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ABSTRACT

This thesis describes the modifications to a compiler to support an interactive
compilation paradigm. Unlike traditional compiler systems where the smallest unit
of compilation is typically a function and the programmer has no control over the op-
timization process other than what optimizations to apply, an interactive compilation
system opens the optimization process and gives the application programmer, when
necessary, the ability to finely control it. In particular, we allow the application
developer to (1) direct the order and scope in which the optimization phases are
applied, (2) specify code-improving transformations by hand, (3) undo previously

applied transformations, and (4) support user-specified queries.
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CHAPTER 1

INTRODUCTION

The problem of automatically generating acceptable code for embedded micro-
processors is much more complicated than for general-purpose processors. First,
embedded applications are optimized for a number of conflicting constraints, such
as speed, code size, and power consumption. In fact, in many applications, the
conflicting constraints of speed, code density, and power consumption are managed
by the software designer writing and tuning assembly code. Unfortunately, the
resulting software is less portable, less robust, and more costly to develop and
maintain. Second, embedded microprocessors often have specialized architectural
features that make optimization and code generation difficult [13]. While some
progress has been made in developing high-level language compilers and embedded
software development tools, most embedded applications are still coded in assembly
language because current compiler technology cannot produce code that meets the
cost and performance goals for the application.

This thesis presents a new compilation paradigm that we believe can achieve the
cost/performance tradeoffs (i.e., size vs. power vs. speed vs. cost) demanded for
embedded applications. The traditional compilation framework has a fixed order in
which the optimization phases are executed and there is no control over individual
transformations, except for compilation flags to turn code-improving phases on or
off. In contrast, our compilation framework, called vista (Vpo Interactive System
for Tuning Applications) gives the application user the ability to finely control the

code-improvement process.



We had the following goals when developing the wvista compilation framework.
First, the user should be able to direct the order of the compilation phases that
are to be performed. The order of the compilation phases in a typical compiler is
fixed, which is unlikely to be the best order for all types of applications. Second,
hand-specified transformations should be possible. For instance, the user may provide
a sequence of instructions that wista inserts and integrates into the program. We
are not aware of any compiler that allows a user such direct and fine control over
the optimization process. Third, the user should be able to undo code-improving
transformations previously applied since a user may wish to experiment with other
alternative phase orderings or types of transformations. Finally, the low-level
program representation should appear in an easily readable display. The use
of dynamically allocated structures by optimizing compilers and the inadequate
debugging facilities of conventional source-level symbolic debuggers makes it difficult
for a typical user to visualize the low-level program representation of an application
during the compilation process. To assist the user when interacting with the
optimization engine, vista should provide the ability for the user to view the current
program representation and any relevant compilation state information (i.e., live
registers, available registers, def-use information, etc.).

Beyond vista’s primary purpose of supporting development of embedded systems,
it has several other uses. First, vista can assist a compiler writer to develop new
low-level code-improving transformations. The ability to specify transformations
by hand can help a compiler writer to prototype new low-level code-improving
transformations. The ability of viewing low-level representations can help a compiler
writer diagnose problems when developing new transformations. In wvista, when a
transformation is applied, the exact portion of the representation that is altered
will be indicated in the viewer. This feature can assist the compiler writer in
identifying the problem. Second, it can help compiler writers in understanding the

interaction and interplay of different optimizations. Finally, an instructor or educator
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Figure 1.1. Overview of the Interactive Compilation Process

teaching compilation techniques can use the system to illustrate code-improving
transformations to students.

Fig. 1.1 depicts a high-level overview of the flow of information in the interactive
compilation system. The user would initially specify a source file to be compiled.
The user retains control over the code-improvement process by specifying requests
to the compiler, which includes the order of the optimization phases and actual
transformations that are performed. The compiler responds to optimization requests
by performing the specified actions and sends information about the changes to
the program representation back to the user interface. Likewise, the compiler
sends information regarding queries of the program representation state to the user
interface. At some point a user session may be terminated and the current state
of the program representation is saved to a file to enable future updates. The user
may also wish to save multiple optimized versions to contrast their performance.
Eventually, the user may be satisfied with the generated code and can produce the
assembly. In addition, the user may wish to collect some preliminary results about
the performance of the generated code, which can be accomplished by producing
assembly that is instrumented with additional instructions that collect a variety of
measurements during the program’s execution.

