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ABSTRACT
Aggressive compiler optimizations such as software pipelining and
loop invariant code motion can significantly improve application
performance, but these transformations often require the use of sev-
eral additional registers to hold data values across one or more loop
iterations. Compilers that target embedded systems may often have
difficulty exploiting these optimizations since many embedded sys-
tems typically do not have as many general purpose registersavail-
able. Alternate register structures like register queues can be used
to facilitate the application of these optimizations due tocommon
reference patterns. In this paper, we propose a microarchitectural
technique that permits these alternate register structures to be ef-
ficiently mapped into a given processor architecture and automati-
cally exploited by an optimizing compiler. We show that thismini-
mally invasive technique can be used to facilitate the application of
software pipelining and loop invariant code motion for a variety of
embedded benchmarks. This leads to performance improvements
for the embedded processor, as well as new opportunities forfur-
ther aggressive optimization of embedded systems softwaredue to
a significant decrease in the register pressure of tight loops.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code generation;
compilers; optimization; C.1 [Computer Systems Organization]:
Processor Architectures

General Terms
Experimentation, Performance

Keywords
Register Queues, Software Pipelining, Compiler Optimizations

1. INTRODUCTION
As a consequence of the proliferation of computers in the embed-

ded domains, and the rising complexity of embedded applications,
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designing customized embedded processors is becoming increas-
ingly difficult. Conversely, the design time for embedded proces-
sors, driven by market dynamics, is staying the same, or is infact
decreasing in many cases. One method of reducing the processor
design time in embedded domains is to use general-purpose solu-
tions for the design of the processor. These conventional embedded
processors provide several different designs, and also support ex-
tensions to customize the processor for particular applications. The
ARM processor is a prime example of such a customizable embed-
ded processor. The ARM architecture supports several extensions
such as Thumb [10] and Thumb2 [5], each of which is designed
to support additional instruction set enhancements. As embedded
software complexity increases, the need for highly-tuned compilers
with sophisticated optimizations becomes more apparent.

The ARM is a 32-bit RISC processor architecture with 16 regis-
ters, only 12 of which are typically available for general use. Even
simple tasks can require sequences of instructions that exhaust the
supply of free registers, leading to poor overall performance. Em-
bedded system constraints can often be a limiting factor formany
aggressive compiler optimizations that target improved machine
performance. Techniques like software pipelining [4] require ad-
ditional registers to be effective in eliminating loop inefficiencies.

Dynamic mapping of alternate register structures help to allevi-
ate the shortage of registers by using small additional register struc-
tures to exploit register usage patterns found in code or produced
by compiler transformations. By identifying these exploitable pat-
terns, a processor could utilize its alternate register structures to act
as an enlarged register mechanism which is accessible through the
architected register file. This would allow the compiler greater flex-
ibility during software optimizations and greater controlover the
available registers during register allocation. The overall impact of
this approach can lead to significantly improved performance and a
reduction in application register pressure as well as enable more ag-
gressive compiler optimizations to be performed in areas otherwise
impossible. In this paper we propose a new architectural feature
that would more often enable aggressive compiler optimizations
such as software pipelining and loop invariant code motion on gen-
eral purpose embedded processors. These features will provide a
non-invasive mechanism to reduce register pressure while exploit-
ing common register usage patterns within applications. These new
features enable the compiler to be successful in applying these op-
timizations, leading to improved application performanceand re-
duced register pressure.

2. SOFTWARE PIPELINING
Software pipelining [4] [7] is an optimization which attempts to

extract iterations from a loop enabling high latency operations to be



int A[1000], B[1000], C[1000];
void vmul() {
int I;
for (I=999; I>= 0; I--)

C[I] = A[I] * B[I];
}

Prologue:
-ldr r6, [r2, r5, #2] ; load A[999]
ldr r7, [r3, r5, #2] ; load B[999]
sub r5, r5, 1

-ldr r17, [r2, r5, #2] ; load A[998]
ldr r19, [r3, r5, #2] ; load B[998]
sub r5, r5, 1

-ldr r18, [r2, r5, #2] ; load A[997]
ldr r20, [r3, r5, #2] ; load B[997]
mul r8, r6, r7 ; A[999]*B[999]
mov r6, r17
mov r17, r18
mov r7, r19
mov r19, r20
sub r5, r5, 1

Loop:
ldr r18, [r2, r5, #2] ; load A[I]
ldr r20, [r3, r5, #2] ; load B[I]
mul r21, r6, r7 ; A[I+2]*B[I+2]
str r8, [r4, r5, #2] ; store C[I+3]
mov r6, r17
mov r17, r18
mov r7, r19
mov r19, r20
mov r8, r21
sub r5, r5, 1
bnz Loop

...

