Scheduling Instruction Effects for a
Statically Pipelined Processor

B. Davis, R. Baird,
P. Gavin
Florida State University
Tallahassee, USA

F. Rasapour, G. Cook,
G.-R. Uh

Boise State University
Boise, USA

ABSTRACT

Statically pipelined processors have a fully exposed datap-
ath where all portions of the pipeline are directly controlled
by effects within an instruction, which simplifies hardware
and enables a new level of compiler optimizations. This pa-
per describes an effect scheduling strategy to aggressively
compact instructions, which has a critical impact on code
size and performance. Unique scheduling challenges include
more frequent name dependences and fewer renaming oppor-
tunities due to static pipeline (SP) registers being dedicated
for specific operations. We also realized the SP in a hard-
ware implementation language (VHDL) to evaluate the real
energy benefits. Despite the compiler challenges, we achieve
performance, code size, and energy improvements compared
to a conventional MIPS processor.

Keywords

compiler, architecture, static pipeline, performance, energy

1. INTRODUCTION

Energy has now become a first-order processor design con-
straint, but many micro-architectural techniques were devel-
oped when energy efficiency was not as important. For in-
stance, classical in-order scalar pipeline designs have energy
inefficiencies that could potentially be addressed. They up-
date pipeline registers often with values that are not used,
access register files unnecessarily for values that will be for-
warded, check for forwarding and hazards even when they
cannot possibly occur, and repeatedly calculate invariant
values like branch target addresses. The static pipeline (SP)
architecture can often avoid these energy inefficiencies while
achieving performance and code size improvements [1, 2].

Figure 1 illustrates the basic concept of SP. Conventional
in-order instruction pipelines fetch each instruction and push
the instruction through the pipeline via pipeline registers
over several cycles; portions of the operation are performed
at different stages, as depicted in Figure 1(a). Each instruc-
tion shares the pipeline with other instructions that are in
other pipeline stages. Figure 1(b) shows the operation of
an SP processor. The highlighted portion shows each SP
instruction controls all portions of the processor during the
cycle it is executed. The SP approach requires that the com-
piler encodes information in instructions that is normally

M. Sjalander
Uppsala University
Uppsala, Sweden

l. Finlayson
University of Mary Washington
Fredericksburg, USA

D. Whalley, G. Tyson
Florida State University
Tallahassee, USA

determined dynamically by the hardware. Thus, the SP in-
struction set architecture (ISA) results in more control given
to the compiler to optimize data flow through the processor,
while simplifying the hardware required to support hazard
detection, data forwarding, and transfers of control (ToCs).

By relying on the compiler to do low-level processor re-
source scheduling, it is possible to eliminate some struc-
tures (e.g., the branch target buffer), avoid some repetitive
computation (e.g., branch target address calculations), and
greatly reduce accesses to both the register file and internal
registers. This strategy provides new code optimization op-
portunities, leading to energy efficiency, performance, and
code size improvements. The cost of this approach is the
additional complexity of code generation and compiler opti-
mizations targeting an SP architecture. However, the useful-
ness of the SP approach is solely determined by the quality of
compiler code generation. It is, therefore, vital for the com-
piler to detect the instruction effects that can be performed
in parallel and aggressively compact these effects into the
smallest possible set of SP instructions.

This paper makes the following contributions. (1) We
show that a 32-bit instruction template generator can au-
tomatically select a set of encoding templates that captures
the most frequent occurrences of parallel SP effects discov-
ered by the compiler. (2) We demonstrate that SP effects
that must occur within specific instructions in a basic block
can be effectively scheduled with other effects within a ba-
sic block. (3) We establish that SP effects can be moved
across basic blocks to provide further performance and code
size improvements. (4) We show that despite frequent name
dependences involving SP internal registers and the limited
renaming opportunities due to the restrictions of the SP dat-
apath, the compiler is still able to achieve a high-quality SP
effects schedule. (5) We evaluate the energy efficiency of the
first VHDL implementation of an SP datapath.

This paper builds on our previous work [1] where each SP
effect to be scheduled was selected serially in the original or-
der of the unscheduled effects within the basic block and reg-
ister renaming was only performed as an optimization pass
before effect scheduling was initiated. We now select SP ef-
fects to be scheduled using a data dependence graph (DDG),
we integrate register renaming during SP effect scheduling
as needed to avoid false dependences, we implement and use
SP copy renaming as a new method for avoiding false depen-
dences, we perform SP cross block scheduling much more ex-

K
Y
70

10

géﬁi ie:stelr 77 [cP1
"=

ey

{Sign Extend }—i =] M

veey

clock cycle
1 2 3 4 5 6 7 8 9
add IF RF EX MEM WB
store IF RF EX MEM WB
sub IF RF EX MEM WB
load IF
or IF RF EX MEM WB
(a) Traditional Pipelining
clock cycle
1 2 3 4 5 6 7 8 9
add IF RF EX MEM
store IF RF EX WB
sub IF RF MEM WB
load IF EX MEM WB
or IF RF EX MEM WB ‘\/\Cuntrol>:
(b) Static Pipelining —

Instruction Cache | | Data Cache

Figure 1: Traditionally Pipelined vs.
Statically Pipelined Instructions

tensively that includes more aggressive techniques, we have
revised the SP instruction formats, and we improved the
method for selecting the SP instruction templates. We also
provide an analysis of the benefits of the various schedul-
ing techniques we implemented. Overall, the performance
and code size results are about 3.2% and 2.8% better, re-
spectively, than serially scheduled code [1]. In addition, we
provide the first VHDL implementation of an SP datapath.

2. STATIC PIPELINE APPROACH

The SP ISA is quite different than the ISA for a con-
ventional processor. An SP instruction consists of a set of
independent effects, each of which controls some function-
ality of the processor. Internal registers are architecturally
visible, which unlike pipeline registers, are explicitly read
and written by the effects, and can hold their values across
multiple cycles.

The SP micro-architecture used in this paper, depicted in
Figure 2, has similar hardware resources as a classical five-
stage pipeline. The SP effects for this configuration mostly
correspond to the various operations of a classical five-stage
pipeline, which includes one ALU operation (OPER1), one
FPU operation (OPER2), one data cache access (LV), two
register reads (RS1 and RS2), one register write, one sign
extension (SE), and one branch target address calculation
(TARG). In addition, SP effects also enable a copy to be made
from an internal register to one of two copy registers (CP1
and CP2), to store the next sequential instruction address
(SEQ), and to set a status register to indicate that the next
instruction is a transfer of control (PTB).

