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Abstract—A new generation of mobile applications requires reduced
energy consumption without sacrificing execution performance. In this

paper, we propose to respond to these conflicting demands with an

innovative statically pipelined processor supported by an optimizing

compiler. The central idea of the approach is that the control during
each cycle for each portion of the processor is explicitly represented in

each instruction. Thus the pipelining is in effect statically determined by

the compiler. The benefits of this approach include simpler hardware
and that it allows the compiler to perform optimizations that are not

possible on traditional architectures. The initial results indicate that static

pipelining can significantly reduce power consumption without adversely

affecting performance.

I. INTRODUCTION

With the prevalence of embedded systems, energy consumption has

become an important design constraint. As these embedded systems

become more sophisticated, however, they also require a greater

degree of performance. One of the most widely used techniques

for increasing processor performance is instruction pipelining, which

allows for increased clock frequency by reducing the amount of work

that needs to be performed for an instruction in each clock cycle.

The way pipelining is traditionally implemented, however, results

in several areas of inefficiency with respect to energy consumption

such as unnecessary register file accesses, checking for forwarding

and hazards when they cannot occur, latching unused values between

pipeline registers and repeatedly calculating invariant values such as

branch target addresses.

In this paper, we present an overview of a technique called static

pipelining [6] which aims to provide the performance benefits of

pipelining in a more energy-efficient manner. With static pipelining,

the control for each portion of the processor is explicitly represented

in each instruction. Instead of pipelining instructions dynamically in

hardware, it is done statically by the optimizing compiler. There are

several benefits to this approach. First, energy consumption is re-

duced by avoiding unnecessary actions found in traditional pipelines.

Secondly, static pipelining gives more control to the compiler which

allows for more fine-grained optimizations for both performance and

power. Lastly, a statically pipelined processor has simpler hardware

than a traditional processor which can potentially provide a lower

production cost.

This paper is structured as follows: Section 2 introduces a static

pipelining architecture. Section 3 discusses compiling and optimizing

statically pipelined code. Section 4 gives preliminary results. Section

5 reviews related work. Section 6 discusses future work. Lastly,

Section 7 draws conclusions.

II. STATICALLY PIPELINED ARCHITECTURE

Instruction pipelining is commonly used to improve processor

performance, however it also introduces some inefficiencies. First is

the need to latch all control signals and data values between pipeline

stages, even when this information is not needed. Pipelining also
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introduces branch and data hazards. Branch hazards result in either

stalls for every branch, or the need for branch predictors and delays

when branches are mis-predicted. Data hazards result in the need for

forwarding logic which leads to unnecessary register file accesses.

Experiments with SimpleScalar [2] running the MiBench benchmark

suite [8] indicate that 27.9% of register reads are unnecessary because

the values will be replaced from forwarding. Additionally 11.1% of

register writes are not needed due to their only consumers getting

the values from forwarding instead. Because register file energy

consumption is a significant portion of processor energy, these unnec-

essary accesses are quite wasteful [11] [9]. Additional inefficiencies

found in traditional pipelines include repeatedly calculating branch

targets when they do not change, reading registers whether or not

they are used for the given type of instruction, and adding an offset

to a register to form a memory address even when that offset is zero.

The goal of static pipelining is to avoid such inefficiencies while not

sacrificing the performance gains associated with pipelining.

Figure 1 illustrates the basic idea of our approach. With traditional

pipelining, instructions spend several cycles in the pipeline. For

example, the sub instruction in Figure 1(b) requires one cycle for

each stage and remains in the pipeline from cycles four through seven.