Figure 1: Software pipelined vector multiply showing the ex-
tracted loop iterations

computed early in order to remove stalls. Software pipelining was
first employed in VLIW [3] and decoupled architectures [11].This
optimization relies on the availability of extra registersto hold the
values of the loop-carried dependencies across iterations. Finding
enough available registers in conventional embedded processors is
difficult even for extremely simple loops. Figure 1 shows an exam-
ple of a vector multiply with three iterations of the loop extracted
to the prologue. These extracted iterations allow the higher latency
operations such as the multiply to start its calculation early avoid-
ing pipeline stalls incurred by that instruction from the loop.

Two methods that support the register renaming requirements of
software pipelining are modulo variable expansion (MVE) [4] and
the rotating register file (RR) [8, 9]. Modulo variable expansion is
an approach that uses a software based mechanism which renames
each concurrent live variable and provides it with its own name.
Modulo variable expansion increases both the architected register
requirements as well as the eventual size of the pipelined loop to
handle the renaming that has occurred in the loop. A rotatingreg-
ister file is a hardware based register renaming mechanism which
dynamically renames the registers for each instance of a loop vari-
able. Rotating registers provide the ability to access a variable that
was defined several iterations prior to its use. This featureprovides
this ability by creating a level of indirection to the register specifier
which correlates loop iteration count. Rotating registersreduce the
eventual size of the pipelined loop, however they require a signifi-
cant amount of architected registers to generate a schedule.

Both of these methods provide techniques which maintain the
register requirements that software pipelining creates. However
with software pipelining, as the functional unit latenciesgrow, so
do the register requirements needed to apply this optimization. A
single long latency operation in a loop will generate a need for more
interleaved instances of the loop in order to successfully pipeline it.
When this situation occurs, the number of registers available in a
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Figure 2: Register file access

general-purpose embedded processor will often be insufficient to
apply the optimization. One possibility would be to increase the
number of architected registers. This would require a both amodi-
fication of the architecture and a rewrite of the entire ISA tosupport
the encoding of the new registers. Our method enables software
pipelining for a current general-purpose embedded architecture uti-
lizing its preexisting ISA and requiring only minimal modifications
of the hardware.

3. MAPPING OF ALTERNATE REGISTER
STRUCTURES

Conceptually we wish to develop a system which enables aggres-
sive optimizations in reduced register environments. Our method is
to create a new set of registers within the architecture thatwould
significantly increase the amount of available register space while
still remaining virtually invisible to the ISA. To achieve this goal
we applied the use of new register types that mimic the behaviors
of queues to store many data values yet still remain visible through
a single architected register reference.

The first component designed to enable the application config-
urable extension was the value mapping table. The concept ofthe
mapping table in our work is very similar to the rename table that
can be found in many out-of-order processor implementations. Us-
ing a similar concept to the ideas in the Register Connectionap-
proach [3], this table provides a register lookup and corresponding
data structure from which to obtain the data. This structureis a very
quick access map table and is the only redirection required to im-
plement this system. This map table is modified and set as the first
logic that must occur during every access to the architectedregister
file. The size of the table in our design was limited to the number
of registers available in the architected register file, butcould even
be made smaller and faster to access by removing special purpose
registers like the program counter and stack pointer.

