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ABSTRACT

Aggressive compiler optimizations such as software pifiedj and
loop invariant code motion can significantly improve apgiion
performance, but these transformations often requireshefisev-
eral additional registers to hold data values across oneog taop
iterations. Compilers that target embedded systems maw bfive
difficulty exploiting these optimizations since many emthed sys-
tems typically do not have as many general purpose registails
able. Alternate register structures like register queaeshe used
to facilitate the application of these optimizations duedmmon
reference patterns. In this paper, we propose a microaathital
technique that permits these alternate register strigtorée ef-
ficiently mapped into a given processor architecture andraati-
cally exploited by an optimizing compiler. We show that timisni-
mally invasive technique can be used to facilitate the apfibn of
software pipelining and loop invariant code motion for aietyr of
embedded benchmarks. This leads to performance improiemen
for the embedded processor, as well as new opportunitiefufor
ther aggressive optimization of embedded systems softshaado
a significant decrease in the register pressure of tightsloop
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1. INTRODUCTION

As a consequence of the proliferation of computers in theseimb
ded domains, and the rising complexity of embedded appiicsit
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designing customized embedded processors is becomingasicr
ingly difficult. Conversely, the design time for embeddedqas-
sors, driven by market dynamics, is staying the same, orfiadn
decreasing in many cases. One method of reducing the poocess
design time in embedded domains is to use general-purpise so
tions for the design of the processor. These conventionbedaed
processors provide several different designs, and alsposupx-
tensions to customize the processor for particular apjmics. The
ARM processor is a prime example of such a customizable embed
ded processor. The ARM architecture supports several €xtes
such as Thumb [10] and Thumb2 [5], each of which is designed
to support additional instruction set enhancements. Aseeladxd
software complexity increases, the need for highly-turedpilers
with sophisticated optimizations becomes more apparent.

The ARM is a 32-bit RISC processor architecture with 16 regis
ters, only 12 of which are typically available for generat uEven
simple tasks can require sequences of instructions thatusxlhe
supply of free registers, leading to poor overall perforogarEm-
bedded system constraints can often be a limiting factonfany
aggressive compiler optimizations that target improvedthire
performance. Techniques like software pipelining [4] lieg@d-
ditional registers to be effective in eliminating loop ifieiencies.

Dynamic mapping of alternate register structures helplavial
ate the shortage of registers by using small additionastegstruc-
tures to exploit register usage patterns found in code aiyared
by compiler transformations. By identifying these expibie pat-
terns, a processor could utilize its alternate registeictires to act
as an enlarged register mechanism which is accessiblegthithe
architected register file. This would allow the compilerages flex-
ibility during software optimizations and greater contover the
available registers during register allocation. The dVargact of
this approach can lead to significantly improved perforneaand a
reduction in application register pressure as well as ermabre ag-
gressive compiler optimizations to be performed in arehsratise
impossible. In this paper we propose a new architecturalifea
that would more often enable aggressive compiler optintrat
such as software pipelining and loop invariant code motiogen-
eral purpose embedded processors. These features wiltlprav
non-invasive mechanism to reduce register pressure wkplleie
ing common register usage patterns within applicationgs&€mew
features enable the compiler to be successful in applyiesetiop-
timizations, leading to improved application performasmacel re-
duced register pressure.

2. SOFTWARE PIPELINING

Software pipelining [4] [7] is an optimization which attetafo
extract iterations from a loop enabling high latency operstto be



int A[1000], B[1000], C[1000];
void vl () {
int |;
for (1=999; I>=0; I|--)
arr = Al = Bl
Prol ogué:
-ldr r6, [r2, r5, #2] | oad A[999]
ldr r7, [r3, r5, #2] | oad B[ 999]
sub r5, r5, 1
-ldr r17, [r2, r5, #2] ; |oad A[998]
ldr r19, [r3, r5, #2] ; |oad B[998]
sub r5, r5, 1
-ldr r18, [r2, r5, #2] ; load A[997]
Idr r20, [r3, r5, #2] ; |oad B[997]
mul r8, r6, r7 ;o AL 999] B[ 999]
mov r6, rl7
mov r17, r18
mov r7, rl19
mov r19, r20
sub r5, r5, 1
Loop:
ldr r18, [r2, r5, #2] ; load A[l]
Idr r20, [r3, r5, #2] ; load B[I]
mul r21, r6, r7 Al +2] *B[ | +2]
str r8, [r4, r5, #2] store C1+3]
mov r6, rl7
mov r17, r18
mov r7, r19
mov r19, r20
mov r8, r21
sub r5, r5, 1
bnz Loop