The SP has a completely exposed datapath and the com-
piler is responsible for managing all routing of data and per-
forming necessary operations on the data. Figure 3 shows
a simplified example of the type of scheduling the compiler
needs to perform. The first step breaks each assembly in-
struction into the sequence of SP effects that is required to
perform the instruction, as depicted in Figure 3(a). For in-
stance, the add instruction (r[1] = r[3]+16) consists of
the following SP effects: First register r/3/ is read, next the
immediate register (SE) is set to the value 16, and then the
addition is performed on the two operands (this effect in-
cludes routing of the operands to the ALU). Performing an
ALU operation implicitly updates the output register of the

Figure 2: Datapath of a Statically Pipelined Processor

r[l] = r[3]+16;

RS1 = r([3];

SE = 16;

OPER1 = RS1+SE;

r[l] = OPER1;

r(l] = r[(5]-r[1]; RS1 = r[3];
RS1 = r[l]; SE = 16;
RS2 = r[5]; OPER1 = RS1+SE;
OPER1 = RS1-RS2; RS2 = r[5];
r(l] = OPERI1; OPER1 = OPER1-RS2;
r[(3] = M[r[9]]; r[l] = OPERI1;
RS2 = r[9]; RS2 = r[9];
LV = M[RS2]; LV = M[RS2];
r[3] = LV; r[(3] = LV;

(a) Initial SP Effects (b) Copy Prop + Dead Asg Elim

RS1 = r[3]; SE = 16; RS2 = r[9];
OPER1 = RS1+SE; RS2 = r[5]; LV = M[RS2];
OPER1 = OPER1-RS2; r[3] = LV;

r[1l] = OPERI;

(c) SP Effect Scheduling

Figure 3: Simplified Scheduling Example

ALU (OPER1). Finally, the result of the addition is writ-
ten back to register r/1]. This linear set of effects is very
inefficient since each conventional machine instruction now
requires three to four SP instructions.

The exposed datapath of the SP enables the compiler to
statically manage data forwarding and eliminate many reg-
ister reads and writes. Figure 3(b) shows that the result
of the addition does not have to be written to the register
file. The subtraction has instead been modified to directly
use the internal register OPER1 as one of its operands and
as the subtraction also writes register r/1] the result of the
addition does not have to be written back. The compiler
also performs scheduling so that multiple SP effects can be
simultaneously issued for each SP instruction, as shown in
Figure 3(c). The goals of SP scheduling are to significantly
reduce the execution time and decrease code size.

3. COMPILER CHALLENGES AND CODE
GENERATION STRATEGY

In the following sub-sections we will cover the main chal-
lenges when scheduling efficient code for an SP processor.

3.1 Selecting Instruction Templates

Including all possible instruction-effect fields in an instruc-
tion would require 81 bits for our design. A large instruction
size would have a detrimental effect on code size and in-
crease the power to access the instruction cache, thus negat-
ing much of the power benefit an SP processor would oth-
erwise achieve. Therefore we developed a compact, 32-bit
encoding for the instructions, which is shown in Figure 4.

[5-bit ID I Long Immediate I 10-bit Field ‘
[sbito | Long Immediate [3bit | 7-bit Field |
[sbito] Long Immediate [2-bit [4-bit Field | 4-bit Field |
[sbito | 10-bit Field [7-bit Field [10-bit Field |
[sbito 10-bit Field [7-bit Field [3bit | 7-bit Field |
[sbito] 10-bit Field [7-bit Field [2-bit | 4-bit Field [4-bit Field]
10-bit Effect 7-bit Effect 4-bit Effect 3-bit Effect 2-bit Effect

ALU Operation Integer Addition Move to CP1/2 SEQ or SE SEQ Set

FPU Operation Load Operation Move CP1/2 to SE
Load or Store Operation Single Register Read
Dual Register Reads Short Immediate

Register Write

Prepare to Branch

Figure 4: Static Pipeline Instruction Formats

The encoding scheme is similar to that used by VLIW and
EPIC processors [3, 4]. Each instruction is capable of en-
coding multiple fields, with each field corresponding to one
SP effect. The 5-bit ID field is the template identifier, which
specifies how the remaining fields should be interpreted. Fig-
ure 4 also shows which types of effects can be represented in
the different fields. The formats are constructed such that
each type of field appears at most in two distinct places
across all instructions, which simplifies the decoding logic.
Furthermore, each type of effect has to be present in at least
one template, or it would be impossible to use it.

There are many ways to combine the available effects into
a set of templates for encoding. Figure 5 shows the process
of gathering information and selecting templates. In order
to choose a good set of templates, a representative set of ap-
plications is compiled. The initial compilation is performed
with the only restriction being that the combination of ef-
fects has to fit one of the instruction formats as specified in
Figure 4, i.e., the compiler is not limited to only 32 templates
as specified by the 5-bit ID. This initial compilation using
the pool of possible templates determines which combina-
tions of effects are commonly used together. A static profile
is then created from the compilation where each combina-
tion of effects representing a unique instruction is weighted
based on how many times it appears in the code. Using
only static profiles facilitates the template selection process
as representative profile data need not be determined.

The template generator uses this profile information to au-
tomatically select the templates, using the algorithm shown
in Figure 6. The 32 templates are greedily selected accord-
ing to the profile information. Once a template is chosen,
then all instructions in the profile that fit that template are
removed before the next template is selected.

3.2 Scheduling Instruction Effects

Scheduling effects for an SP processor is similar to schedul-
ing instructions for a VLIW processor, but has several im-
portant differences. First, SP instructions use a 32-bit in-
struction format that is shorter than the typical VLIW for-
mat, which introduces additional restrictions on what effects

Template | Pool-of-
Generator Templates
| Compiler
e
_J

Application
Code
Y
r N\
32- Template Static
Templates Selector Profile
_ J

Figure 5: Process for Selecting Instruction Templates

= pool of all possible 27-bit templates
= pool of all instructions
OR 1..32 DO
BEST = dummy
BEST.freq = 0
FOR template T in P DO
T.freq = 0
FOR instruction I in Q DO
IF I can be encoded by T THEN
T.freq += I.freq
IF T.freq == 0 THEN
remove T from P
ELSE IF T.freqg > BEST.freqg THEN
BEST = T
add BEST to set of 32 templates
remove BEST from P
FOR instruction I in Q DO
IF I can be encoded by BEST THEN
remove I from Q

P
Q
F

Figure 6: Algorithm for Selecting Instruction Templates

can be combined. Second, each SP effect normally represents
an effect that a classical instruction pipeline can perform in
a single stage. In contrast, VLIW instruction formats typ-
ically represent a complete RISC instruction. Third, many
types of SP effects can only update a specified internal reg-
ister, which limits internal register renaming opportunities.