The implementation of this map is such that the lookup is based
on the address of the register itself. The table will then provide
a value indicating from which register file the value must be re-
trieved. If there is no value set in the table, then the value will be
retrieved from the specified register in the architected register file.



int A[1000], B[1000], C[1000];
void vmul() {

int I;
for (I=999; I>= 0; I--)
C[I] = A[I] * B[I];

}
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qmap r6, #4, q1
qmap r7, #4, q2
qmap r8, #2, q3
Prologue:

... ; 6 loads and 2 mults
Loop:

ldr r6, [r2, r5, #2] ; load A[I]
ldr r7, [r3, r5, #2] ; load B[I]
mul r8, r6, r7 ; A[I+1]*B[I+1]
str r8, [r4, r5, #2] ; store C[I+3]
sub r5, r5, 1
bnz Loop

Epilogue:
... ; 1 mult and 3 stores

Figure 3: Registers being mapped into queues

Our alternate register files can be defined as a fast access memory
structure that is large enough to hold multiple values, but enforces
a reading and writing semantic to all of the values in it. The read-
ing and writing semantic is used to exploit identifiable reference
patterns that can be found in code or caused by the process of op-
timization. The cost of these additional registers in the hardware
would be similar to the cost of the architected register file in terms
of area and power. We have implemented several different alter-
nate register files which mimic these behaviors. Figure 2 shows the
modifications to an access to the architected register file during ei-
ther the decode or writeback stages of the pipeline. The map check
occurs anytime there is a register file access. From this figure it
can be determined that there is no mapping between R1 and any
of the alternate register structures. If the value contained in regis-
ter R1 was needed in the next stage of the pipeline, the map table
looks up the mapping and the processor accesses the value from the
architected register file. This table shows a mapping between R2
and Q1. This means that any set or use request for R2 will instead
be accessing the alternate register structure Q1. The register queue
enables a single specifier to store significantly more valuesthan a
conventional register file.

Register queues are the primary type of the alternate register file
that we have used in this study. The FIFO reference behavior is
an identifiable pattern frequently found in the code of many appli-
cations and the primary reference pattern constructed in the use of
software pipelining. Register queues in our terms refer to an alter-
nate register file that can hold multiple data items at once using a
single FIFO register and when the structure is referenced the oldest
data item is the value that is returned. In our implementation of
register queues we found it necessary to create different semantics
for certain types of queues that allow us greater flexibilitywhen
using them in different scopes. Queues can use destructive or non-
destructive read semantics, which we examined in our research.

Circular buffers are another type of alternate register structure
used to hold a set of values referenced in a repeated manner. In
many loops that occur in embedded programs the compiler often
finds it helpful to use registers to hold loop-invariant values. Loops

can often use several different registers to store these values. A
circular buffer can be used to store all these values. The pattern of
references can be loaded into the circular buffer prior to entering
the loop. When a read occurs in the register mapped to the circular
buffer, the value will be retrieved from the head of the buffer and
then the read position will be incremented to read the next value.
When the read position has reached the end it will loop back tothe
beginning of the structure and begin providing the value from that
point. Circular buffer register files are a successful mechanism for
storing all of the loop invariant values and providing correct data
throughout the loop.

The modifications to the instruction set architecture were de-
signed so that no changes to the registers or instructions themselves
were made. We require only one addition to the existing ISA: an
instruction which controls both the mapping and unmapping of an
alternate register structure. To accomplish this task, it is assumed
that the semantics of the instruction can take on different mean-
ings depending on what structure it is referencing. We referto this
instruction asqmap. This instruction contains three pieces of in-
formation and performs all of its tasks in the decode stage ofthe
pipeline. The qmap instruction is laid out as follows:

qmap register specifier, mapping semantic, register structure

• register specifier- The register specifier refers to the regis-
ter from the architected register file which will point to an
alternate register structure.

• mapping semantic- The mapping semantic refers to the set
up information for the alternate register structure. In thecase
of non-destructive read queues, this sets the position at the
end of the queue.

• register structure- The register structure specifier itself is
numbered similarly to the architected register file.

An application of this system is demonstrated in Figure 3. Inthis
example the vector multiply from Figure 1 is modulo scheduled
and the latency is spread over three extracted iterations. The three
qmap instructions map three different loop carried dependencies
into queues.