Figure 1: Software pipelined vector multiply showing the ex
tracted loop iterations

computed early in order to remove stalls. Software pipetjrvas
first employed in VLIW [3] and decoupled architectures [1This
optimization relies on the availability of extra registéoshold the
values of the loop-carried dependencies across iteratiginsling
enough available registers in conventional embedded psocg is
difficult even for extremely simple loops. Figure 1 shows aars-
ple of a vector multiply with three iterations of the loop exdted
to the prologue. These extracted iterations allow the higgttency
operations such as the multiply to start its calculatioryearoid-
ing pipeline stalls incurred by that instruction from thepo

Two methods that support the register renaming requiresrant
software pipelining are modulo variable expansion (MVB)drd
the rotating register file (RR) [8, 9]. Modulo variable expam is
an approach that uses a software based mechanism whicheenam
each concurrent live variable and provides it with its owmea
Modulo variable expansion increases both the architectgidter
requirements as well as the eventual size of the pipelineg to
handle the renaming that has occurred in the loop. A rotatgg
ister file is a hardware based register renaming mechanischwh
dynamically renames the registers for each instance offavad-
able. Rotating registers provide the ability to access mbba that
was defined several iterations prior to its use. This fegitweides
this ability by creating a level of indirection to the regisspecifier
which correlates loop iteration count. Rotating registeduce the
eventual size of the pipelined loop, however they requirigaifs-
cant amount of architected registers to generate a schedule

Both of these methods provide techniques which maintain the
register requirements that software pipelining createaweéver
with software pipelining, as the functional unit latenc@sw, so
do the register requirements needed to apply this optimizaA
single long latency operation in a loop will generate a needfore
interleaved instances of the loop in order to successfitiglme it.
When this situation occurs, the number of registers aailaba
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Figure 2: Register file access

general-purpose embedded processor will often be insiffi¢d
apply the optimization. One possibility would be to incredke
number of architected registers. This would require a battodi-
fication of the architecture and a rewrite of the entire ISAupport
the encoding of the new registers. Our method enables seftwa
pipelining for a current general-purpose embedded arthite uti-
lizing its preexisting ISA and requiring only minimal modiditions

of the hardware.

3. MAPPING OF ALTERNATE REGISTER
STRUCTURES

Conceptually we wish to develop a system which enables aggre
sive optimizations in reduced register environments. Oethwd is
to create a new set of registers within the architecture whoatd
significantly increase the amount of available registecepahile
still remaining virtually invisible to the ISA. To achievais goal
we applied the use of new register types that mimic the behawvi
of queues to store many data values yet still remain viskbieugh
a single architected register reference.

The first component designed to enable the application config
urable extension was the value mapping table. The conceptof
mapping table in our work is very similar to the rename tahk t
can be found in many out-of-order processor implementatibls-
ing a similar concept to the ideas in the Register Connedajon
proach [3], this table provides a register lookup and cpoading
data structure from which to obtain the data. This strudtiaevery
quick access map table and is the only redirection requareoht
plement this system. This map table is modified and set asr#te fi
logic that must occur during every access to the architaegidter
file. The size of the table in our design was limited to the nemb
of registers available in the architected register file,dmutld even
be made smaller and faster to access by removing speciabgrirp
registers like the program counter and stack pointer.