The remainder of this thesis is structured as follows. Chapter 2 reviews related
work regarding alternative compilation paradigms and user interfaces for compilers.

3



Chapter 3 presents the functional capabilities of wvista. Chapters 4 to 9 discuss
implementation issues that were involved in achieving these functionalities. Chapter
10 presents some techniques used in diagnosing problems during the implementation.
Chapter 11 discusses future work in this topic and Chapter 12 gives the conclusions

for the thesis.



CHAPTER 2

RELATED WORK

Some systems have been developed that are used for simple visualization of the
compilation process. The UW Illustrated Compiler [1], also known as icomp, has
been used in undergraduate compiler classes to illustrate the compilation process.
The zvpodb system [6, 7] has been used to illustrate low-level code-improving trans-
formations in the vpo compiler system [4]. Xvpodb has also been used when teaching
compiler classes and to help ease the process of retargeting the compiler to a new
machine or diagnosing problems when developing new code-improving transforma-
tions. Unlike these visualization systems, vista allows a user to interactively control
the optimization process.

There have also been several systems that provide some visualization support
for the parallelization of programs. These systems include the pat toolkit [2],
the parafrase-2 environment [16], the e/sp system [8], and a visualization system
developed at the University of Pittsburgh [11]. All of these systems provide
support for a programmer by illustrating the possible dependencies that may prevent
parallelzing transformations from occurring. A user can inspect these dependencies
and assist the compilation system by verifying whether a dependency is valid or can
be removed.

In contrast, wvista supports interactive compilation on a low-level representation
(machine instruction) as opposed to a high-level representation (source code). Be-
cause of the difficulty of producing code for embedded processors that meets the

conflicting constraints of space, speed, and power consumption, there is a wide body



of research that has advanced the state of the art [13, 14, 12, 10, 17]. There has
also been some work on experimenting with optimization phase ordering and other
techniques to produce better code. Coagulating code generators have been developed
that use run-time profiles to perform optimizations phases on the most frequent sec-
tions of the code before the less frequently executed sections [15]. Genetic algorithms
have been used to experiment with different orders of applying optimization phases in
attempt to reduce code size [9]. vista allows a user to interactively experiment with

the order of optimizations and the region in which the optimizations are performed.



CHAPTER 3

VISTA’S OPTIMIZATION ENGINE

Vista’s optimization engine is based on vpo, the Very Portable Optimizer [3, 5].
Vpo has several properties that make it an ideal starting point for realizing the vista
compilation framework.

First, vpo performs all code improvements on a single low-level representation
called RTLs (register transfer lists). RTL is a low-level, machine and language
independent representation that encodes machine-specific instructions. The com-
prehensive use of RTLs in wpo has several important consequences. One advan-
tage of using RTLs as the sole intermediate representation is that many phase
ordering problems are eliminated. In contrast, a more conventional compiler sys-
tem will perform optimizations on various different representations. For instance,
machine-independent transformations are often performed on intermediate code and
machine-dependent transformations are often performed on assembly code. Local
transformations (within a basic block) are often performed on DAG representations
and global transformations (across basic blocks) are often performed on three-address
codes. Thus, the order in which optimizations are performed is fixed. By only using
RTLs, most optimizations can be invoked in any order and allowed to iterate until no
further improvements can be found, which is one of the goals that we want to achieve
in vista. In addition, the use of RTLs allows wpo to be largely machine-independent,
yet efficiently handle machine-specific aspects such as register allocation, instruction
scheduling, memory latencies, multiple condition code registers, etc. Vpo, in effect,

improves object code. Machine-specific optimization is important because it is a



viable approach for realizing high-level language compilers that produce code that
effectively balances target-specific constraints such as code density, power consump-
tion, and execution speed. Another advantage of using RTLs is that the effect of an
optimization can be easily understood since each RTL represents an instruction on
the machine.