The process of SP effect scheduling occurs in phases. First,
the compiler schedules the effects within a basic block. Sec-
ond, the compiler places specific effects that have to occur
either in the last or second to last instruction within a ba-
sic block. Third, the compiler schedules effects across basic
block boundaries, which requires a basic block to be resched-
uled when an effect is moved out of it. The following sub-
sections describe this process in more detail.

3.2.1 Scheduling Effects within a Basic Block

We based our scheduling on classical list scheduling, but
also address the additional scheduling requirements of an
SP processor. Figure 7 shows an example from scheduling
SP effects within a basic block that is used to illustrate this
algorithm. Figure 7(a) shows an example C for loop and
Figure 7(b) shows the corresponding SP instructions gener-
ated for this loop prior to scheduling effects. Before schedul-
ing the effects, the compiler removes the assignments to the
SEQ and PTB registers shown in italics as these assignments
have to be placed at specific locations within the block to
ensure correct behavior of ToCs. The placement of the SEQ
and PTB assignments after scheduling effects within a block
will be described in Section 3.2.2.

The DDG the compiler uses to represent the dependences
between SP effects is shown in Figure 7(c). Note that this
figure only shows the true dependences (reads after writes),
which depicts the constraints on the order in which the ef-
fects can be scheduled.

SE=4;
SEQ=PC+1;
RS2=r[6];
M[CP1]=RS2;
M[CP2]=RS2;
OPER2=CP2+SE;
CP2=0PER2;
OPER2=CP1+SE;
CP1=0PER2;
RS2=r[2];
PTB=b SEQ;
(9) PC=OPER2!RS2,SEQ(L2) ;

for (i = 0; 1 < 100; i++)
ali] = b[i] = t;

(a) Source Code

e
©J oUW RN

(b) Instructions before

(c) Data Dependence Graph Scheduling
éE;4;
L2:
RS2=7[6]; OPER2=CP2+SE;
M[CP1]=RS2;

M[CP2]=RS2;
OPER2=CP1+SE;
CP1=OPER2;

RS2=r[2]; CP2=0PER2;
PC=OPER2!RS2, SEQ (L2) ;

(d) Scheduling without Renaming after
Removing the PTB and SEQ Effects

SE=4;

L2:
RS2=7[6]; OPER2=CP2+SE; OPER1=CP1+SE;
M[CP1]=RS2; CP1=0OPER1; RS1=r[2];
M[CP2]=RS2; CP2=0PER2;
PC=OPER1 !RS1, SEQ (L2) ;
(e) Scheduling with Renaming
SE=4; SEQ=PC+1;
L2:
RS2=r[6]; OPER2=CP2+SE; OPER1=CP1+SE;
M[CP1]=RS2; CP1=0PER1; RS1=r[2];
M[CP2]=RS2; CP2=0PER2; PTB=b SEQ;

PC=OPER1!RS1, SEQ(L2) ;
(f) After Placing the PTB and SEQ Effects

Figure 7: Example of Scheduling Effects in a Basic Block

Figure 7(d) shows the scheduled effects without perform-
ing renaming. Effects scheduled on the same line are part
of the same instruction and must match a template (combi-
nation of types of effects) that both fits one of the formats
shown in Figure 4 and matches a combination of effects cho-
sen by the template selector shown in Figure 6. Effects (1)
and (4) are able to be scheduled together in the first instruc-
tion, but effects (6) and (8) cannot be scheduled at this point
since effects (1) and (8) set RS2 and effects (4) and (6) set
OPER2. Scheduling two effects in the same instruction that
set the same register would violate an output dependence.
Effects (6) and (8) cannot be scheduled until the effects con-
taining the last use of OPER2 and RS2, respectively, have
been scheduled. At this point only effects (2) or (3) can be
scheduled in the second instruction since OPER2, RS2, and
CP2 are live. Scheduling both effects (2) and (3) in the same
instruction is not legal as only one data memory operation
can occur at a time and hence does not match any of the
templates. After scheduling effect (2), effects (3), (8), and
(5) are scheduled in the third instruction. At the point effect
(5) is scheduled, effect (6) cannot fit in the third instruction,
so (6) had to be scheduled in the fourth instruction. Finally,
effects (7) and (9) are scheduled in the fifth instruction as
they have true dependences with effect (6).

The scheduled effects in Figure 7(d) can be improved by
performing renaming. Once a ready effect is selected, the
scheduler attempts to rename the register set by the effect
if there is only a false dependence that prevents the effect
from moving higher. The conventional renaming operation
performed by a compiler is when the set of a register and all
uses of that value (the entire live range) are replaced with
another register. However, there are only limited opportu-
nities for conventional renaming of live ranges of internal
SP registers due to the restricted SP datapath, as shown in
Figure 2. There are two main opportunities for renaming
internal SP registers. First, the compiler can rename a live
range of RS1 to RS2. RS1 is used by default when loading
the value of most register file references. RS2 is only initially
used for the second register value associated with a binary
operation and for a register value in an indirect jump. Sec-
ond, the compiler can rename OPER2 to OPER1 when OPER2
is set by an integer addition operation.

In order to mitigate false dependencies, we rename the live
range starting from the selected ready effect to be scheduled
to the last use of the internal register within the remaining
unscheduled effects of the block. Thus, the live range to be
renamed cannot be live leaving the block being scheduled.
Likewise, renaming is not performed if the effect cannot be
placed higher in the set of scheduled instructions than with-
out renaming. Note that all of the effects that reference
the register to be renamed in the live range have to also be
tested to ensure they are still legal for the renaming to be
committed since the restricted SP datapath does not allow
all internal registers to be used with all operations. Register
renaming is simpler with a conventional ISA since typically
a register in an instruction can always be replaced by a dif-
ferent register of the same type.

Figure 7(e) shows the instructions after performing re-
naming when scheduling effects. After effects (1) and (4)
have been scheduled, the compiler is able to schedule ef-
fects (6) and (8) earlier by renaming the internal registers
they set to OPER1 and RS2, respectively. So for this exam-
ple performing register renaming decreases the number of
instructions in the basic block from five to four.

