have been used to redu
e loopoverhead. Common hardware te
hniques in
lude bran
h predi
tion hardware toredu
e bran
h mispredi
tions and supers
alar or VLIW exe
ution to allow otheroperations to exe
ute in parallel with the loop overhead instru
tions [1℄. However,the use of 
omplex hardware me
hanisms to minimize bran
h overhead results inthe 
onsumption of more power. Some 
urrent general-purpose pro
essors havea loop bran
h instru
tion that eliminates the in
rementing of a loop 
ounter anda 
omparison, but still require the bran
h instru
tion. Common software te
h-niques in
lude loop strength redu
tion with basi
 indu
tion variable eliminationand loop unrolling. Note that loop unrolling 
an signi�
antly in
rease 
ode size.Currently available versions of ZOLBs in TI, ADI, and Lu
ent pro
essorshave been des
ribed [5℄. Assembly language programmers for DSPs 
ommonlyuse ZOLBs in the 
ode that they write. However, optimizing 
ompilers havebeen used only re
ently for DSP appli
ations and programmers still tend towrite 
riti
al se
tions by hand [6℄. A preliminary version of this paper appearedin a workshop [12℄. To the best of our knowledge, no other work des
ribes howa ZOLB 
an be exploited by a 
ompiler, the intera
tion of exploiting a ZOLBwith other improving transformations, and the performan
e bene�ts that 
an bea
hieved from using a ZOLB.3 Using the DSP16000 ZOLBThe target ar
hite
ture for whi
h the authors generated 
ode was the DSP16000developed at Lu
ent Te
hnologies. This ar
hite
ture 
ontains a ZOLB that 
anhold up to 31 instru
tions. Two spe
ial instru
tions, the do and the redo, areused to 
ontrol the ZOLB on the DSP16000 [7℄. Figure 2(a) shows the assemblysyntax for using the do instru
tion, whi
h spe
i�es that the n instru
tions en-
losed between the 
urly bra
es are to be exe
uted k times. The a
tual en
odingof the do instru
tion in
ludes a value of n, whi
h 
an range from 1 to 31, indi
at-ing the number of instru
tions following the do instru
tion that are to be pla
edin the ZOLB. The value k is also in
luded in the en
oding of the do instru
-tion and represents the number of iterations asso
iated with an innermost looppla
ed in the ZOLB. When k is a 
ompile-time 
onstant less than 128, it maybe spe
i�ed as an immediate value sin
e it will be small enough to be en
odedinto the instru
tion. Otherwise a value of zero is en
oded and the number oftimes the instru
tions in the ZOLB will be exe
uted is obtained from the 
loopregister. The �rst iteration results in the instru
tions en
losed between the 
urlybra
es being fet
hed from the memory system, exe
uted, and loaded into theZOLB. The remaining k-1 iterations are exe
uted from the ZOLB. The redoinstru
tion shown in Figure 2(b) is similar to the do instru
tion, ex
ept that the
urrent 
ontents of the ZOLB are exe
uted k times. Figure 3 depi
ts some ofthe hardware used for a ZOLB, whi
h in
ludes a 31 instru
tion bu�er, a 
loopregister initially assigned the number of iterations and impli
itly de
remented
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h iteration, and a 
state register 
ontaining the number of instru
tionsin the loop and the pointer to the 
urrent instru
tion to load or exe
ute. Per-forman
e bene�ts are a
hieved whenever the number of iterations exe
uted isgreater than one.
...

Using the redo Instruction

redo k

(b) Assembly Syntax for

...instruction 1

}

(a) Assembly Syntax for

...

...

Using the do Instruction

...

do k {

instruction nFig. 2. DSP16000 Assembly Syntax forUsing the ZOLB
instruction 1

instruction 2

buffer cloop

k

cstate

...

instruction

...
instruction 31 nzolbpcFig. 3. Example of Using the ZOLB onthe DSP16000Figure 4 shows a simple example of exploiting the ZOLB on the DSP16000.Figure 4(a) 
ontains the sour
e 
ode for a simple loop. Figure 4(b) depi
ts the
orresponding 
ode for the DSP16000 without pla
ing instru
tions in the ZOLB.The e�e
ts of these instru
tions are also shown in this �gure. The array in Fig-ure 4(a) and the arrays in the other examples in the paper are of type shortThus, the postin
rement 
auses r0 to be in
remented by 2. Many DSP ar
hite
-tures use an instru
tion set that is highly spe
ialized for known DSP appli
a-tions. The DSP16000 is no ex
eption and its instru
tion set has many 
omplexfeatures, whi
h in
lude separation of address (r0-r7) and a

umulator (a0-a7)registers, postin
rements of address registers, and impli
it sets of 
ondition 
odesfrom a

umulator operations. Figure 4(b) also shows that the loop variable isset to a negative value before the loop and is in
remented on ea
h loop iteration.This strategy allows an impli
it 
omparison to zero with the in
rement to avoidperforming a separate 
omparison instru
tion. Figure 4(
) shows the equivalent
ode after pla
ing the loop in the ZOLB. The bran
h in the loop is deleted sin
ethe loop will be exe
uted the desired number of iterations. After applying basi
indu
tion variable elimination and dead store elimination, the in
rement andinitialization of a1 are removed. Thus, the loop overhead has been eliminated.