The implementation of this map is such that the lookup is thase
on the address of the register itself. The table will thervigi®
a value indicating from which register file the value must be r
trieved. If there is no value set in the table, then the valukebe
retrieved from the specified register in the architectedstegfile.



int A[1000], B[1000], C[1000];
void vl () {
int |;
for (1=999; I1>=0; I--)
arr = Al = BlI];

Q1
(251583 | |

Q2
[32]1] [ ] ]

Q3
[3]2] [ [ [ ]

qmap r6, #4, ql

qmep r7, #4, q2

gqmap r8, #2, g3

Pr ol ogue:
... ; 6 loads and 2 nults

Loop:
ldr r6, [r2, r5, #2] ; load All]
Idr r7, [r3, r5, #2] ; load B[I]
ml r8, r6, r7 ;o ALL+1] *B[ | +1]
str r8, [r4, r5, #2] ; store CI+3]
sub r5, r5, 1
bnz Loop

Epi | ogue:
... 3 1 mlt and 3 stores

Figure 3: Registers being mapped into queues

Our alternate register files can be defined as a fast accessmnem
structure that is large enough to hold multiple values, bfbrees
a reading and writing semantic to all of the values in it. Tead-
ing and writing semantic is used to exploit identifiable refee
patterns that can be found in code or caused by the process of o
timization. The cost of these additional registers in thedhare
would be similar to the cost of the architected register fileerms
of area and power. We have implemented several differeet-alt
nate register files which mimic these behaviors. Figure %vshtbe
modifications to an access to the architected register filiaglei-
ther the decode or writeback stages of the pipeline. The magkc
occurs anytime there is a register file access. From thisefigur

can be determined that there is no mapping between R1 and any

of the alternate register structures. If the value conthingegis-

ter R1 was needed in the next stage of the pipeline, the mégp tab
looks up the mapping and the processor accesses the vatughieo
architected register file. This table shows a mapping betvie
and Q1. This means that any set or use request for R2 willadste
be accessing the alternate register structure Q1. Thdeegiseue
enables a single specifier to store significantly more vatlas a
conventional register file.

Register queues are the primary type of the alternate ezdiket
that we have used in this study. The FIFO reference behasior i
an identifiable pattern frequently found in the code of mapglia
cations and the primary reference pattern constructectimsle of
software pipelining. Register queues in our terms refentalter-
nate register file that can hold multiple data items at on@egus
single FIFO register and when the structure is referenoedlttest
data item is the value that is returned. In our implementatb
register queues we found it necessary to create differenqisecs
for certain types of queues that allow us greater flexibilityen
using them in different scopes. Queues can use destructivene
destructive read semantics, which we examined in our relsear

Circular buffers are another type of alternate registarcstire
used to hold a set of values referenced in a repeated mammer. |
many loops that occur in embedded programs the compilen ofte
finds it helpful to use registers to hold loop-invariant \vedulLoops

can often use several different registers to store thesesal A
circular buffer can be used to store all these values. Thenpabf
references can be loaded into the circular buffer prior teramg
the loop. When a read occurs in the register mapped to thalairc
buffer, the value will be retrieved from the head of the bufiad
then the read position will be incremented to read the nelxteva
When the read position has reached the end it will loop batikeo
beginning of the structure and begin providing the valuenftbat
point. Circular buffer register files are a successful maism for
storing all of the loop invariant values and providing cetrdata
throughout the loop.

The modifications to the instruction set architecture weze d
signed so that no changes to the registers or instructienssélves
were made. We require only one addition to the existing ISA: a
instruction which controls both the mapping and unmappiinano
alternate register structure. To accomplish this tasls @ssumed
that the semantics of the instruction can take on differeéam
ings depending on what structure it is referencing. We rieféhis
instruction aggmap. This instruction contains three pieces of in-
formation and performs all of its tasks in the decode stagdef
pipeline. The gmap instruction is laid out as follows:

gmap register specifiermapping semantjeegister structure

e register specifier The register specifier refers to the regis-
ter from the architected register file which will point to an
alternate register structure.

e mapping semantie The mapping semantic refers to the set
up information for the alternate register structure. Indase
of non-destructive read queues, this sets the positioneat th
end of the queue.

e register structure- The register structure specifier itself is
numbered similarly to the architected register file.

An application of this system is demonstrated in Figure 3his
example the vector multiply from Figure 1 is modulo schedule
and the latency is spread over three extracted iterations.tfiree
gmap instructions map three different loop carried depeciés
into queues.