4. ENHANCING OPTIMIZATIONS
Our proposed application configurable processor is an extension

to a conventional embedded processor that enables the configura-
tion of the register file to support the reference patterns ofan ap-
plication. A register queue is a register file structure thatcan take
advantage of FIFO behavior within an application. This behavior
is exploited by allowing multiple outstanding writes to thesame
register, while retaining all the values written before thereads oc-
cur. This structure allows a single register specifier to be associated
with multiple live values. Therefore, a single register queue can
replace the sets and uses of many different registers with a single
register mapped into one of these structures. This ability is useful
because quite a few important code optimizations often force reg-
ister accesses into a FIFO pattern, and traditionally rely on extra
registers to be able to avoid spilling values to memory.

Our method of software pipelining uses iterative module schedul-
ing [6], a method in which the loop instructions are reordered based
on dependencies and hardware restrictions to create the pipelin-
able loop. The algorithm we applied first identifies suitableloops
for software pipelining that match specific criteria. Two renam-
ing phases were used in determining which live ranges would be
mapped into a register queue. The first renaming sequence wasper-
formed prior to modulo scheduling. A backup copy of the loop was



foreach innermost loopdo
create priority graph
identify obvious queue candidates
modulo schedule based on priority
identify generate queue candidates
generate prologue code
generate epilogue code
find available registers for mapping
foreachmapping that requires a registerdo

while conflictsdo
identify and resolve possible register conflicts
associate an available register with mapping

resolve memory offset conflicts
insert mapping code into prologue and epilogue
if successfulthen

write generated software pipelined code over old loop
else clear generated code

Figure 4: Queue identification algorithm

created and any instructions that had a latency greater thanthe iter-
ation interval of the loop would have its live range renamed to our
new register type. This new register type would disable the com-
piler’s register analysis optimizations from incorrectlyidentifying
our modified RTLs as dead and removing them. The second re-
naming occurs after scheduling has been applied and the restof the
newly formed loop carried dependencies could be identified to be
promoted to a queue. The next step uses iteration calculations that
were determined during loop scheduling to generate a prologue and
epilogue for the newly formed kernel. Having previously replaced
the loop carried live ranges with our own custom register type; we
are then able to identify registers to map into queues to contain the
reference behaviors. The pseudocode for applying registers queues
to modulo scheduling is provided in Figure 4.

5. RESULTS
Using the SimpleScalar [2] simulation environment we were able

to conduct our experiments using several different processor setups
with varying latencies. The results were collected using the cycle-
accurate simulatorsim-outorderconfigured to the specifications of
the ARM processor. We used the VPO [1] compiler backend ported
for the ARM ISA. The compiler had to be modified to be able to
support the use of different register types. Our preliminary tests
were performed on a simple in-order ARM processor with added
feature support for our alternate register structures.

We obtained our first group of results using several DSP bench-
mark kernels several of which from the DSPstone [15] suite. We
measured the steady state performance of each loop. Figure 5de-
picts the percent difference in performance for software pipelin-
ing with register queues versus the base loop which could notbe
pipelined without queues because of register pressure. Ourprelim-
inary results shows in Figure 5 that as the latency grows for multi-
plies, we are able to successfully pipeline the benchmark loops and
realize up to a 60% improvement in performance. The increasein
the multiply latency is a realizable factor in low power embedded
design. Many low power multipliers trade off extra cycles inorder
to improve power. These improvements do come at the cost of in-
creased code size of the loop up to roughly 300% in some cases,
which is due to the prologue and epilogue code needed by software
pipelining to align the loop iterations. Figure 6 shows the perfor-
mance savings as the load latencies rise. These loops often provide
more high latency instructions to schedule out of the loop. In many
of the lower latency tests, iterative modulo scheduling wasable to
generate a loop that did not need a prologue or epilogue. In many

Figure 5: Scaling multiply latency

Figure 6: Scaling load latency

of our benchmarks we found that by applying software pipelining
with register queues we are able to circumvent increasing register
pressure in many simple cases by as much as 50 % for the ARM.
This means that software pipelining would require 50% of theus-
able registers for the ARM in order to even be applied.