If after internal SP register renaming there still is a false
dependence preventing the SP effect from being placed higher
in the set of scheduled instructions, then the compiler at-
tempts to rename the blocking live range (already scheduled)
by using a copy register. The compiler copies an internal reg-
ister to CP1 or CP2 and then replaces the remaining uses in
the live range of the internal register with the CP register.
Renaming by copying a value is less desirable than conven-
tional renaming as there are additional costs for copying a
value. The copy requires an extra instruction effect, and the
CP registers are callee-save. We currently only copy to a
CP register if the CP register has already been used within
the function (will already be saved and restored). Due to
a lack of a good heuristic to be able to predict when the
use of a copy will provide a benefit, the compiler performs
the scheduling of the block twice, once without copy renam-
ing and once with copy renaming. The version with copy
renaming is only committed if it reduces the number of in-
structions within the block.

Figure 8 shows an example where a copy register is used
to avoid a false dependence. Figure 8(a) shows instructions
scheduled without performing copy renaming. The SE=12;
effect cannot be moved higher in the block due to the antide-

pendence with the OPER1=0PER1>>SE; effect. Figure 8(b)
shows instructions scheduled when copy renaming is per-
formed. The extra CP1=SE; effect is placed after the point
where SE is set in the scheduled instructions. Now the
SE=12; effect can placed earlier, which in turn enables other
effects that have dependences on SE to be placed earlier.

..; SE=16; ..; SE=16;
e ...; CP1=SE;
OPER1=LV<<SE; OPER1=LV<<CP1; SE=12;

OPER1=OPER1>>SE; SE=12;

OPER1=OPER1>>CP1l; OPER2=SE+RS2; SE=4;
OPER2=SE+RS2; SE=4; ..

(a) Scheduled
Instructions

(b) Scheduled Instructions
with Copy Renaming

Figure 8: Example of Scheduling Using Copy Renaming

Because the placement of the PTB effect determines when
the branch will occur, and the placement of the SEQ effect
determines the address that will be stored in the SEQ regis-
ter, these effects must be placed at specific positions within
the block. Both of these types of effects are removed before
scheduling and then placed in the appropriate positions af-
terwords. Figure 7(f) illustrates the placement of the PTB
and SEQ effects. While both the PTB and SEQ effects have
no dependences with other instructions, there are still some
complications that have to be addressed since there may not
be space or an available template that allows these effects to
be placed with an existing instruction. When the compiler
cannot place the SEQ effect in the last instruction within a
basic block, then it simply adds the SEQ effect as an ad-
ditional instruction. When the compiler cannot place the
PTB effect in the second to last instruction within a basic
block, it tries to move other effects in that instruction to
the last instruction in an attempt to open up a slot for the
PTB effect. If the compiler is unsuccessful, then it simply
inserts the PTB effect as a separate instruction before the
last instruction.

3.2.2 Scheduling Effects across Basic Blocks

Our cross-block scheduling algorithm processes the blocks
in the order of innermost loops first, and repeatedly pro-
cesses the blocks in the function until no cross block schedul-
ing changes can be performed. For each block the algorithm
attempts to move effects into available slots of its predeces-
sor blocks. The scheduler does not move an effect into a
predecessor block if that block is at a deeper loop nesting
level to avoid repetitively performing an effect whose result
will only be used after the loop. After moving effects out of
a block, the effects in the block are then rescheduled since
the newly available empty slots may allow the number of
instructions in the block to decrease. If the number of in-
structions in the current block increased after rescheduling
the block (which can infrequently occur due to the use of
a greedy scheduling algorithm), then the instructions in the
block and its predecessor blocks are restored.

Figure 9 shows an example of scheduling instructions across
basic blocks. Figure 9(a) shows the source of a C for loop
with an if statement and Figure 9(b) depicts the corre-
sponding SP instructions before scheduling the effects, where
each of the instructions in the loop are numbered. The first
block in the loop has a label of L2 and consists of effects
(1) to (4), the second block in the loop consists of the single
effect (5), and the third block in the loop has a label of L6
and consists of effects (6) to (9).

SE=4;

RS2=r[3];

SEQ=PC+1;

L2:

) LV=R[CP1];

) OPER1=CP2<LV;

) PTB=b TARG;

) PC=OPER1:0,TARG(L6);
) CP2=LV;

L6:

(6) OPER2=CP1+SE;

(7) CP1=0PER2;

(8) PTB=b SEQ;

(9) PC=OPER2!RS2,SEQ(L2);

G W N e

(
(
(
(
(

(a) Source Code (b) Instructions before Scheduling

SE=4; SE=4;
RS2=r[3]; SEQ=PC+1; RS2=r[3]; SEQ=PC+1;
L2: L2:

LV=R[CP1]; LV=R[CP1]; OPER2=CP1+SE;

OPER1=CP2<LV; PTB=b TARG;
PC=OPER1:0, TARG (L6) ;

OPER1=CP2<LV; PTB=b TARG;
PC=OPER1:0, TARG (L6) ;

CpP2=LV; CP2=LV; OPER2=CP1+SE;
L6: L6:

OPER2=CP1+SE; PTB=b SEQ; CP1=0PER2; PTB=b SEQ;
CP1=0OPER2; PC=0PER2!RS2, SEQ(L2) ; PC=0PER2!RS2, SEQ(L2) ;

(c) After Basic Block (d) After Initial Cross

Scheduling Block Scheduling
- SE=4;
RS2=r([3]; SEQ=PC+1; OPER2=CP1+SE;
L2:
LV=R[CP1];
OPER1=CP2<LV; PTB=b TARG;
PC=OPERL:0, TARG (L6) ;
CP2=LV;
L6:
CP1=OPER2; PTB=b SEQ;

PC=0PER2!RS2, SEQ (L2) ; OPER2=CP1+SE;

(e) After Further Cross Block Scheduling

e SE=4;

RS2=r[3]; SEQ=PC+1; LV=R[CP1]; OPER2=CP1+SE;
L2

OPER1=CP2<LV; PTB=b TARG;

PC=OPER1:0, TARG (L6) ;

CP2=LV;
L6

CP1=0OPER2; PTB=b SEQ;

PC=OPER2!RS2, SEQ(L2); LV=R[CP1];

(f) After Aggressive Cross Block Scheduling

OPER2=CP1+SE;

Figure 9: Example of Scheduling Effects across Basic Blocks

Figure 9(c) contains the effects after scheduling within
basic blocks. There are three instructions in the first loop
block, one in the second loop block, and two in the third
loop block. All of the effects in the first and third loop
blocks are constrained by true dependences except for the
PTB assignments that have to placed in the instruction pre-
ceding the ToC. Figure 9(d) presents the effects after initial
cross block scheduling. Effect (6) is moved to both of its
predecessor blocks and due to lack of conflicts is placed in
the first instruction within each of these basic blocks. After
moving effect (6) out of the third loop block, effect (7) is
then moved up one instruction within the third loop block.
Figure 9(e) displays the effects after the next step in cross
block scheduling. Effect (6) in the second loop block is re-
moved as its effect is redundant since CP1 and SE is not
updated between the two sets of OPER2 in Figure 9(d). Ef-
fect (6) in the first loop block is also moved into both the
loop preheader and the third loop block, which is referred
to as a loop tail since it has a transition back to the loop
header. Effect (6) is placed in the same instruction as effect
(9) due to the antidependence effect (6) has with effect (9).