(a) Source Code of Loop

   a[i] = 0;
for (i = 0; i < 10000; i++)

    r0 = _a       # r[0]=ADDR(_a);
    a2 = 0        # a[2]=0;

L5: *r0++ = a2    # M[r[0]]=a[2]; r[0]=r[0]+2;

r0 = _a
a2 = 0

*r0++ = a2

(c) After Using the ZOLB(b) DSP16000 Assembly and Corresponding RTLs without Using the ZOLB

    if le goto L5 # PC=IC<=0?L5:PC;
    a1 = a1 + 1   # a[1]=a[1]+1; IC=a[1]+1?0;

    a1 = -9999    # a[1]= -9999;

cloop = 10000

do cloop {

}Fig. 4. ZOLB Hardware
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tively Exploiting a Zero Overhead Loop Bu�er4 Pla
ing More Loops in a ZOLBThe limiting fa
tors that 
an prevent exploiting a ZOLB for an innermost loopare (1) transfers of 
ontrol other than the loop bran
h, (2) the number of instru
-tions in the loop ex
eeding the ZOLB limit, and (3) the number of iterationsbeing unknown at run-time. In this se
tion we des
ribe te
hniques that 
an oftenaddress ea
h of these fa
tors.One limiting fa
tor that prevents the exploitation of a ZOLB for many loopsis that transfers of 
ontrol 
annot be exe
uted from a ZOLB. This limitation
an be partially over
ome by the use of 
onditional instru
tions. Consider theexample sour
e 
ode in Figure 5(a), whi
h shows a loop with an assignmentthat is dependent on a 
ondition. The assembly 
ode in Figure 5(b) 
annot bepla
ed into a ZOLB sin
e there is a 
onditional bran
h that is not asso
iatedwith the exit 
ondition of the loop.1 Our 
ompiler used predi
ated exe
utionwhen possible to avoid this problem [1℄. Figure 5(
) depi
ts the same loop witha 
onditional instru
tion and this loop 
an be transformed to be exe
uted froma ZOLB. Unfortunately, many potential loops 
ould not be pla
ed in a ZOLBsin
e predi
ates are assigned to a single 
ondition 
ode register on the DSP16000and only a subset of the DSP16000 instru
tions 
an be 
onditionally exe
uted.
    a1 = -9999
L5: a0 = *r0
    a0 = a0

    r0 = r0 + 2
    a1 = a1 + 1
    if le goto L5

    r0 = _a

(c) DSP16000 Assembly

    if le a2 = a2 + a0   if (a[i] > 0)
      sum += a[i];

(a) Original Source Code

for (i = 0; i < 10000; 

with Conditional Instructions

     i++)

    r0 = _a
    a1 = -9999
L5: a0 = *r0
    a0 = a0

L4: r0 = r0 + 2
    a1 = a1 + 1
    if le goto L5

(b) DSP16000 Assembly
without Conditional Instructions

    if gt goto L4
    a2 = a2 + a0

Fig. 5. Example of Using Conditional Instru
tions to Pla
e More Loops in a ZOLBA 
all instru
tion is another transfer of 
ontrol that 
annot be pla
ed inthe DSP16000 ZOLB. Consider the sour
e 
ode and 
orresponding DSP16000assembly in Figures 6(a) and 6(b). The loop 
annot be pla
ed in a ZOLB sin
eit 
ontains a 
all to abs. However, the fun
tion 
an be inlined as shown inFigure 6(
) and the ZOLB 
an be used for the resulting loop. The DSP16000optimizer does not inline indis
riminately due to potential growth in 
ode size.However, the optimizer inlines fun
tions that are 
alled from a loop when theloop after inlining 
an be pla
ed in the ZOLB (i.e. limited 
ode growth formeasurable performan
e bene�ts). Likewise, inlining of a fun
tion is performedwhen the fun
tion is only 
alled from one site (i.e. no 
ode growth) [8℄.Another fa
tor that sometimes prevented loops from being pla
ed in theDSP16000 ZOLB was the limit of 31 instru
tions in the bu�er. The authors1 The a0 = a0 instru
tion is used to set the 
ondition 
odes, whi
h are not set by theprevious load instru
tion.
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      r4 = _a
      a5 = 0

L5:   a0 = *r4++

      a5 = a5 + a0
      a4 = a4 + 1
      if le goto L5

(b) Before Inlining

int abs(int v)
{
   if (v < 0)

   return v;
}

sum = 0;
for (i = 0; i < 10000; i++)
   sum += abs(a[i]);

(a) Source Code

   if le goto L5

(c) After Inlining

   a4 = a4 + 1
   a5 = a5 + a0

L5:a0 = *r4++

   a5 = 0
   r4 = _a

...