A second important property of vpo is that it is easily retargeted to a new machine.
Retargetability is key for embedded microprocessors where chip manufacturers
provide many different variants of the same base architecture and some chips are
custom designed for a particular application. To retarget wpo to a new machine,
one must write a description of the architecture’s instruction set, which consists of
a grammar and semantic actions. It is easier to write a machine description for
an instruction set than it is to write a grammar for a programming language. The
task is further simplified by the similarity of RTLs across machines, which permits
a grammar for one machine to be used as the model for a description of another
machine. Since the general RTL form is machine independent, the algorithms that
manipulate RTLs are also machine independent, which makes most optimization code
machine independent. So the bulk of vpo is machine- and language- independent.
Overall, no more than 15 percent of the code of wpo may require modification to
handle a new machine or language.

A third property of vpo is that it is easily extended to handle new architectural
features as they appear. Extensibility is also important for embedded chips where
cost, performance, and power consumption considerations often mandate develop-
ment of specialized features centered around a core architecture.

A fourth and final property of wvpo is that vpo’s analysis phases (e.g. data flow
analysis, control flow analysis, etc.) were designed so that information is easily
extracted and updated. This property makes writing new optimizations easier and

it allows the information collected by the analyzers to be obtained for display.



CHAPTER 4

FUNCTIONALITY OF THE INTERACTIVE
COMPILATION SYSTEM

In this section we describe the functionality of wvista from a user’s viewpoint.
This functionality includes viewing the low-level representation, controlling when and
where optimization phases are applied, specifying code-improving transformations by

hand, and undoing previously applied transformations.

4.1 Viewing the Low-Level Representation

Fig. 4.1 depicts the user interface that was developed to support low-level
interactive compilation. The programmer is presented with a view of the program
representation on the right portion of the user interface. This representation is shown
in basic blocks, which is a common method for displaying low-level control flow.
Within the basic blocks are machine instructions. The programmer has the option to
display these instructions as RTLs or assembly code. Displaying the representation
in RTLs may be preferred by compiler writers, while assembly may be preferred
by embedded systems application developers who are familiar with the assembly
language for a particular machine. In addition, options are provided to display
additional information about the program representation that a compiler writer may
find useful.

The left side of Fig. 4.1 can vary depending upon the specific action requested.
This figure shows the default type of display. Other types will be shown in subsequent

sections. The function being compiled and the current transformation are indicated
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Figure 4.1. User Interface Depicting a History of the Compilation Phases Performed

at the top of the left portion of the user interface. Each transformation consists of a
set, of changes, where the program representation before and after the transformation
are semantically equivalent. A transformation is displayed in a before or after state.
In the before state, the transformation has not yet been applied. However, the
instructions that are about to be modified or deleted are highlighted. In the after
state, the transformation has been applied. At this point, the instructions that have
been modified or inserted are highlighted. This highlighting allows a user to quickly
grasp the effects of each individual transformation. The use of before and after states
has been used in previous graphical compilation viewers [6, 7].

The bottom portion of the left side of Fig. 4.1 contains a variety of buttons
representing selections that the user can make. The >, >>, >| buttons allow a user to
advance through the transformations that were performed. The actions associated
with the I<, <<, < buttons are described in Section 4. The > button allows a user to
display the next transformation. A user can display an entire transformation (before

and after states) with two clicks of this button. The >> button allows a user to
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advance to the next phase. A phase is a sequence of transformations applying the
same type of transformation. The > button allows the user to view the program
representation after advancing through all of the transformations that have been
performed.

The middle portion of the left side of Fig. 4.1 shows the history of optimization
phases that have been performed, which includes phases that have been applied in the
user interface and the phases yet to be applied. For instance, the state represented in
the figure is in the before state of the fourth transformation of the second phase. We
have found that displaying a history of optimization phases in this manner helps to
give a user some context to the current state being represented. Such visualization
of the low-level representation provides the information and insight that can simplify

the debugging of problems with the optimizer.