Figure 9(f) displays the effects after aggressively applying
cross block scheduling, which aggressively moves effects in
two ways. If a predecessor block is a loop preheader and
the current block is the header for the same loop, then the
compiler allows effects to be moved into instructions to the
preheader block. First, the compiler moves an effect from
the loop header to both the preheader and in available slots
of the tail(s) of the loop even when the effect requires a new
instruction at the end of the preheader as long as the num-
ber of instructions in the loop header is decreased. Creating
multiple new instructions in a loop preheader can lead to
a small increase in code size. Second, load and multi-cycle
effects are allowed to be moved to both the loop preheader
and the loop tail from the header as long as a terminating
exception can be guaranteed not to occur due to the trans-
formation. The effect moved to the loop tail will be executed
one extra time on the last loop iteration, but such a transfor-
mation is a good tradeoff when the number of instructions
in the loop header is decreased. In the example effect (1) is
moved into both the preheader and the loop tail (third loop
block). Effect (1) is placed in the same instruction as the
branch since it has a true dependence with effect (7). Our
effect scheduler safely ensures that a load with a constant
stride of at most eight bytes will not cause a terminating ex-
ception when the memory reference is to the run-time stack
or to a global data area by ensuring that the application
will not reference a new page that causes an access viola-
tion. In the example the scheduler determines that effect
(1) has a constant stride of four bytes. The loop header is
decreased by one instruction by performing this transforma-
tion. Note this transformation would have still been applied
even if effect (1) had to be added as a separate instruction
in the preheader since the number of instructions in the loop
header was decreased.

4. EVALUATION

This section presents an experimental evaluation of the
SP architecture including a description of the experimental
setup and results for performance, code size, and an estima-
tion of the energy savings achieved by static pipelining.

4.1 Experimental Setup

We have ported the VPO compiler [5] to the SP proces-
sor. We selected the VPO compiler as it uses register trans-
fer lists (RTLs) for its intermediate representation, which
is at the level of machine instructions. A low-level repre-
sentation is needed for performing code improving transfor-
mations on SP generated code. The C front end used is
LCC [6] and is combined with a middleware process that
converts LCC’s output format into the RTL format used by
VPO. We use the 17 benchmarks shown in Table 1 from the
MiBench benchmark suite [7], which is a representative set
of embedded applications. We extended the GNU assembler
to assemble SP instructions and implemented a simulator
based on the SimpleScalar in-order MIPS [8]. In order to
avoid having to compile all of the standard C library and
system code, we allow SP code to call functions compiled
for the MIPS in our simulator. Over 90% of the instructions
executed are SP instructions.

For the MIPS baseline, the programs were compiled with
the original VPO MIPS port with all optimizations enabled
and run through the same simulator, as it is also capable
of simulating MIPS code. We extended the simulator to

Table 1: Benchmarks Used

Category Benchmarks

automotive | bitcount, gsort, susan
consumer jpeg, tiff

network dijkstra, patricia

office ispell, stringsearch
security blowfish, rijndael, pgp, sha
telecom adpcm, crc, fft, gsm

include a simple bimodal branch predictor with 256 two-
bit saturating counters and a 256-entry branch target buffer
(BTB). The BTB is only used for MIPS code as it is not
needed for the SP. More information on the simulation in-
frastructure can be found in our previous work [1].

When scheduling effects, the compiler can use one of three
types of template sets. 32-Templates indicates that the com-
piler restricts scheduling effects to use the 32 templates that
were produced by the template selector shown in Figure 6.
For each of the 17 applications, we selected templates based
on a profile generated from the compilation of the other 16
applications so that the profile used for the compilation of
each application would not be affected by the application
itself. Pool-of-Templates means the compiler could use any
possible template that fits in the instruction formats shown
in Figure 4 as well as complying with the structural limita-
tions (e.g., at most one memory operation per instruction).
Note that only 32 templates can actually be used due to
the 5-bit ID field used to indicate the combination of effects
for each template. No-Templates specifies that the full 81-
bit instruction format was used to allow any combination of
effects that abides by the SP structural limitations.

4.2 Results

Each of the graphs in this section represent the ratio be-
tween SP and MIPS. A ratio less than 1.0 means that the
SP has reduced the value, while a ratio over 1.0 means that
the SP has increased the value. The ratios rather than the
raw numbers are averaged to weight each benchmark evenly
rather than giving greater weight to those that run longer.
When a given benchmark had more than one simulation as-
sociated with it (e.g., jpeg has both encode and decode simu-
lations), we averaged the figures for all of its simulations and
then used that figure for the benchmark to avoid weighing
benchmarks with multiple executions more heavily.

m Execution_Time = Code_Size

o & © M
s £ & £ E
3

0.
Figure 10: Normalized Execution Time and Code Size
Using 32-Templates

Normalized
o ° o
3 Y © -

@

peg
dael

jkstra
ispell
patricia
gsort
susan

ij

i
d
rijng

adpem
bitcount
blowfish

arith mean

stringsearch
geom mean

Benchmarks

m Serial 1 m Serial
m DDG = DDG
= Renaming m Renaming
= Copy o Copy

o CBS o CBS

o
©
L

O Aggressive O Aggressive

Normalized Execution Time
Normalized Code Size
o
©

Arithmetic ~ Geometric Arithmetic ~ Geometric

Means Means

Figure 11: Normalized
Execution Time Using
Pool-of-Templates

Figure 12: Normalized
Code Size Using
Pool-of-Templates

Figure 10 contrasts execution time and code size, as com-
pared to the MIPS baseline. For this graph we used 32-
Templates for scheduling effects. On average there was an
11.2% decline in execution cycles and a 10.7% decrease in
code size. The execution cycles had a larger variance than
the code size as small differences in the kernel loops of an
application can cause a significant impact on performance.
Only four benchmarks had execution time increases and only
one benchmark had a code size increase. On average, the
execution time decline was slightly larger than the code size
decrease, which is not surprising given that there were sev-
eral SP optimizations applied to innermost loops.