...

_abs: a0 = a0
      if lt a0 = -a0
      return
      ...

      call _abs

      a4 = -9999
   a4 = -9999

   a0 = a0
   if lt a0 = -a0

      v = -v;

Fig. 6. Example of Inlining a Fun
tion to Allow a Loop to Be Pla
ed in a ZOLBimplemented loop distribution to address this problem. The optimizer splitsloops ex
eeding the ZOLB limit if the sets of dependent instru
tions 
an bereorganized into separate loops that 
an all be pla
ed in a ZOLB. The optimizer�rst �nds all of the sets of dependent instru
tions. The 
onditional bran
h andthe instru
tions that 
ontribute to setting the 
ondition 
odes for that bran
hare treated separately sin
e they will be pla
ed with ea
h set. Note that theseinstru
tions will typi
ally be deleted on
e loops are pla
ed in the ZOLB and thebasi
 indu
tion variable elimination and dead store elimination transformationsare applied. The optimizer then 
he
ks if ea
h set of instru
tions will �t in theZOLB and 
ombines multiple sets together when they would not ex
eed themaximum instru
tions that the ZOLB 
an hold.A �nal fa
tor preventing the use of the ZOLB is that often the number ofiterations asso
iated with a loop is unknown at run-time. However, sometimessu
h loops 
an still be pla
ed in the ZOLB on the DSP16000. Consider the sour
e
ode shown in Figure 7(a) and the 
orresponding DSP16000 assembly shown inFigure 7(b). The number of iterations is unknown sin
e it is not known whi
hwill be the �rst element of array a that will be equal to n. For ea
h iteration of aZOLB loop on the DSP16000 the 
loop register is impli
itly de
remented by oneand then tested. The ZOLB is exited when this register is equal to zero. Thus,assigning a value of one to the 
loop register will 
ause the loop to exit afterthe 
urrent iteration 
ompletes. The loop in Figure 7(b) 
an be transformed tobe pla
ed in the ZOLB sin
e the 
loop register 
an be 
onditionally assigned avalue in a register. Figure 7(
) depi
ts the transformed 
ode. The 
loop registeris initially set to the maximum value to whi
h it 
an be assigned and a register,a3, is allo
ated to hold the value 1. The a[i℄ != n test is a

omplished by thelast three instru
tions in Figure 7(b). To for
e an exit from the ZOLB on theDSP16000, the 
loop register must be assigned a value of 1 at least three instru
-tions before the end of the loop due to the laten
y requirements of the ma
hine.Moving three instru
tions after the bran
h, 
omparison, and instru
tions thata�e
t the 
omparison often required the optimizer to perform register renamingand adjust the displa
ements of memory referen
es, as shown in Figure 7(
).Sin
e the loop 
an eventually exit due to the 
loop register being de
rementedto zero without being set in the 
onditional assignment, another loop is pla
edafter the ZOLB loop that will repeatedly redo the ZOLB loop until the exit
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ondition has been satis�ed. Note that unlike ZOLB loops with a known num-ber of iterations, the number of instru
tions in this ZOLB loop is not less thanthe number of instru
tions before the loop was pla
ed in the ZOLB. However,
onditional bran
hes on the DSP16000 require more 
y
les than 
onditional as-signments. Other potential bene�ts in
lude redu
ing 
ontention to the memorysystem in the loop. Thus, there is a performan
e bene�t on the DSP16000 frompla
ing loops with an unknown number of iterations in the ZOLB.
for (i = 0; a[i] != n; i++)
   sum += a[i]*2;

(a) Source Code of Loop

sum = 0;

     if eq goto L3

     a3 = 1
     do cloop {

     a0 = *r0++
     a0 = a0 <<< 1
     a2 = a2 + a0
     }
     goto L01

     redo cloop

     if ne goto L02
L3:

after Using the ZOLB
(c) DSP16000 Assembly

L3:

(b) DSP16000 Assembly
without Using the ZOLB

    a2 = a2 + a0
    a0 = a0 <<< 1
L5: a0 = *r0++
    if eq goto L3

    a1 = *r1
    a0 = *r0
    r1 = _n
    a2 = 0
    r0 = _a

    a0 - a1

    a0 = *r0
    a0 - a1
    if ne goto L5

     ...