4.2 Directing the Order and Scope of the Optimization
Phases

A programmer typically has little control over the order in which optimization
phases are applied by a compiler. Usually the only control a programmer has is the
ability to turn a compiler optimization on or off for the entire compilation of a file
or function. For some compilation units, one phase ordering may produce the most
suitable code, while a different phase ordering may be best for other compilation
units. Vista provides the ability to specify what optimizations to apply to a program
region and the order to apply them. A knowledgeable embedded systems application
developer can use this capability for critical program regions to specify that the most
appropriate transformations are applied in the most advantageous order.

The left portion of the window shown in Fig. 4.2 depicts the user selecting
optimization phases. The user can make selections from a number of different
required and code-improving transformation phases that are applied in the back
end of a compiler. As each phase is selected, it is added to a numbered list of

11
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Figure 4.2. User Interface for Specifying a Sequence of Optimization Phases

optimization phases. In addition, the user is allowed to specify control over which
selected phase is specified to be performed next. For instance, the figure shows
that as long as changes to the representation are detected, the compiler is directed
to repeatedly perform register allocation, common sub-expression elimination and
instruction selection. Thus, we are in essence providing the programmer with the
ability to program the optimizer in an optimization phase language. Once the user
confirms the selection of the sequence of phases to be performed, this sequence is sent
to the compiler, which performs the phases in the specified order and sends a series of
messages back to the user interface describing the resulting program representation
changes.

As shown in the left side of the figure, the user cannot select some of the phases.
The reason for this is due to restrictions in the compiler concerning the order in
which the phases can be performed. For instance, the compiler does not allow the
register allocation phase (allocating variables to registers) to be selected until the
register assignment phase (assigning pseudo registers to hardware registers) has been

completed. Rather than allowing a user to make selections and later informing the
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user that the selections were invalid, we decided to prevent the user from making an
invalid selection.

In addition to specifying the order of the optimization phases, a user can
also restrict the scope of the region of the program representation in which an
optimization phase is applied. The user can select a number of basic blocks that the
optimization phases are to be applied by just clicking within the basic blocks. For
loop optimization phases, such as minimize loop jumps, loop tnvariant code motion,
loop strength reduction, recurrence elimination, and induction variable elimination,
it only makes sense to select a complete loop inside the scope. So we provide the
user the ability to query for loops information. Fig. 4.2 shows a loops information
window which displays all the loops in the function being optimized. The brackets
around a basic block indicates that it is the header of an inner loop. A user can select
a complete loop just by clicking the corresponding loop information in this window.
This has the effect of selecting all of the basic blocks within the loop. Some phases
cannot have their scope restricted due to the method in which they were implemented
in the compiler or how they interact with other phases (e.g. fill delay slots). Note
that by default the scope in which a phase is applied is unrestricted (i.e. the entire

function).

4.3 Specifying Code-Improving Transformations by Hand

Many embedded architectures have special features (e.g., zero overhead loop
buffers, modulo address arithmetic, etc) not commonly available on general-purpose
processors. Automatically exploiting these features is difficult due to the high rate at
which these architectures are introduced and the time required for a highly optimizing
compiler to be produced. Yet generating an application entirely in assembly code by
hand is not an attractive alternative due to the labor involved. It would be desirable

to have a system that supports traditional compiler optimization phases and the
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ability to hand-specify transformations that are not automatically performed by a
compiler.

Fig. 4.3 shows the interface used to support specifying code-improving trans-
formations by hand. The user selects an instruction with a GUI pointing device
(e.g. mouse) and a list of possible types of hand-specified changes that can be
performed associated with that instruction is displayed. As each change is selected,
the change is sent to the compiler, which checks it for validity. For instance, if
an instruction is inserted, then the syntax is checked to make sure it is valid. A
number of semantic checks are also necessary. For instance, if the target of a branch
is modified, then the compiler checks to ensure that the target label in the branch is
actually a label of a basic block. The compiler responds to each change by indicating
if the change was valid and sending the appropriate change messages to the user
interface so the presentation of the program representation can be updated. The
approach of immediately querying the compiler for the validity of each change at
the point the change was specified allows the compiler to ensure that the user never
causes the program representation to be placed in an inconsistent state. We also
plan to eventually integrate vista with the ability to validate entire transformations,
where the semantic effects of a region of code before and after a hand-specified
transformation are determined to be equivalent [19].