The performance loss in Fir (with a multiply latency of 32) in
Figure 5 is due to the scheduling of a loop carried inter-instruction
dependency. Table 1 shows the relationship between the original
number of registers found in a few of the loops which were soft-
ware pipelined and the number of registers needed to pipeline the
loops using our alternate register structures. The final column in
the table shows the number of registers which the alternate register
structures consumed. The middle row of the table shows the num-
ber of registers needed for software pipelining when used incon-
junction with register queues. The total number of registers needed
to pipeline each of these loops is the summation of the secondand
third column for each row.

6. RELATED WORK
There have been several approaches for reducing the register

pressure caused by software pipelining. These methods for reduc-
ing register pressure work under similar constraints as with our reg-
ister queues, however register queues offer much more flexibility
without the cost of significantly modifying the ISA.

The register connection approach introduced the idea of adding
an extended set of registers to an ISA as a method of reducing reg-
ister pressure in machines with a limited number of registers. This
method employed a mapping table to associate a register in the reg-
ister file with one of the extended registers. The map table used a
one to one mapping for each register in the extended set. The reg-
ister connection approach worked well for remapping scalars and
various other data, but the overhead of mapping became expensive
when using arrays and other large data structures.



Table 1: Architected Register Utilization
Benchmark Original After SWP Mapped
Loads 8x4 Register Savings Using Register Structures

N Real Updates 10 10 6
Dot Product 9 9 4
Matrix Multiply 9 9 4
Fir 6 6 4
Mac 10 8 10
Fir2Dim 10 10 4

Loads 16x4 Register Savings Using Register Structures
N Real Updates 10 10 6
Dot Product 9 9 4
Matrix Multiply 9 9 4
Fir 6 6 4
Mac 10 8 12
Fir2Dim 10 10 4

Loads 32x4 Register Savings Using Register Structures
N Real Updates 10 10 9
Dot Product 9 9 8
Matrix Multiply 9 9 8
Fir 6 6 12
Mac 10 8 18
Fir2Dim 10 10 8

Register queues [12] is the approach that is most similar to ours.
Using register queues to exploit reference behaviors foundin soft-
ware pipelining showed that this method is effective in aiding the
application of these optimizations. Exploiting the FIFO reference
behavior that is caused by software pipelining, register queues was
an effective means of holding the extra values across iterations and
this significantly reduced the need to rename registers. However,
this method limits the types of loops that can be effectivelysoft-
ware pipelined because of constraints set by the reference behavior
of the queues themselves. Our method described in this paperis an
automation of this system with the addition of several toolswhich
aid us in employing register queues to software pipelined loops.

Rotating registers [8, 9] is an architectural approach for more
effectively using registers to hold loop carried values than simple
register renaming. A single register specifier can represent a bank
of registers which will act as the rotating register base. Use of ro-
tating registers is similar to the renaming that would typically occur
in software, but instead is all accomplished in the hardware. This
method requires that each of the registers in the rotating bank be an
accessible register, which in a conventional embedded architecture
would require a larger specifier for a register that may not bepossi-
ble in the given ISA. Application configurable processors provide
much of the flexibility of the rotating register file, with only a small
added cost for each access.

The WM machine [14, 13] is a completely different concept
of the traditional machine that utilizes FIFO queues that operate
independently and asynchronously to manage the many different
aspects of the traditional pipeline. This system is designed as a
series of connected queues that manage the different functions of
the pipeline. This paper introduced the concept of using queues in
place of registers as a quick storage mechanism.

7. CONCLUSIONS
Our work has shown that using a dynamic mapping of alternate

register structures can greatly reduce the register restrictions that
inhibit many compiler optimizations in embedded systems. This
enables much more agressive optimizations to be performed on the
loop kernels that make up a majority of the execution time in em-
bedded applications. Register mapping support can offer todata
storage what extensible instruction sets offer to ALU operation; in
many cases the application of a customized structure can improve

execution efficiency with little or no increase in microarchitectural
complexity. This approach to register file organization hasbeen de-
veloped with only minor modifications to the instruction setand can
be employed on almost any existing processor design. Our research
has also shown that it is possible to modify compiler optimizations
to automate the allocation and modification of these alternate reg-
ister structures to make existing optimizations more effective. Our
future work will focus on different alternate register filesto exploit
other identifiable reference behaviors caused by code optimizations
and to aid the compiler in identifying these situations for the opti-
mizations which are available.
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