     cloop = <max value>

     a4 = *(r0+2)
     a4 - a1
     if eq cloop = a3

L02: cloop = <max value>

L01: a4 - a1

Fig. 7. Example of Pla
ing a Loop with an Unknown Number of Iterations in a ZOLB5 Further Redu
ing Loop OverheadAs shown previously in Figure 4(
), basi
 indu
tion variable and dead storeelimination are invoked after pla
ing a loop in a ZOLB sin
e often assignmentsto the loop variable be
ome unne
essary due to the bran
h no longer being in theloop. When the value of the basi
 indu
tion variable is used after the loop and isused for no other purpose in the loop, the optimizer extra
ts these in
rements ofthe variable from the loop. First, the in
rements in the loop are deleted. Next,a new in
rement of the variable is pla
ed after the loop that is the produ
t ofthe original in
rement and the number of loop iterations.Another approa
h that is often used to redu
e the overhead asso
iated withouter level loops is to 
ollapse nested loops. Figure 8(a) shows perfe
tly nestedloops that initialize every element of a matrix. Figure 8(b) shows how the arrayis 
on
eptually a

essed after these loops are 
ollapsed by our optimizer into asingle loop. After the optimizer pla
es the 
ollapsed loop into the ZOLB, the loopoverhead for both original loops are entirely eliminated. The optimizer 
ollapsesnested loops whenever possible. Even when the inner loop 
annot be pla
ed ina ZOLB, the loop overhead is redu
ed sin
e the outer loop is eliminated.Figures 9(a) and 9(
) show the sour
e and 
orresponding assembly 
ode foran example of a loop nest that 
annot be 
ollapsed by our optimizer sin
e not all
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for (i = 0; i < 5000; i++)
   a[i] = 0;

(b) After Loop Collapsing

int a[5000];
int a[50][100];

   for (j = 0; j < 100; j++)
for (i = 0; i < 50; i++)

      a[i][j] = 0;

(a) Original Nested LoopsFig. 8. Example of Loop Collapsing to Eliminate Additional Loop Overheadof the elements of ea
h row of the matrix are a

essed. However, these two loops
an be inter
hanged, as shown in Figures 9(b) and 9(d). After inter
hangingthe two loops, the inner loop now has a greater number of loop iterations, whi
h
an be exe
uted from the ZOLB as shown in Figure 9(e). More loop overhead isnow eliminated by pla
ing the inter
hanged inner loop in the ZOLB as opposedto the original inner loop. The optimizer attempts to inter
hange nested loopswhen the loops 
annot be 
ollapsed, the loops are perfe
tly nested, the numberof iterations for the original inner loop is less than the number of iterations forthe original outer loop, the number of instru
tions in the inner loop does notin
rease, and the resulting inner loop 
an be pla
ed in the ZOLB. Figure 9(d)shows that register k was allo
ated to hold the value of the in
rement 200 soan additional instru
tion to in
rement r0 would be unne
essary. This exampleillustrates the advantage of performing loop inter
hange after 
ode generationsin
e otherwise it would not be known if a register was available to be used tohold the in
rement and the transformation may result in more instru
tions in theinner loop. Inter
hanging loops will not degrade the performan
e of the memoryhierar
hy for the DSP16000 sin
e it has no data 
a
he or virtual memory system.
    r1 = _aextern int a[200][100];

extern int a[200][100];

    a3 = 0

L5: r0 = r1

    a1 = a1 + 1
    if le goto L9

    a2 = a2 + 1
    if le goto L5

(d) DSP16000 Assembly
after Loop Interchange

    r1 = _a
    a3 = 0
    a2 = -49

    r0 = r1
    j = 200

    *r0++k = a3

    r1 = r1 + 2
    a2 = a2 + 1
    if le goto L5

(e) DSP16000 Assembly
after Using the ZOLB

for (i=0; i<200; i++)
   for (j=0; j<50; j++)
      a[i][j]=0;

(a) Source Code of Nested Loops

for (j=0; j<50; j++)
   for (i=0; i<200; i++)
      a[i][j]=0;

    r1 = _a
    a3 = 0

L5: r0 = r1

L9: *r0++ = a3
    a1 = a1 + 1
    if le goto L9

    a2 = a2 + 1
    if le goto L5

(c) DSP16000 Assembly
before Loop Interchange

    a2 = -199

    a1 = -49

    r1 = r1 + 200

    a2 = -49

    a1 = -199
    k = 200
L9: *r0++k = a3

    r1 = r1 + 2

L5: cloop = 200

    do cloop {

    }

(b) Source Code after Loop InterchangeFig. 9. Example of Loop Inter
hange to In
rease the Iterations Exe
uted in the ZOLB6 Avoiding Redundant Loads of the ZOLBThe do instru
tion indi
ates that a spe
i�ed number of instru
tions followingthe do will be loaded into the ZOLB. Depending upon the implementation of
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tively Exploiting a Zero Overhead Loop Bu�erthe DSP ar
hite
ture, instru
tions may be fet
hed faster from a ZOLB than the
onventional memory system. In addition, 
ontention for the memory systemmay be redu
ed when a ZOLB is used. The redo instru
tion has similar semanti
sas the do instru
tion, ex
ept that the redo does not 
ause any instru
tions tobe loaded into the ZOLB. Instead, the 
urrent 
ontents of the ZOLB are simplyexe
uted the spe
i�ed number of iterations.The redo instru
tion 
an be used to avoid redundant loads of loops into theZOLB. Consider the sour
e 
ode shown in Figure 10(a). It would appear thatthe two loops are quite di�erent sin
e they iterate a di�erent number of times,a