Fig. 4.4 shows an example of the improvement that can be obtained by specifying
a transformation by hand. Fig. 4.4(a) depicts a loop in the whetstone benchmark
and Fig. 4.4(b) shows the SPARC assembly code generated for the call to the sqrt
function. The SPARC calling sequence specifies that the first six words of arguments
be passed in integer registers. Moving a double-precision value from a pair of
floating-point registers to integer registers on the SPARC requires accesses to memory
since a floating-point register and an integer register cannot be referenced in the same
instruction. A knowledgeable programmer can determine that the s¢rt function

can be accomplished with the fsqrtd instruction that is available on the SPARC.
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Figure 4.3. User Interface for Specifying a Transformation by Hand

Fig. 4.4(c) shows that the call and four preceding instructions can be replaced with
a single instruction by performing this hand-specified transformation.

The user also can query the compiler for information that can be helpful when
specifying a transformation by hand. For instance, a user may wish to know which
registers are live at a particular point in the control flow. The query is sent to the
compiler, the compiler obtains the requested information (calculating it on demand)
and sends it back to the user interface to be displayed. Thus, the compiler can be
used to help ensure that the changes associated with hand-specified transformations
are properly made or to guide the user in generating valid and more efficient code.

The ability to specify low-level code-improving transformations by hand has
another interesting application. Unlike high-level code-improving transformations, it
is difficult to prototype the effectiveness of low-level code-improving transformations.
One cannot simply modify the source code of an application to gauge the effectiveness
of most low-level transformations. Often architectural features may need to be

exploited and these features can only be accessed after the low-level representation
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Figure 4.4. Example of a Hand-Specified Transformation

has been generated and other code-improving transformations have been applied.
However, wvista allows a compiler writer to specify the proposed transformation by
hand at the appropriate point in the compilation process, perform additional opti-
mization phases in the compiler, generate assembly code, and gather measurements.

Thus, one can easily prototype low level code-improving transformations using vista.

4.4 Undoing Previously Applied Transformations

One issue with an interactive compilation system is how to allow an embedded
system application developer to experiment with different orderings of phases and/or
hand-specified transformations in an attempt to improve the generated code. In
order to support such experimentation, we provide the ability for the user to reverse
previously made decisions regarding phases and transformations that have been
specified.

This undoing of transformations is accomplished using the (I, <<, <) buttons,
as previously shown in Fig. 4.1. The (I, <<, <) buttons allow a user to undo the
transformations that were previously applied. The < button allows a user to display
the previous transformation. The << button allows a user to back up to the previous
optimization phase. Likewise, the |< button allows the user to view the program
representation before any transformations have been applied. The ability to back
up and view previously applied transformations is very useful for understanding how

code was generated or to grasp the effects of individual transformations.
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If the user invokes an optimization phase or hand-specified transformation while
viewing a prior state of the program representation, then the subsequent transfor-
mations will be removed and the state of the program representation in the compiler
will be adjusted to reflect the currently viewed state. Thus, the user has the ability
to permanently undo previously applied phases and transformations.

The ability to undo transformations can also be useful in a non-interactive com-
pilation environment. A traditional compiler could use this feature to exhaustively
attempt a variety of optimizations and select the phase ordering that produces the
most effective code. In addition, it is sometimes easier to perform a portion of a
transformation before completely determining whether the transformation is legal or
worthwhile. Being able to undo changes to the program representation will facilitate

the development of such transformations.
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CHAPTER 5

SUPPORTING VIEWING OF
TRANSFORMATIONS

Xvpodb, a X-Window based visualization tool, had previously been developed to
support the analysis of optimizations performed by the vpo optimizer. It is a graphical
optimization viewer that can display the state of the program representation before
and after transformations. The zvpodb viewer is a separate program that can execute
concurrently with the vpo optimizer.