Figures 11 and 12 illustrate the impact of the different
scheduling options. Serial represents scheduling effects in
the order of the original unscheduled instructions within
each basic block, which was the technique used in previ-
ous SP work [9, 10, 1]. DDG indicates selecting effects from
a ready set based on the DDG (see Figure 7(b)-(d)). All
of the remaining options use DDG and the other options
specified after DDG up to and including the current option.
Renaming means that renaming of live ranges of RS1 to
RS2 or OPER2 to OPER1 when set for integer additions was
also performed (see Figure 7(e)). Copy denotes that renam-
ing by copying a value to a copy register was also applied
(see Figure 8). CBS implies that cross block scheduling of
effects was utilized (see Figures 9(d) and (e)). Aggressive
signifies that aggressive techniques were used during cross
block scheduling (see Figures 9(f)).

In order to isolate the impact of a scheduling option on
compiled code from the impact of the selected SP templates,
the results depicted in Figures 11 and 12 were produced by
compiling the benchmarks with the Pool-of- Templates as de-
scribed in Section 4.1. Evaluating a single benchmark using
32-Templates may introduce one of two problems. First, if
the template set is selected with profile data from a single
scheduling option, then the template set is slightly biased
towards that option. Second, if a different template set is
selected for each scheduling option, then the change seen
between options cannot be attributed solely to the sched-
uler. By using the Pool-of-Templates, we both avoid bias
and highlight the contributions of the individual scheduling
optimizations, while maintaining the constraint that all SP
instructions must fit within a 32-bit template format.

Each scheduling option provided some benefit on average.
Figure 11 shows how execution cycles are affected, as com-
pared to the MIPS baseline. Selecting instructions from a

m 32-Templates m Pool-of-Templates 0 No-Templates

0.9 +

0.8

Normalized Averaged Execution Time

07 -
Serial DDG Renaming Copy cBS Aggressive

Compiler Optimization

Figure 13: Performance Associated with Using Different
Template Restrictions

ready set from the DDG, conventional renaming of internal
registers, and performing cross block scheduling (CBS) pro-
vided the most benefit over serial scheduling. In particular,
CBS provided the most benefit, which shows the importance
of scheduling SP effects across control-flow operations. The
use of copy renaming did not provide much benefit for two
reasons. First, the compiler did not apply this renaming un-
less a copy register was already used in the function as saving
and restoring of registers have already been applied before
scheduling of effects. Second, when the compiler did already
use copy registers, they often were already live at the point
where copy renaming would have been useful. Determining
the best number of copy registers to have in the SP architec-
ture and whether or not all copy registers should be callee
save should be investigated in the future. Aggressive appli-
cation of cross block scheduling also did not provide much
benefit. More extensive analysis to determine when an oper-
ation is safe to speculatively execute in a predecessor block
may provide additional benefits. However, performing this
analysis at the level of SP instructions is challenging.

Figure 12 shows the impact on code size, as compared to
the MIPS baseline. To isolate the impact on code size from
the impact of selecting 32 templates the presented results
are generated the same way as for the execution time using
the Pool-of-Templates. All of the options provided bene-
fits, with the exception of aggressive cross block scheduling,
which was expected as these techniques introduce additional
instructions to move effects into loop preheaders.

Figure 13 shows how well our template selection process
performs. The 382-Templates, Pool-of-Templates, and No-
Templates legends indicate the different sets of templates
that can be used during effect scheduling as described in Sec-
tion 4.1. 32-Templates, which was also used for Figure 10,
is the most restrictive and hence provided the least benefit.
Pool-of-Templates, which was used to generate Figures 11
and 12, provides more flexibility as any possible combina-
tions of effects that fits within the formats shown in Figure 4
can be used for an instruction. No-Templates is the most
flexible as only SP structural limitations apply. The results
show that our template selection process chooses 32 tem-
plates that provides close to the benefit of using the entire
pool of possible templates. However, there is a significant
improvement in performance when not using any templates.
Thus, the use of a wider instruction format can provide sig-
nificant performance benefits and we describe how such ben-
efits may be obtained in Section 6.

4.3 Hardware Implementation

We also created an RTL implementation of the SP in or-
der to accurately model its area, performance, and power
usage. This model was compared to an RTL implementa-
tion of a traditional 5-stage pipeline capable of executing
the OpenRISC instruction set. Both models are capable of
executing the integer-only subset of their respective archi-
tectures, and use identical caches, adders, multipliers, and
dividers. These models were synthesized to gates for a low-
power 65 nm technology by ST Microelectronics.

The area for each synthesized pipeline is shown in Table 2.
The SP has a smaller area primarily due to the lack of a
BTB. Additionally, the SP’s control logic is slightly smaller,
due to the simplicity of the pipeline and reduced instruction
decoding logic. On the other hand, the datapath area is
significantly larger due to the large number of multiplexers
required to shuttle values between registers and functional
units. The SP also has an additional 32-bit adder not found
in the OpenRISC, which accounts for the additional func-
tional unit area.

Table 2: Pipeline Area Results

Component OpenRISC | Static Pipeline
L1-IC 459406 459427
L1-DC 497640 496119
Pipeline 102828 52277
Control 4864 2970
Datapath 13625 17408
Functional Units 12411 13117
BPB 1152 1152
BTB 53117 —
Register File 17651 17626
Miscellaneous 8 4
Miscellaneous 3544 3197
Total Area 1063420 1011022

After synthesis, the netlists were simulated using a subset
of the MiBench suite to gather switching statistics for the
design. This information was fed into Synopsys Design Com-
piler to calculate power consumption for these benchmarks.
Since support for floating-point operations adds significant
complexity to processors, they were not used in this study.
Thus, the benchmarks in the MiBench suite that use floating
point were not included. The simulator used in this study
does not support executing both SP instructions and MIPS
instructions, since it realistically simulates the actual hard-
ware. However, this was not a problem as the benchmarks
have been modified to remove all uses of system calls.

Figure 14 shows the execution times in cycles for both the
SP and the OpenRISC on the integer subset of the MiBench
suite. On average, the SP performs nearly 7% better than
the OpenRISC pipeline. Most of the improvement comes
from the change in IPC, from 0.77 for the OpenRISC, to
0.95 for the SP. The SP is able to achieve this higher IPC
for several reasons. First, the SP does not need to stall due
to load data hazards. Second, the SP has fewer branch mis-
predictions because it can always provide the correct branch
target without using a BTB. Third, when a branch is mis-
predicted, the penalty is lower due to a shorter pipeline.
Additionally, the SP requires 1% fewer instructions to com-
plete the same work, as shown in Figure 14.