ess di�erent variables, and a

ess di�erent types of data. However, the bodyof the two loops are identi
al as shown in Figure 10(b). The reason is that mu
hof the 
hara
teristi
s of the loops have been abstra
ted out of the loop bodies.The number of iterations for ZOLB loops is en
oded in the do instru
tion orassigned to the 
loop register pre
eding the loop. The addresses of the arraysare assigned to registers asso
iated with basi
 indu
tion variables pre
eding theloop after loop strength redu
tion is performed. In addition, data moves of thesame size between registers and memory are a

omplished in the same manneron the DSP16000, regardless of the data types. Figure 10(
) shows the assembly
ode after the redundant loop is eliminated using the redo instru
tion.
r1 = _a
r0 = _b
do 100 {

}

cloop = 200
r1 = _c
r0 = _d
do cloop {

}

(b) DSP16000 Assembly
after Using the ZOLB

extern int a[100], b[100];
extern float c[200], d[200];

for (i = 0; i < 100; i++)
   a[i] = b[i];

for (i = 0; i < 200; i++)
   c[i] = d[i];

(a) Source Code of Two Different Loops

r1 = _a
r0 = _b
do 100 {

}

cloop = 200
r1 = _c
r0 = _d

(c) DSP16000 Assembly
after Avoiding the

Redundant ZOLB Load

...

...

...

...

a0 = *r0++

a0 = *r0++
*r1++ = a0

a0 = *r0++
*r1++ = a0

...

redo cloop

*r1++ = a0

Fig. 10. Example of Avoiding a Redundant Load of the ZOLBThe optimizer determines whi
h ZOLB loops 
an rea
h ea
h point in the
ontrol 
ow without the 
ontents of the ZOLB being 
hanged. The authorsused 
ow analysis to determine if the loading of ea
h ZOLB loop was ne
essary.A bit was asso
iated with ea
h ZOLB loop and one bit was also reserved toindi
ate that no ZOLB loops 
ould rea
h a given point. Equations (1) and (2)are used to to determine whi
h ZOLB loops 
ould possibly rea
h ea
h point in the
ontrol 
ow within a fun
tion.2 In the a
tual implementation, interpro
edural
ow analysis was used to avoid redundant loading of ZOLB loops a
ross fun
tion
alls and returns. An adjustment was required when ZOLB loop information waspropagated from a return blo
k of a fun
tion. This adjustment prevented ZOLBloops that are propagated into the entry blo
k of a fun
tion at one 
all site from2 Note that B represents a basi
 blo
k in the program
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k following a 
all to the same fun
tion at a di�erent
all site. Likewise, it was assumed that no ZOLB loops 
ould rea
h the pointafter a library 
all sin
e it was not known if the ZOLB would be used for adi�erent ZOLB loop in the 
alled library fun
tion.in[B℄ =8<: Null if B is a fun
tion entry blo
k[P 2 pred[B℄ out[P℄ otherwise (1)out[B℄ = (Null if B 
ontains a 
allB if B 
ontains a ZOLB loopin[B℄ otherwise (2)After all of the ZOLB loop rea
hing information is 
al
ulated, the optimizerdetermines whi
h ZOLB loops do not need to be loaded into the ZOLB. If thein[℄ of a 
urrent blo
k 
ontaining a ZOLB loop indi
ates that only a singleother ZOLB loop is guaranteed to rea
h that point and if all of the instru
tionsin the other ZOLB loop are identi
al with the instru
tions in the 
urrent ZOLBloop, then the entire 
urrent ZOLB loop is repla
ed with a redo instru
tion.Even after using 
ow analysis to avoid redundant loads of ZOLB loops, manyloops are repeatedly loaded into the ZOLB be
ause they are in nested loops. Theoptimizer was modi�ed to have the ability to avoid these redundant loads aswell. The optimizer avoids the repeated loading of the inner loop in the ZOLBby peeling an iteration of the outer loop. Only in the peeled iteration is theZOLB loaded. All remaining iterations exe
ute from the ZOLB using the redoinstru
tion. The optimizer only performs the loop peeling transformation whenthe in
rease in 
ode size is small and there are expe
ted performan
e bene�ts(i.e. redu
ing memory bus 
ontention 
on
i
ts on the DSP16000) from avoidingthe repeated load of the inner loop into the ZOLB.7 Analysis and TransformationsThe order in whi
h these transformations are applied 
an a�e
t how e�e
tively aZOLB 
an be exploited. Figure 11 shows the order of the pertinent analysis andtransformations that are applied on the assembly 
ode in the se
ond optimizationphase shown in Figure 1. The 
omplete list of types of analysis and improvingtransformations performed in this phase of optimization and a more thoroughdes
ription and rationale for this order may be found elsewhere [9℄. Likewise,a more general des
ription of these analyses and transformations 
an also beobtained [13℄.Basi
 blo
ks are merged (#2) when possible. This transformation does notusually improve the 
ode dire
tly but may provide additional opportunities forother improving transformations. For instan
e, pla
ing loops in a ZOLB (#13)is only applied to loops 
ontaining a single basi
 blo
k. Merging basi
 blo
ks(#2) also redu
es the overhead of most types of global analysis.
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hniques for E�e
tively Exploiting a Zero Overhead Loop Bu�erAnalysis is performed to allow optimizations to be performed A 
all graph(#1) is built to perform various types of interpro
edural improving transforma-tions [8℄, whi
h in
ludes inlining (#8) to support pla
ing loops in a ZOLB. Loopsin the program are dete
ted (#3) to support a variety of improving transforma-tions, whi
h of 
ourse in
ludes pla
ing loops in a ZOLB (#13). Live registerinformation is 
al
ulated (#4) sin
e many improving transformations requireallo
ation of registers. For instan
e, pla
ing a loop with an unknown numberof iterations in the ZOLB (#13) requires renaming registers to newly allo
atedregisters to a