In order to view the program representation, the vpo optimizer first passed a set of
messages that describes the initial state of all RTLs in the function currently being
compiled before performing optimizations. After receiving these messages, zupodb
displayed this initial set to the user. Subsequently, messages containing descriptions
of all changes to the RTLs as they occur are passed to zvpodb, which stores them for
later interpretation at the request of the user. All of these messages passed from vpo
to zupodb were accomplished via system calls using Unix sockets.

The implementation details of zupodb were described in [7]. In vista, we used
the similar techniques as in zwvpodb, that is, using Unix sockets to pass program
representation and changes from wpo to the viewer. The existing message-passing
framework of zvpodb made this task easier. The following sections in this chapter
describe some changes that we made to support our new viewer, as well as new

features in viewing.
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5.1 Supporting Viewing of Transformations in Assembly
Mode

It is likely that most users would prefer viewing program representations in
assembly language as opposed to viewing them in RTLs. Thus, we decided to add
the functionality of viewing the program representation in assembly language. We
have two modes of viewing: assembly and RTLs. The user would be given the option
to select which mode he/she prefers. There are two things that we did to support
this functionality.

First we provided the ability to translate an encoded RTL into an assembly
instruction. In vpo, we have a machine description, which will parse the encoded RTL.
The machine description is used to check if the encoded RTL is a legal instruction
and to print the RTL to standard output as an assembly instruction. So we modified
the machine description to output the assembly instruction to a global character
string instead of standard output. This string can then either be used in passing
messages or being printed to standard output.

Second, in order to view the instructions in the assembly language for the machine,
we augmented the existing protocol to send the assembly instruction after the
RTL in the messages that contain RTLs. The user interface keeps both types of
representation for each instruction.

The right side of Fig. 4.1 shows the program representation in RTL mode, while
the right side of Fig. 4.2 shows the program representation in assembly mode. So the
user is offered the flexibility to view the program representation in his/her favorite

format.

5.2 Inter-Process Communication between Vpo and the
User Interface

The user interface was implemented using Java to enhance its portability. The

version used was Java 1.2, which includes the Java Swing user interface toolkit to
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create graphical user interfaces. Java is often interpreted rather than compiled,
which can result in slower execution. We found that the aspects of the interface that
limit its speed are the displaying of information and the communication with the
compiler. The performance of the interface was satisfyingly fast, despite having not
been implemented in a traditionally compiled language.

We separated the compiler and the user interface into different processes for
several reasons. First, we were concerned that the amount of memory used by the
compiler and the user interface may be excessive for a single process. Second, the
use of separate processes provides additional flexibility. For instance, the sequence
of change messages sent from the compiler to the user interface can be saved and a
simple simulator has been used instead of the compiler to facilitate demonstrations
of the interface. Likewise, a set of user commands can be read from a file by a simple
simulator that replaces the user interface, which can be used to support batch mode
experimentation with different phase orderings. Finally, separating the compiler
and the user interface into separate processes allows users to access the interactive
compilation system on a different machine from which the compiler executes. The
communication between the compiler and the user interface was accomplished using

UNIX sockets.

5.2.1 Framework of the Main Function

We developed a main function to support communication with the user interface.

Fig. 5.1 contains pseudocode that depicts the logic for the main function.
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main()

{

Create a socket;
Bind this socket with a certain port number;
Listen to this socket;
WHILE (1) DO
Accept a listening socket;
Fork a child process to handle new connection;
IF (Child Process) THEN
Perform User request;
Exit;
END IF
END WHILE

Figure 5.1. Main Function Framework

A port number is assigned to our vpo program. The optimizer runs as a server,
listening to the socket. If there is a request from the user interface requesting for
connection of this server, our vpo will accept this connection, and fork a child process
to serve the user interface. The parent process will continue to listen for other
connections. With this typical server framework, vpo could even serve multiple user

requests in parallel.
5.2.2 Protocols from Vpo to the Viewer

As a client/server system, an important aspects to ensure reliable communication
between client and server is defining communication protocols. The protocol must
be defined carefully and precisely. In the vista system, there are several issues that
affect the definition of the protocols.

First, the protocols that we defined must be robust. That is, when an error
occurs during the connection, the server cannot be crashed. Because of this reason,
we considered many error conditions that might occur, and defined error message

protocols between the client and the server. The error message is defined as below:
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< error_msg > ::= ERROR_MSG error_type.