Figure 15 shows the power used by each processor. The
power for each processor is broken down into the following
components: Pipeline (control and datapath), L1 instruc-
tion cache (SRAMs and controller), L1 data cache (SRAMs
and controller), and Miscellaneous (cache arbiter, etc.). Most

m Execution_Time = Code_Size

Normalized

stringsearch

patricia
qsort
sh

bitcount
average

blowfish

Benchmarks

Figure 14: Normalized Execution Time and Code Size

Power (mW)

cre

adpcm
bitcount
blowfish
dijkstra
patricia
strsearch
average

W SP Pipeline ® SPLiInst ® SPL1Data m SP Misc
® OR1KPipeline @ OR1KL1Inst O OR1KL1Data O OR1K Misc

Figure 15: Processor Power

significantly, the L1 instruction cache power usage is much
higher for the SP. This is explained by the higher IPC found
in the SP. The increase in instruction cache power does not
completely undo the power saved by the SP, which shows an
average total core power reduction of nearly 2%.

Figure 16 breaks down the power used by each subcompo-
nent of the pipelines, excluding caches. The pipeline power
for the SP is broken down into the following subcomponents:
SP Register File (register file), SP ALU (adders, multiplier,
divider, and shifter required to implement the FU1 and FU2
effects), SP Datapath (datapath, including internal regis-
ters), SP Control (control, including instruction expander),
and SP BPB (branch prediction buffer). The pipeline power
for the OpenRISC pipeline is broken down into the following
subcomponents: ORIK Register File (register file), OR1K
ALU (adders, multiplier, divider, and shifter), ORIK Dat-
apath (datapath, including internal registers), OR1K Con-

Power (mW)

adpcm
bitcount
blowfish
crc
dijkstra
ipeg
strsearch
average

B SP Register File B SPALU m SP Datapath B SP Control
B SPBPB m OR1K Register File @ OR1KALU @ OR1K Datapath
O OR1K Control & OR1KBTB O OR1K BPB

Figure 16: Pipeline-Only Power

Energy (Relative)

adpcm
bitcount
blowfish
dijkstra
patricia
gsort
sha
strsearch
average

W SP Pipeline ® SPL1Inst m SPL1Data m SP Misc
B OR1KPipeline @ OR1KL1Inst O OR1KL1Data O OR1K Misc

Figure 17: Processor Energy

trol (control, including instruction decoder), OR!1K BTB
(branch target buffer), and OR1K BPB (branch prediction
buffer). The SP pipeline uses less than half the power of the
OpenRISC pipeline. The vast majority of the SP’s power
reduction comes from the removal of the BTB, which uses
over half the power of the RISC pipeline. Additional small
power reductions come from reductions in register file activ-
ity. However, the SP’s datapath power is somewhat higher,
which is primarily due to the number of large multiplexers
required. The ALU power of the SP is also higher, due to
the second adder. The OpenRISC shares a single adder for
both ALU operations and load/store address calculations.
Though power is slightly reduced, the performance im-
provement is more significant, and thus the primary benefit
of the SP is actually performance, and not power reduc-
tion. However, improving performance while using the same
power translates directly into energy savings. Figure 17
shows the energy used by each processor. The slight de-
crease in power usage, combined with the shorter execution
time results in an overall reduction in energy usage of 8.5%.

5. RELATED WORK

SP instructions are most similar to horizontal micro in-
structions [11], however, there are significant differences.
Firstly, the effects in SP instructions specify how to pipeline
conventional operations across multiple cycles. While hori-
zontal micro-instructions also specify computation at a low
level, they do not expose pipelining at the architectural level.
Also, in a micro-programmed processor, each machine in-
struction causes the execution of micro-instructions within
a micro-routine stored in ROM. Furthermore, compiler opti-
mizations cannot be performed across these micro-routines
since this level is not generally exposed to the compiler.
Each micro-routine can be viewed as a conventional instruc-
tion that behaves exactly the same regardless of what op-
erations the preceding and next instructions/micro-routines
perform. The exposed datapath of SP enables optimiza-
tions across consecutive instructions/micro-operations that
eliminates many unnecessary operations that otherwise are
performed. It has been proposed to break floating-point
operations into micro-operations and optimize the resulting
code [12]. However, this approach can result in a signifi-
cant increase in code size. Static pipelining also bears some
resemblance to VLIW [13] in that the compiler determines
which operations are independent. However, most VLIW
instructions represent multiple RISC operations that can be
performed in parallel. In contrast, the SP approach encodes
individual instruction effects that can be issued in parallel,

where most of these effects correspond to an action taken by
a single pipeline stage of a conventional RISC instruction.

There have been other proposed architectures that also
expose much of the datapath to a compiler. One archi-
tecture that gives the compiler direct control of the micro-
architecture is the no instruction set computer (NISC) [14].
Unlike other architectures, there is no fixed ISA that bridges
the compiler with the hardware. Instead, the compiler gen-
erates control signals for the datapath directly. The Flex-
Core processor [15, 16] also exposes datapath elements at
the architectural level for the compiler to control. The de-
sign features a flexible datapath with an instruction decoder
that is reconfigured dynamically at runtime. The transport-
triggered architectures (TTAs) [17] are similar to VLIWs
in that there are a large number of parallel computations
specified in each instruction. TTAs, however, can move val-
ues directly to and from functional unit ports, to avoid the
need for large, multi-ported register files. Likewise, the TTA
compiler was able to perform copy propagation and dead as-
signment elimination on register references. Thus, both the
TTA and the SP avoid many unnecessary register file ac-
cesses. However, the SP backend performs many other op-
timizations that are not performed for the TTA, NISC, and
FlexCore. These additional optimizations include perform-
ing loop-invariant code motion of register file accesses and
target address calculations, allocating live ranges of registers
to internal registers, using a SEQ register to avoid target ad-
dress calculations at the top of a loop, and transforming
large immediates to small immediates. The NISC, Flex-
Core, and the initial TTA studies improve performance at
the expense of a significant increase in code size and were
evaluated using tiny benchmarks. In contrast, static pipelin-
ing focuses on improving energy usage while still obtaining
performance and code size improvements on the MiBench
benchmark suite. An alternative TTA design did achieve
comparable code size and performance compared to a RISC
baseline, but required an intermix of 16-bit and 32-bit in-
structions and the use of internal register queues, which in-
crease the hardware complexity [18].

A prepare-to-branch (PTB) instruction has been previ-
ously proposed, but the use of this feature has previously
required an entire instruction and thus may impact code
size and performance [19]. In contrast, our PTB field only
requires four bits as the target address calculation is decou-
pled from both the PTB field and the point of the transfer
of control.