Each instruction is fetched and decoded and information about the

instruction flows through the pipeline, via the pipeline registers, to

control each portion of the processor that will take a specific action

during each cycle. Figure 1(c) illustrates how a statically pipelined

processor operates. Data still passes through the processor in multiple

cycles, but how each portion of the processor is controlled during each

cycle is explicitly represented in each instruction. Thus instructions

are encoded to cause simultaneous actions to be performed that are

normally associated with separate pipeline stages. For example, at

cycle 5, all portions of the processor, are controlled by a single

instruction (depicted with the shaded box) that was fetched the

previous cycle. In effect the pipelining is determined statically by

the compiler as opposed to dynamically by the hardware.

Figure 2 depicts one possible datapath of a statically pipelined

processor. The fetch portion of the processor is essentially unchanged

from the conventional processor. Instructions are still fetched from the

instruction cache and branches are predicted by a branch predictor.

The rest of the processor, however, is quite different. Because

statically pipelined processors do not need to break instructions into

multiple stages, there is no need for pipeline registers. In their place

are a number of internal registers. Unlike pipeline registers, these

internal registers are explicitly read and written by the instructions,

and can hold their values across multiple cycles.

There are ten internal registers. The RS1 and RS2 registers are

used to hold values read from the register file. The LV register is

used to hold values loaded from the data cache. The SEQ register is

used to hold the address of the next sequential instruction at the time

it is written, which is used to store the target of a branch in order to

avoid calculating the target address. The SE register is used to hold

a sign-extended immediate value. The ALUR and TARG registers are

used to hold values calculated in the ALU. The FPUR register is

used to hold results calculated in the FPU, which is used for multi-
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add R2,#1,R3

sub R2,R3,R4

and R5,#7,R3

clock cycle

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

1 2 3 4 5 6 7 8 9

(c) Static Pipelining
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Fig. 1. Traditionally Pipelined vs. Statically Pipelined Instructions

Fig. 2. Possible Datapath of a Statically Pipelined Processor

cycle operations. If the PC is used as an input to the ALU (as a

PC-relative address computation), then the result is placed in the

TARG register, otherwise it is placed in the ALUR register. The CP1

and CP2 registers are used to hold values copied from one of the

other internal registers. These copy registers are used to hold loop-

invariant values and support simple register renaming for instruction

scheduling. Since these internal registers are small, and can be placed

near the portion of the processor that access it, they are accessible at

a lower energy cost than the register file. Because more details of the

datapath are exposed at the architectural level, changes to the micro-

architecture are more likely to result in the need for recompilation.

However this is less critical for embedded systems where the software

on the system is often packaged with the hardware. Because these

registers are exposed at the architectural level, a new level of compiler

optimizations can be exploited as we will demonstrate in Section 3.

Each statically pipelined instruction consists of a set of effects,

each of which updates some portion of the processor. The effects that

are allowed in each cycle mostly correspond to what the baseline five-

stage pipeline can do in one cycle, which include one ALU or FPU

operation, one memory operation, two register reads, one register

write and one sign extension. In addition, one copy can be made

from an internal register to one of the two copy registers and the

next sequential instruction address can optionally be saved in the

SEQ register. Lastly, the next PC can be assigned the value of one

of the internal registers. If the ALU operation is a branch operation,

then the next PC will only be set according to the outcome of the

branch, otherwise, the branch is unconditionally taken.

To evaluate the architecture, we allow any combination of effects to

be specified in any instruction, which requires 64-bit instructions. In a

real implementation, only the commonly used combinations would be

able to be specified at a time, with a field in the instruction specifying

which combination is used. Our preliminary analysis shows that it

should be practical to use 32-bit instructions with minimal loss in

efficiency. The reason for this is that, while there are nine possible

effects, a typical instruction will actually use far fewer. In the rare

cases where too many effects are scheduled together, the compiler

will attempt to move effects into surrounding instructions while

obeying structural hazards and dependencies. Only when the compiler

cannot do so will an additional instruction be generated for these

additional instruction effects.