The error_type is defined both in the user interface and the compiler, so that both
of them can give a correct error message.

Second, the messages must be short to acquire reasonable speed. The aspects
of the interface that limits its speed are the displaying of information and the
communications with the compiler. To shorten the messages, each type of messages
begins with a single character, which identifies the type of this message. The delimiter
of each message component is just a single blank. For example, the “delete RTL”

message is defined as:
< delrtlmsg >::= DELRTL < rtl_id >< block id >,

in which DELRTYL is defined as a single character -. When the user interface sees
this character, it knows that this is a “delete RTL” message, so that it can read in
rtl_id and block_id accordingly.

Finally, to simplify the passing of messages and diagnosing problems, all the
communication between the compiler and the user interface were accomplished using
character strings. Binary number must be converted into character strings before

being transferred. There are several problems related with passing binary values.

1. Different implementations store binary numbers in different formats. For
example, some implementations store binary numbers in big endian byte order,

while some implementations store binary numbers in little endian byte order.

2. Different languages store the same data type differently. For example, the
size of an integer in Java is always 32 bits, while that in C is different among

different architectures.

3. Different implementations pack structures differently.
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Although we can explicitly define the binary formats of the supported data
types(number of bits, big or little endian) and pass all binary data across sockets
in this format, it is quite complicated. By only allowing text strings passed through
sockets, the difficulties of passing binary numbers are eliminated.

Appendix A defines the protocol of the messages that are transferred from vpo to
the user interface. The protocol defines the initial program representation messages,
transformations, and changes that occur in transformations. After the communi-
cation is established, the compiler first sends the initial set to the user interface.
Then it reads commands from the user interface, and do the specified transformation
phases. Finally it sends the phases to the user interface. Each phase consists of one
or more transformations, while each transformation consists of one or more changes.
To reduce message traffic, empty transformations (transformations which contain
no changes) and empty phases (phases which contain no transformations) are not
allowed.

In this protocol, each RTL has to be uniquely identified to support messages
related with RTLs during transformations. A global variable maz_rtl_id was used to
record the maximum number of RTLs currently used. When an RTL is allocated,
max_rtl_id is increased by 1, and then assigned to the RTL. We used a similar strategy
to uniquely identify each basic block.
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CHAPTER 6

DIRECTING THE ORDER AND SCOPE OF
THE OPTIMIZATION PHASES

One advantage of using RTLs as the sole intermediate representation is that many
phase ordering problems are eliminated. By only using RTLs, most optimizations can
be invoked in any order and allowed to iterate until no further improvements can be
found. In other words, using RTLs as the only intermediate representation facilitates
the implementation of the ability to interactively direct the order of the optimization
phases. The ability to limit the scope of the optimization phases also gives the user
more control over the optimization process. To implement these capabilities, we
defined the protocol for the commands being passed from the viewer to the compiler.

Numerous modifications were also made to vpo to support these functions.

6.1 Protocol from the Viewer to Vpo

Besides the protocol from the compiler to the viewer, we also defined a protocol
from the user interface to the compiler. This protocol define sequences of commands
that a user can select, including phase order command sequences, hand-specified
transformation sequences, undo command sequences, loops query sequences, and
so on. Each sequence is terminated by QUIT_TRANS. A phase order command

sequence is defined as below:

normal_sequence ::= numblocks ids commands,
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where numblocks indicates the number of blocks to which the sequence of optimiza-
tions is applied, ids indicates the unique identifiers of these blocks, and commands
indicates the sequence of optimization phases, which will be performed in order. A
zero value of numblocks means to apply the transformation to all the basic blocks
in the function. After receiving the commands, vpo will perform this sequence of
optimization phases, send information back to the user interface, and wait for another
sequence. No more sequences of commands will be issued from the user interface for
the optimization of a function when a STOP_TRANS is encountered. The complete

protocol from the user interface to vpo is defined in Appendix B.