6. FUTURE WORK

We encode SP instructions in order to attain reasonable
code size, however this does have a negative impact on per-
formance as compared to using a larger instruction format.
In order to address these conflicting requirements, we could
allow both 32-bit and 64-bit instructions in different situ-
ations. Like the Thumb2 instruction set that supports in-
termixing 16-bit and 32-bit instructions [20], we could use
64-bit instructions where a higher number of effects can be
scheduled and 32-bit instructions elsewhere to retain most
of the code size benefits of the smaller instructions. The
design of a high performance, SP processor would likely in-
clude more internal registers, along with more functional
units. This would mean that the instructions would have
additional different types of effects, which means additional
code size tradeoffs.

7. CONCLUSIONS

Static pipelining is designed to explore the extreme of en-
ergy efficient architectural design. It utilizes a fairly radical
and counter-intuitive approach for representing instructions
to provide greater control of pipeline operation. The pri-
mary question about this design is if a compiler can gener-
ate code that is competitive with a more conventional rep-
resentation. The challenges in this research include using
a low-level representation that violates many assumptions
in a conventional compiler, ensuring that transformations
resulted in legal instructions given the restricted datapath,
and in applying instruction scheduling to such a different
target architecture. It was initially unclear how efficiently
we could populate pipeline resources around control-flow in-
structions and if it would be possible to utilize a 32-bit for-
mat for SP instructions. Both of these challenges were re-
solved as described in this paper.

We show in this paper that SP effects can be scheduled
in conventional sized 32-bit instructions to produce reason-
able improvements in performance, code size, and energy
usage, as compared to a conventional MIPS baseline. We
demonstrate that the process of selecting templates for legal
combinations of SP effects can be automated and we illus-
trate that a number of scheduling techniques can be applied
to overcome the challenges associated with an SP architec-
ture. With effective effect scheduling, SP architectures may
be a reasonable design alternative for implementing energy
efficient processors.

8. ACKNOWLEDGEMENTS

We appreciate the comments provided by the anonymous
reviewers of this paper. This research was supported in part
by the US National Science Foundation grants CNS-0964413
and CNS-0915926 and the Korean Ministry of Science, ICT
and Future Planning grant 10041725.

9. REFERENCES

[1] Finlayson, I., Davis, B., Gavin, P., Uh, G., Whalley,
D., Sjalander, M., Tyson, G.: Improving processor
efficiency by statically pipelining instructions. In:
Proceedings of the ACM Conference on Languages,
Compilers, and Tools for Embedded Systems, New
York, NY, USA, ACM (2013)

[2] Baird, R., Gavin, P., Sjidlander, M., Whalley, D., Uh,
G.R.: Optimizing transfers of control in the static
pipeline architecture. In: Proceedings of the ACM
Conference on Languages, Compilers, and Tools for
Embedded Systems, New York, NY, USA, ACM
(2015) 1:1-1:10

[3] Aditya, S., Mahlke, S.A., Rau, B.R.: Code size
minimization and retargetable assembly for custom
epic and vliw instruction formats. ACM Transactions
on Design Automation of Electronic Systems 5(4)
(2000) 752-773

[4] Aditya, S., Rau, B.R., Johnson, R.: Automatic design
of vliw and epic instruction formats. Technical report,
Hewlett-Packard, HP laboratories Palo Alto (2000)

[5] Benitez, M., Davidson, J.: A portable global optimizer
and linker. ACM SIGPLAN Notices 23(7) (1988)
329-338

[6] Fraser, C.: A retargetable compiler for ansi c. ACM
SIGPLAN Notices 26(10) (1991) 29-43

[7] Guthaus, M., Ringenberg, J., Ernst, D., Austin, T.,
Mudge, T., Brown, R.: Mibench: A free, commercially
representative embedded benchmark suite. In:
Proceedings of the International Workshop on
Workload Characterization, Washington, DC, USA,
IEEE Computer Society (2002) 3-14

[8] Austin, T., Larson, E., Ernst, D.: Simplescalar: An
infrastructure for computer system modeling.
Computer 35(2) (2002) 59-67

[9] Finlayson, I., Uh, G., Whalley, D., Tyson, G.:
Improving low power processor efficiency with static
pipelining. In: Proceedings of the Workshop on
Interaction between Compilers and Computer
Architectures, Washington, DC, USA, IEEE
Computer Society (2011) 17-24

[10] Finlayson, I., Uh, G., Whalley, D., Tyson, G.: An
overview of static pipelining. IEEE Computer
Architecture Letters 11(1) (2012) 17-20

[11] Wilkes, M., Stringer, J.: Micro-programming and the
design of the control circuits in an electronic digital
computer. Mathematical Proceedings of the
Cambridge Philosophical Society 49(02) (1953)
230-238

[12] Dally, W.: Micro-optimization of floating-point
operations. In: Proceedings of the Architectural
Support for Programming Languages and Operating
Systems, New York, NY, USA; ACM (1989) 283-289

[13] Fisher, J.: Vliw machine: A multiprocessor for
compiling scientific code. Computer 17(7) (1984)
45-53

[14] Reshadi, M., Gorjiara, B., Gajski, D.: Utilizing
horizontal and vertical parallelism with a
no-instruction-set compiler for custom datapaths. In:
Proceedings of the IEEE International Conference
Computer Design, Washington, DC, USA, IEEE
Computer Society (2005) 69-76

[15] Thuresson, M., Sjidlander, M., Bjoérk, M., Svensson, L.,
Larsson-Edefors, P., Stenstrom, P.: Flexcore: Utilizing
exposed datapath control for efficient computing.
Journal of Signal Processing Systems 57(1) (2009)
5-19

[16] Sjilander, M., Larsson-Edefors, P.: FlexCore:
Implementing an Exposed Datapath Processor. In:
Proceedings of the International Conference on
Embedded Computer Systems: Architectures,
Modeling, and Simulation. (2013) 306-313

[17] Corporaal, H., Arnold, M.: Using transport triggered
architectures for embedded processor design.
Proceedings of the Integrated Computer-Aided
Engineering 5(1) (1998) 19-38

[18] He, Y., She, D., Mesman, B., Corporaal, H.:
Move-pro: A low power and high code density TTA
architecture. In: Proceedings of the International
Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation, Washington,
DC, USA, IEEE Computer Society (2011) 294-301

[19] Bright, A., Fritts, J., Gschwind, M.: Decoupled
fetch-execute engine with static branch prediction
support. Technical report, IBM Research Report
R(C23261, IBM Research Division (1999)

[20] ARM Ltd.: ARM Architecture Reference Manual
ARMv7-A and ARMv7-R Edition. (2011)