4. ENHANCING OPTIMIZATIONS

Our proposed application configurable processor is an sixten
to a conventional embedded processor that enables the waxfig
tion of the register file to support the reference patternaroép-
plication. A register queue is a register file structure tzat take
advantage of FIFO behavior within an application. This éra
is exploited by allowing multiple outstanding writes to tkeame
register, while retaining all the values written before thads oc-
cur. This structure allows a single register specifier todsmeiated
with multiple live values. Therefore, a single register ggiean
replace the sets and uses of many different registers withgées
register mapped into one of these structures. This abdityseful
because quite a few important code optimizations ofterefoeg-
ister accesses into a FIFO pattern, and traditionally relyextra
registers to be able to avoid spilling values to memory.

Our method of software pipelining uses iterative modulesdcit
ing [6], a method in which the loop instructions are reorddyased
on dependencies and hardware restrictions to create tledirpip
able loop. The algorithm we applied first identifies suitableps
for software pipelining that match specific criteria. Twamaen-
ing phases were used in determining which live ranges woeld b
mapped into a register queue. The first renaming sequenceeras
formed prior to modulo scheduling. A backup copy of the logsw



foreachinnermost looplo
create priority graph
identify obvious queue candidates
modulo schedule based on priority
identify generate queue candidates
generate prologue code
generate epilogue code
find available registers for mapping
foreach mapping that requires a registeio
while conflictsdo
identify and resolve possible register conflicts
L associate an available register with mapping
resolve memory offset conflicts

insert mapping code into prologue and epilogue
if successfuhen

| write generated software pipelined code over old loop
else clear generated code

Figure 4: Queue identification algorithm

created and any instructions that had a latency greatetthieater-
ation interval of the loop would have its live range renanmedur
new register type. This new register type would disable tma-c
piler's register analysis optimizations from incorredtentifying
our modified RTLs as dead and removing them. The second re-
naming occurs after scheduling has been applied and thefremst
newly formed loop carried dependencies could be identifieilet
promoted to a queue. The next step uses iteration calcndatitat
were determined during loop scheduling to generate a puelagd
epilogue for the newly formed kernel. Having previouslylaegd
the loop carried live ranges with our own custom registeetype
are then able to identify registers to map into queues toabotie
reference behaviors. The pseudocode for applying regigterues
to modulo scheduling is provided in Figure 4.

5. RESULTS

Using the SimpleScalar [2] simulation environment we wdile a
to conduct our experiments using several different pragesstups
with varying latencies. The results were collected usirggdycle-
accurate simulatosim-outorderconfigured to the specifications of
the ARM processor. We used the VPO [1] compiler backend dorte
for the ARM ISA. The compiler had to be modified to be able to
support the use of different register types. Our prelimjrasts
were performed on a simple in-order ARM processor with added
feature support for our alternate register structures.

We obtained our first group of results using several DSP bench
mark kernels several of which from the DSPstone [15] suite W
measured the steady state performance of each loop. Figlee 5
picts the percent difference in performance for softwarselm-
ing with register queues versus the base loop which couldeot
pipelined without queues because of register pressurepf@lim-
inary results shows in Figure 5 that as the latency grows fdtim
plies, we are able to successfully pipeline the benchmand@and
realize up to a 60% improvement in performance. The increase
the multiply latency is a realizable factor in low power emited
design. Many low power multipliers trade off extra cycleonder
to improve power. These improvements do come at the cost of in
creased code size of the loop up to roughly 300% in some cases
which is due to the prologue and epilogue code needed by s tw
pipelining to align the loop iterations. Figure 6 shows tlesfor-
mance savings as the load latencies rise. These loops otieid@
more high latency instructions to schedule out of the loapnany
of the lower latency tests, iterative modulo scheduling alale to
generate a loop that did not need a prologue or epilogue. hyma
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of our benchmarks we found that by applying software pipegn
with register queues we are able to circumvent increasigigpter
pressure in many simple cases by as much as 50 % for the ARM.
This means that software pipelining would require 50% ofuke
able registers for the ARM in order to even be applied.

The performance loss in Fir (with a multiply latency of 32) in
Figure 5 is due to the scheduling of a loop carried interriregion
dependency. Table 1 shows the relationship between thmakig
number of registers found in a few of the loops which were-soft
ware pipelined and the number of registers needed to pgdiia
loops using our alternate register structures. The finalroalin
the table shows the number of registers which the alteregjister
structures consumed. The middle row of the table shows the nu
ber of registers needed for software pipelining when usezbim
junction with register queues. The total number of registereded
to pipeline each of these loops is the summation of the seandd
third column for each row.