A static pipeline can be viewed as a two-stage processor with the

two stages being fetch and everything after fetch. Because everything

after fetch happens in parallel, the clock frequency for a static pipeline

can be just as high as for a traditional pipeline. Therefore if the

number of instructions executed does not increase as compared to

a traditional pipeline, there will be no performance loss associated

with static pipelining. Section 3 will discuss compiler optimizations

that will attempt to keep the number of instructions executed as low

as, or lower than, those of traditional pipelines.

III. COMPILATION

A statically pipelined architecture exposes more details of the dat-

apath to the compiler, allowing the compiler to perform optimizations

that would not be possible on a conventional machine. This section

gives an overview of compiling for a statically pipelined architecture

with a simple running example, the source code for which can be

seen in Figure 3(a). The code above was compiled with the VPO

[3] MIPS port, with full optimizations applied, and the main loop is

shown in Figure 3(b). In this example, r[9] is used as a pointer to

the current array element, r[5] is a pointer to the end of the array,

and r[6] holds the value m. The requirements for each iteration of

the loop are shown in Figure 3(c).

We ported the VPO compiler to the statically pipelined processor.

In this chapter, we will explain its function and show how this exam-

ple can be compiled efficiently for a statically pipelined machine. The

process begins by first compiling the code for the MIPS architecture

with many optimizations turned on. This is done because it was

found that certain optimizations, such as register allocation, were

much easier to apply for the MIPS architecture than for the static

pipeline.



for(i = 0; i < 100; i++)

  a[i] += m;

(a) Source Code

L6:

  r[3] = M[r[9]];

  r[2] = r[3] + r[6];

  M[r[9]] = r[2];

  r[9] = r[9] + 4;

  PC = r[9] != r[5], L6

(b) MIPS Code

5 instructions      5 ALU ops

8 RF reads         3 RF writes

1 branch calcs.   2 sign extends

(c) MIPS requirements for

each array element

L6:

  RS1 = r[9];

  LV = M[RS1];

  r[3] = LV;

  RS1 = r[3];

  RS2 = r[6];

  ALUR = RS1 + RS2;

  r[2] = ALUR;

  RS1 = r[2];

  RS2 = r[9];

  M[RS2] = RS1;

  RS1 = r[9];

  SE = 4;

  ALUR = RS1 + SE;

  r[9] = ALUR;

  RS1 = r[9];

  RS2 = r[5];

  SE = offset(L6);

  TARG = PC + SE;

  PC=RS1!=RS2,TARG;

(d) Initial Statically

Pipelined Code

L6:

  RS1 = r[9];

  LV = M[RS1];

  RS2 = r[6];

  ALUR = LV + RS2;

  M[RS1] = ALUR;

  SE = 4;

  ALUR = RS1 + SE;

  r[9] = ALUR;

  RS2 = r[5];

  SE = offset(L6);

  TARG = PC + SE;

  PC=ALUR!=RS2,TARG;

(e) Code after Common
Sub-Expression

Elimination

  SE = offset(L6);

  TARG = PC + SE;

  SE = 4;

  RS2 = r[6];

  CP2 = RS2;

L6:

  RS1 = r[9];

  LV = M[RS1];

  ALUR = LV + CP2;

  M[RS1] = ALUR;

  ALUR = RS1 + SE;

  r[9] = ALUR;

  RS2 = r[5];

  PC=ALUR!=RS2,TARG;

(f) Code after Loop

Invariant Code Motion

  SE = 4;           RS2 = r[6];

  CP2 = RS2;        RS1 = r[9];

  LV = M[RS1];      RS2 = r[5];   SEQ = PC + 4;

L6:

  ALUR = LV + CP2;  RS1 = r[9];

  ALUR = RS1 + SE;  M[RS1] = ALUR;

  PC=ALUR!=RS2,SEQ; LV = M[ALUR];  r[9] = ALUR;

  ALUR = LV + CP2;  RS1 = r[9];

  M[RS1] = ALUR;

(g) Code after Scheduling

3 instructions                                      3 ALU operations

1 register file read                              1 register file write

0 branch address calculations           0 sign extensions

(h) Static Pipeline requirements for each array element

Fig. 3. Example of Compiling for a Statically Pipelined Processor

VPO works with an intermediate representation called “RTLs”

where each RTL corresponds to one machine instruction on the target

machine. The RTLs generated by the MIPS compiler are legal for the

MIPS, but not for the statically pipelined processor. The next step in

compilation, then, is to break these RTLs into ones that are legal for

a static pipeline. The result of this stage can be seen in Figure 3(d).