omplish the s
heduling required to for
e an exit from the loop atthe appropriate time. Loop invariant values and basi
 indu
tion variables are de-te
ted (#6) so the number of iterations for a loop may be 
al
ulated (#7). Notethat dete
ting the number of loop iterations is a mu
h more 
hallenging task atthe assembly level as 
ompared to examining sour
e level loop statements.Some instru
tions with immediate values 
annot be exe
uted 
onditionally.When these instru
tions are inside a loop and a register is available, the 
om-piler repla
es the immediate value with the register and assigns the immediatevalue to the register outside the loop. Therefore, bran
hes are 
onverted into
onditional assignments (#5) after �nding loops (#3) and 
al
ulating live regis-ter information (#4). Bran
hes are 
onverted into 
onditional assignments (#5)before analysis is performed to determine if a loop 
an be pla
ed in the ZOLB(#13) sin
e loops with bran
hes not asso
iated with the exit 
ondition of theloop 
annot be pla
ed in the ZOLB.Inlining (#8) also removes transfers of 
ontrol from a loop, namely a 
allinstru
tion. Inlining (#8) was performed after dete
ting the number of loopiterations (#7) sin
e it 
ould be determined at this point if the inlining wouldallow the loop to be pla
ed in the ZOLB (#13) so unne
essary 
ode growth
ould be avoided.Ranges of addresses were 
al
ulated (#9) for ea
h memory referen
e to al-low independent instru
tions in a loop to be separated via loop distribution(#10). Both loop 
attening (#11) and loop inter
hange (#12) are performedafter 
al
ulating the number of loop iterations (#7) sin
e these transformationsrequire this information. Perfe
tly nested loops are 
attened (#11) before loopinter
hange (#12) is performed sin
e 
attening loops pla
es more iterations ina ZOLB than inter
hanging loops.Basi
 indu
tion variable elimination (#14) was performed after pla
ing loopsin the ZOLB (#13) sin
e the assignments were often unne
essary at that point.The remaining assignments to basi
 indu
tion variables are extra
ted from loops(#15) after basi
 indu
tion variable elimination (#14) to prevent unne
essaryextra
tions of instru
tions.Avoiding redundant loading of the ZOLB using 
ow analysis was performedafter loops were pla
ed in the ZOLB so redundant loads 
ould be dete
ted.Finally, loop peeling was only 
onsidered for the loops whose loading 
ould notbe avoided using 
ow analysis sin
e loop peeling requires a 
ode size in
rease.
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all graph for the program 10. Perform loop distribution to pla
emore loops in the ZOLB2. Merge 
onse
utive blo
ks 11. Flatten perfe
tly nested loops3. Find the loops in the program 12. Perform loop inter
hange4. Cal
ulate live register info 13. Pla
e loops in the ZOLB5. Convert bran
hes into 
onditional 14. Eliminate basi
 indu
tion variableassignments6. Find loop invariant & indu
tion 15. Extra
t loop indu
tion variablevariables assignment7. Cal
ulate the number of loop 16. Avoid redundant loading of the ZOLBiterations8. Perform inlining to support 17. Perform loop peeling to furtherpla
ing more loops in the ZOLB avoid redundant ZOLB loading9. Cal
ulate ranges of addressesa

essed by ea
h memory referen
eFig. 11. Order of the Analysis and Transformations Used to Exploit a ZOLB8 ResultsTable 1 des
ribes the ben
hmarks and appli
ations used to evaluate the impa
tof using the ZOLB on the DSP16000. All of these test programs are either DSPben
hmarks used in industry or typi
al DSP appli
ations. Many DSP ben
h-marks represent kernels of programs where most of the 
y
les o