6. RELATED WORK

There have been several approaches for reducing the registe
pressure caused by software pipelining. These methodgdoicr
ing register pressure work under similar constraints als ot reg-
ister queues, however register queues offer much more ifigxib
without the cost of significantly modifying the ISA.

The register connection approach introduced the idea dhgdd
an extended set of registers to an ISA as a method of reduegng r

jister pressure in machines with a limited number of regist€his

method employed a mapping table to associate a registes et
ister file with one of the extended registers. The map tabéel as
one to one mapping for each register in the extended set. efhe r
ister connection approach worked well for remapping seadad
various other data, but the overhead of mapping became sixpen
when using arrays and other large data structures.



Table 1: Architected Register Utilization
Benchmark [ Original | After SWP | Mapped |

Loads 8x4 Register Savings Using Register Structu

es

N Real Updates 10 10 6
Dot Product 9 9 4
Matrix Multiply 9 9 4
Fir 6 6 4
Mac 10 8 10
Fir2Dim 10 10 4

Loads 16x4 Register Savings Using Register Structyres

N Real Updates 10 10 6
Dot Product 9 9 4
Matrix Multiply 9 9 4
Fir 6 6 4
Mac 10 8 12
Fir2Dim 10 10 4

Loads 32x4 Register Savings Using Register Structres

N Real Updates 10 10 9
Dot Product 9 9 8
Matrix Multiply 9 9 8
Fir 6 6 12
Mac 10 8 18
Fir2Dim 10 10 8

Register queues [12] is the approach that is most similants.o
Using register queues to exploit reference behaviors fouisoft-
ware pipelining showed that this method is effective in ridihe
application of these optimizations. Exploiting the FIF@erence
behavior that is caused by software pipelining, registeugs was
an effective means of holding the extra values across iteisaind
this significantly reduced the need to rename registers. edery
this method limits the types of loops that can be effectiwsiit-
ware pipelined because of constraints set by the referegttavior
of the queues themselves. Our method described in this mper
automation of this system with the addition of several twatsch
aid us in employing register queues to software pipelinegso

Rotating registers [8, 9] is an architectural approach forem
effectively using registers to hold loop carried valuesntkanple
register renaming. A single register specifier can reptesdmank
of registers which will act as the rotating register basee bfsro-
tating registers is similar to the renaming that would tgflicoccur
in software, but instead is all accomplished in the hardwaigs
method requires that each of the registers in the rotating ba an
accessible register, which in a conventional embeddedtacthre
would require a larger specifier for a register that may nqidssi-
ble in the given ISA. Application configurable processorsvite
much of the flexibility of the rotating register file, with gr& small
added cost for each access.

The WM machine [14, 13] is a completely different concept
of the traditional machine that utilizes FIFO queues tharafe
independently and asynchronously to manage the many etiffer
aspects of the traditional pipeline. This system is deslga® a
series of connected queues that manage the different dmsctf
the pipeline. This paper introduced the concept of usingigsién
place of registers as a quick storage mechanism.

7. CONCLUSIONS

Our work has shown that using a dynamic mapping of alternate
register structures can greatly reduce the register céetrs that
inhibit many compiler optimizations in embedded system&isT
enables much more agressive optimizations to be performeioeo
loop kernels that make up a majority of the execution timenmn e
bedded applications. Register mapping support can offeiata
storage what extensible instruction sets offer to ALU ofiera in
many cases the application of a customized structure caroirap

execution efficiency with little or no increase in microatehtural
complexity. This approach to register file organization lbesn de-
veloped with only minor modifications to the instructionaet can
be employed on almost any existing processor design. Oearels
has also shown that it is possible to modify compiler optatians
to automate the allocation and modification of these alterreg-
ister structures to make existing optimizations more ¢iffec Our
future work will focus on different alternate register fitesexploit
other identifiable reference behaviors caused by code @atiions
and to aid the compiler in identifying these situations fu bpti-
mizations which are available.
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