The dashed lines separate effects corresponding to the different MIPS

instructions in Figure 3(b).

As it stands now, the code is much less efficient than the MIPS

code, taking 15 instructions in place of 5. The next step then, is

to apply traditional compiler optimizations on the initial statically

pipelined code. While these optimizations have already been applied

in the platform independent optimization phase, they can provide

additional benefits when applied to statically pipelined instructions.

Figure 3(e) shows the result of applying common sub-expression

elimination which, in VPO, includes copy propagation and dead as-

signment elimination. This optimization is able to avoid unnecessary

instructions primarily by reusing values in internal registers, which

is impossible with the pipeline registers of traditional machines.

Because an internal register access is cheaper than a register file

access, the compiler will prefer the former.

While the code generation and optimizations described so far have

been implemented and are automatically performed by the compiler,

the remaining optimizations discussed in this section are performed

by hand, though we will automate them in the future. The first

one we perform is loop-invariant code motion, an optimization that

moves instructions out of a loop when doing so does not change

the program behavior. Figure 3(f) shows the result of applying this

transformation. As can be seen, loop-invariant code motion also can

be applied to statically pipelined code in ways that it can’t for

traditional architectures. We are able to move out the calculation of

the branch target and also the sign extension. Traditional machines are

unable to break these effects out of the instructions that utilize them

so these values are repetitively calculated. Also, by taking advantage

of the copy register we are able to move the read of r[6] outside

the loop as well. We are able to create a more efficient loop due to

this fine-grained control of the instruction effects.

While the code in Figure 3(f) is an improvement, and has fewer

register file accesses than the baseline, it still requires more instruc-

tions. In order to reduce the number of instructions in the loop, we

need to schedule multiple effects together. For this example, and the

benchmark used in the results section, the scheduling was done by

hand. Figure 3(g) shows the loop after scheduling. The iterations

of the loop are overlapped using software pipelining [4]. With the

MIPS baseline, there is no need to do software pipelining on this loop

because there are no long latency operations. For a statically pipelined

machine, however, it allows for a tighter main loop. We also pack

together effects that can be executed in parallel, obeying data and

structural dependencies. Additionally, we remove the computation of

the branch target by storing it in the SEQ register before entering the

loop. The pipeline requirements for the statically pipelined code are

shown in Figure 3(h).

The baseline we are comparing against was already optimized

MIPS code. By allowing the compiler access to the details of the

pipeline, it can remove instruction effects that cannot be removed

on traditional machines. This example, while somewhat trivial, does

demonstrate the ways in which a compiler for a statically pipelined

architecture can improve program efficiency.

IV. EVALUATION

This section will present a preliminary evaluation using bench-

marks compiled with our compiler and then hand-scheduled as

described in the previous section. The benchmarks used are the

simple vector addition example from the previous section and the

convolution benchmark from Dspstone [14]. Convolution was chosen

because it is a real benchmark that has a short enough main loop to

make scheduling by hand feasible.

We extended the GNU assembler to assemble statically pipelined

instructions and implemented a simulator based on the SimpleScalar

suite. In order to avoid having to compile the standard C library, we

allow statically pipelined code to call functions compiled for MIPS. In

order to make for a fair comparison, we set the number of iterations to

100,000. For both benchmarks, when compiled for the static pipeline,

over 98% of the instructions executed are statically pipelined ones,

with the remaining MIPS instructions coming from calls to printf.