ur. Su
h kernelsin DSP appli
ations have been histori
ally optimized in assembly 
ode by handto ensure high performan
e [6℄. Thus, many established DSP industrial ben
h-marks are small sin
e they were traditionally hand 
oded. Standard ben
hmarks(e.g. SPEC) were not used sin
e the DSP16000 was not designed to supportoperations on 
oating-point values or integers larger than two bytes.Table 1. Test ProgramsProgram Des
ription Program Des
riptionadd8 add two 8-bit images 
onv 
onvolution 
ode
opy8 
opy one 8-bit image to another �t 128 point 
omplex �t�r �nite impulse response �lter �r no �r �lter with�re �re en
oder redundant load eliminationinverse8 invert an 8-bit image iir iir �lteringlms lms adaptive �lter jpegd
t jpeg dis
rete 
osine transformsumabsd sum of absolute di�eren
es of s
ale8 s
ale an 8-bit imagetwo images trellis trellis 
onvolutional en
oderve
 mpy simple ve
tor multiplyTable 2 
ontrasts the results for loop unrolling and exploiting the DSP16000ZOLB.3 Exe
ution measurements were obtained by a

essing a 
y
le 
ount froma DSP16000 simulator [10℄. Code size measurements were gathered by obtainingdiagnosti
 information provided by the assembler [11℄. The authors 
ompared3 Only relative performan
e results 
ould be given due to dis
losure restri
tions forthese test programs.



Te
hniques for E�e
tively Exploiting a Zero Overhead Loop Bu�erthe performan
e of using the ZOLB against loop unrolling, whi
h is a 
ommonapproa
h for redu
ing loop overhead. The loop unrolling showed in Table 2 wasperformed on all innermost loops when the number of iterations was knownstati
ally or dynami
ally. As shown in the results, using the ZOLB typi
ally re-sulted in fewer exe
ution 
y
les as 
ompared to loop unrolling. Sometimes loopunrolling did have bene�ts over using a ZOLB. This o

urred when an inner-most loop had too many instru
tions or had transfers of 
ontrol that wouldprevent it from being pla
ed in a ZOLB. In addition, sometimes loop unrollingprovided other bene�ts, su
h as additional s
heduling and instru
tion sele
tionopportunities, that would not otherwise be possible.4 However, the average per-forman
e bene�ts of using a ZOLB are impressive, parti
ularly when 
ode sizeis important. As shown in the table, loop unrolling 
aused signi�
ant 
ode sizein
reases, while using the ZOLB resulted in slight 
ode size de
reases. The 
odesize de
reases when using the ZOLB 
ame from the 
ombination of eliminat-ing bran
hes by pla
ing the loops in the ZOLB and applying indu
tion variableelimination and dead store elimination afterwards. O

asionally, 
ode size de-
reases were obtained by avoiding redundant loads of the ZOLB loops using the
ow analysis des
ribed in Se
tion 5. Loop peeling, whi
h in
reases 
ode size, wasrarely applied sin
e memory 
ontentions did not o

ur that frequently.Table 2. Contrasting Loop Unrolling and Using a ZOLB
Program

conv      -33.42%   +22.58%   -47.56%   +29.03%   -54.63%   +41.94%   -47.84%   -3.23%

iir       -11.10%   +14.58%   -15.43%   +51.04%   -15.67%   +88.54%   -19.61%   -4.17%

             Cycles   Code Size     Cycles    Code Size    Cycles     Code Size   Cycle     Code Size

Unroll Factor = 2      Unroll Factor = 4      Unroll Factor = 8       Exploiting ZOLB

add8      -11.47%    +7.84%   -23.11%   +62.75%   -27.46%   +90.20%   -36.33%   -3.92%

copy8     -23.11%    +6.25%   -42.32%   +12.50%   -51.92%   +25.00%   -62.44%   -4.17%

inverse8  -20.27%    +8.16%   -37.34%   +18.37%   -46.64%   +48.98%   -55.50%   -4.08%

sumabsd   -14.69%    +8.57%   -19.57%   +25.71%   -22.03%   +60.00%   -58.83%   -8.57%

fir_no     -3.97%   +34.88%    -7.07%  +109.30%    -9.14%  +258.14%   -31.35%   -4.65%

scale8     -4.90%   +38.46%    -9.37%   +93.85%   -11.60%  +204.62%   -14.28%   -1.54%

trellis   -11.52%    +0.11%   -19.10%    +0.33%   -22.79%    +0.78%   -20.16%   -0.17%

Average   -12.72%   +20.81%   -21.22%   +76.80%   -24.86%  +142.44%   -31.79%   -5.73%

fft        -6.22%   +32.14%   -10.56%   +92.86%   -12.73%  +214.29%    -8.69%   -3.57%
fir       -20.35%   +21.05%   -35.25%  +147.37%   -41.98%  +255.26%   -48.42%  -10.53%

fire       -0.75%   +36.27%    -4.22%  +110.78%    -6.20%  +255.88%   -26.88%  -21.57%

jpegdct    -8.26%   +17.56%    -8.44%   +59.54%    -8.44%   +59.54%     0.00%    0.00%
lms        -1.75%    +0.48%   -10.52%    +1.78%   -10.52%    +1.78%    -8.33%   -0.04%