For the MIPS baseline, the programs were compiled with the VPO

MIPS port with full optimizations enabled.

Table I gives the results of our experiments. We report the number

of instructions committed, register file reads and writes and “internal”

reads and writes. For the MIPS programs, these internal accesses are

the number of accesses to the pipeline registers. Because there are

four such registers, and they are read and written every cycle, this

figure is simply the number of cycles multiplied by four. For the

static pipeline, the internal accesses refer to the internal registers.

As can be seen, the statically pipelined versions of these programs

executed significantly fewer instructions. This is done by applying



TABLE I
RESULTS OF THE EXPERIMENTAL EVALUATION

Benchmark Architecture Instructions Register Reads Register Writes Internal Reads Internal Writes

MIPS 507512 1216884 303047 2034536 2034536
Vector Add Static 307584 116808 103028 1000073 500069

Reduction 39.4% 90.4% 66.0% 50.8% 75.4%

MIPS 1309656 2621928 804529 5244432 5244432
Convolution Static 708824 418880 403634 2200416 1500335

Reduction 45.9% 84.0% 49.8% 58.0% 71.4%

traditional compiler optimizations at a lower level and by carefully

scheduling the loop as discussed in Section 3. The static pipeline

accessed the register file significantly less, because it is able to

retain values in internal registers with the help of the compiler. Also,

the internal registers are accessed significantly less than the larger

pipeline registers.

While accurate energy consumption values have yet to be assessed,

it should be clear that the energy reduction in these benchmarks would

be significant. While results for larger benchmarks may not be so

dramatic as these, this experiment shows that static pipelining, with

appropriate compiler optimizations, has the potential to be a viable

technique for significantly reducing processor energy consumption.

V. RELATED WORK

Statically pipelined instructions are most similar to horizontal

micro-instructions [13]. Statically pipelined instructions, however,

specify how to pipeline instructions across multiple cycles and are

fully exposed to the compiler.

Static pipelining also bears some resemblance to VLIW [7] in

that the compiler determines which operations are independent.

However, VLIW instructions represent multiple RISC operations to

be performed in parallel, while static pipelining encodes individual

instruction effects that can be issued in parallel, where each effect

corresponds to an action taken by a single pipeline stage of a

traditional instruction.

Other architectures that expose more details of the datapath to the

compiler are the Transport-Triggered Architecture (TTA) [5], the No

Instruction Set Computer (NISC) [10] and the FlexCore [12]. These

architectures rely on multiple functional units and register files to

improve performance at the expense of an increase in code size. In

contrast, static pipelining focuses on improving energy consumption

without adversely affecting performance or code size.

Another related work is the Energy Exposed Instruction Set [1]

which adds some energy efficient features to a traditional architecture

such as accumulator registers and tagless memory operations when

the compiler can guarantee a cache hit.

VI. FUTURE WORK

One important piece of future work is to improve the optimizing

compiler including the scheduling and software-pipelining. In addi-

tion we will develop and evaluate other compiler optimizations for

this machine, including loop invariant code motion. Another area of

future work will be encoding the instructions more efficiently. Lastly

a model for estimating the energy consumption will be developed.

VII. CONCLUSION

In this paper, we have introduced the technique of static pipelin-

ing to improve processor efficiency. By statically specifying how

instructions are broken into stages, we have simpler hardware and

allow the compiler more control in producing efficient code. Statically

pipelined processors provide the performance benefits of pipelining

without the energy inefficiencies of dynamic pipelining.

We have shown how efficient code can be generated for simple

benchmarks for a statically pipelined processor to target both perfor-

mance and power. Preliminary experiments show that static pipelining

can significantly reduce energy consumption by reducing the number

of register file accesses, while also improving performance. With

the continuing expansion of high-performance mobile devices, static

pipelining can be a viable technique for satisfying next-generation

performance and power requirements.
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