vec_mpy   -19.08%   +63.16%   -28.49%  +336.84%   -31.15%  +531.58%   -38.16%  -15.79%Table 3 depi
ts the bene�t of applying the improving transformations de-s
ribed in Se
tions 4 and 5. Only some of the improving transformations applied4 The produ
tion version of the optimizer does limited unrolling of loops. For instan
e,loop unrolling is applied when memory referen
es and multiplies 
an be 
oales
ed.However, unrolling is not performed when it would 
ause the number of instru
tionsto ex
eed the limit that the ZOLB 
an hold [9℄. Note the measurements presentedin this paper did not in
lude loop unrolling while pla
ing loops in the ZOLB sin
e itwould make the 
omparison of applying loop unrolling and using a ZOLB less 
lear.Likewise, the produ
tion version of the optimizer performs other optimizations, su
has multiply and memory 
oales
ing and software pipelining, that were not appliedfor the results in this paper.
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olumn 2) had a performan
e bene�t on their own.These transformations in
lude the use of 
onditional instru
tions, inlining, andloop 
ollapsing. The 
hara
teristi
s of the DSP16000 prevented 
onditional in-stru
tions from being used frequently. Inlining only had o

asional bene�ts forthe test programs sin
e the optimizer only inlined fun
tions when the fun
tionwas 
alled from a loop and inlining would allow the loop to be pla
ed in theZOLB. Inlining was not performed when a fun
tion had transfers of 
ontrolother than a return instru
tion, whi
h was the 
ommon 
ase. Loop 
ollapsingwas applied most frequently of these transformations. The results shown in 
ol-umn 3 in
lude basi
 indu
tion variable elimination sin
e it was quite obviousthat this transformation 
ould almost always be applied when a loop is pla
edin the ZOLB. The 
ombination of using the ZOLB with the improving trans-formations (
olumn 4) sometimes resulted in greater bene�ts than the sum ofthe bene�ts (
olumns 2 and 3) when applied separately. Most of the additionalbene�t 
ame from the new opportunities for pla
ing more loops in the ZOLB(transformations des
ribed in Se
tion 4).Table 3. The Impa
t of Improving Transformations on Using a ZOLB
Transformations

Using the ZOLB
without

Using the ZOLB
with
Transformations

Using the ZOLB

Transformations
without

Impact on Execution Cycles

conv       -8.22%             -43.48%             -52.13%
add8       -2.24%             -35.09%             -37.76%   

copy8      -1.84%             -60.39%             -63.13%

fir         0.00%             -48.42%             -48.42%
fir_no     -0.03%             -31.37%             -31.37%

iir         0.00%             -19.61%             -19.61%
inverse8   -1.64%             -53.80%             -56.23%

vec_mpy     0.00%             -38.16%             -38.16%   

Average    -3.83%             -25.34%             -32.97%

Program

fft         0.00%              -8.69%              -8.69%

jpegdct     0.00%               0.00%               0.00%

fire       -7.44%               0.00%             -32.31%

sumabsd   -23.11%               0.00%             -51.70%
trellis    -8.75%              -7.36%             -20.16%

scale8     -3.79%             -16.92%             -17.52%
lms         0.00%              -8.33%              -8.33%

The authors also obtained the per
entage of the innermost loops that werepla
ed in the ZOLB. On average 71.56% of the innermost loops 
ould be pla
edin the ZOLB without applying the improving transformations des
ribed in Se
-tion 4. However, 84.89% of the innermost loops 
ould be pla
ed in the ZOLBwith these improving transformations applied. Transfers of 
ontrol was the most
ommon fa
tor that prevented the use of a ZOLB. The use of 
onditional in-stru
tions, inlining, and the transformation on loops with an unknown number ofiterations all o

asionally resulted in additional loops being pla
ed in the ZOLB.
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tively Exploiting a Zero Overhead Loop Bu�er9 Con
lusionThis paper des
ribed strategies for generating 
ode and utilizing improvingtransformations to exploit a ZOLB. The authors found that many 
onventionalimproving transformations used in optimizing 
ompilers had signi�
ant e�e
tson how a ZOLB 
an be exploited. The use of predi
ated exe
ution, loop dis-tribution, and fun
tion inlining allowed more loops to be pla
ed in a ZOLB.The overhead of loops pla
ed in a ZOLB was further redu
ed by basi
 indu
tionvariable elimination and extra
tion, loop 
ollapsing, and loop inter
hange. Theauthors also found that a ZOLB 
an improve performan
e in ways probably notintended by the ar
hite
ts who originally designed this feature. The use of 
on-ditional instru
tions and instru
tion s
heduling with register renaming allowedsome loops with an unknown number of iterations to be pla
ed in a ZOLB. In-terpro
edural 
ow analysis and loop peeling were used with the redo instru
tionto avoid redundant loading of a ZOLB. The results obtained from test programsindi
ate that these transformations allowed a ZOLB to be often exploited withsigni�
ant improvements in exe
ution time and small redu
tions in 
ode size.Referen
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