6.2 Modifications to Vpo

There were numerous modifications to vpo that were required to support inter-
active specification of the order of optimization phases. First, a function called
getemds() is used to read in a sequence of commands from the viewer. Then the
commands are parsed and stored in a data structure to be used during the interactive
optimization. Fig. 6.1 shows the pseudo code of getemds function. It implements the
protocol from the viewer to the compiler.

Second, the high-level functions in vpo to perform the optimization phases for a
function had to be rewritten. Vpo had a fixed order, depending upon the compilation
flags selected, in which optimization phases were attempted. Fig. 6.2 shows the
revised logic used for responding to user requests. It is used to support directing
the order of the optimization phases, and limiting the scope of the optimization
phases, which are described in this chapter. It is also used to support queries,
hand-specified transformations and reversing previous applied transformation, which
will be discussed in later chapters.

After composing a sequence of optimization phase commands, this sequence is
sent by the user interface to vpo and the compiler interprets these commands until

an exit command is encountered. The compiler first sets the inscope field in each basic
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//Read the first part of the commands, e.g. number of blocks
//followed by block IDs
Read in the first element E.
IF E is STOP_TRANS or QUIT_TRANS THEN
RETURN.
ELSE IF E is UNDO_TRANS OR UNDO_CHANGE
Read in the number of transformations (or changes) to reverse.
ELSE IF E is the number of blocks that the sequence will apply
Read in each block ID.
ELSE
ERROR.
END IF

//Read in the sequence of commands that follows block IDs
DO
Read in an element E.
IF E is [IF_.TRUE_GOTO_TRANS OR IF_FALSE_GOTO_TRANS
Read in the destination transformation number.
END IF
WHILE E is not STOP_-TRANS AND E is not QUIT_TRANS

Figure 6.1. Algorithm for Reading User Commands

block to indicate that it is in the scope that the transformations are applied. Then
the command sequence is applied to this scope. When applying the transformations,
only the basic blocks in the scope can be changed. The branch command allows a
user to specify a transfer of control based on whether or not changes to the program
representation were encountered. Before each optimization phase, vpo performs the
analysis needed for the phase that is not already marked as valid. After performing
the optimization phase, vpo marks which analysis could possibly be invalidated by
the current phase. Identifying the analysis needed for each optimization and the
analysis invalidated by each optimization was accomplished in a table-driven fashion
to facilitate maintenance of the compiler.

We had to also identify which optimization phases that were required during

the compilation (e.g. fizing the entry and exit to conform to calling sequence

26



conventions), which optimization phases could only be performed once (e.g. register
assignment), and the restrictions on the order in which optimization phases could
be applied. Fortunately, many ordering restrictions required by other compilers
are not required in wvpo since all optimization phases are applied on a single
program representation (RTLs). The ordering restrictions that were required were

accomplished in a table-driven fashion.
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Read request from the user.
WHILE (user selects additional requests to be performed) DO
IF user selected a sequence of phases to be performed THEN
FOR Each basic block in the scope specified
Set its inscope field to TRUE.
pc = 0.
WHILE commands|pc|.oper != EXIT DO
IF commands[pc|.oper == BRANCH THEN
Adjust pc according to branch command.
CONTINUE.
END IF
Perform analysis needed for current phase.
SWITCH (commands[pc|.oper)
CASE BRANCH_CHAINING:
remove branch chains.

BREAK.

END SWITCH
Mark analysis invalidated by current phase.
pc += 1.
END WHILE
ELSE IF user selected a hand-specified change THEN
Perform hand-specified change selected by the user.
ELSE IF user selected to reverse transformations THEN
Reverse transformations as specified by the user.
ELSE IF user requested a query THEN
Calculate query information and send to user interface.

Read request from the user.
END WHILE

Figure 6.2. Algorithm for Performing User Requests on a Function
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CHAPTER 7

SUPPORTING LOOP INFORMATION
QUERIES

To specify the scope that the transformations are applied, the user may need
information about the loops in the function being optimized. For example, it does
not make sense to apply a loop transformation to only part of a loop. This chapter
will discuss the implementation to support loop information queries.

The command for a query is defined as a unique character. When the compiler
receives this command, it will send loops information back to the user interface. The
protocols for the loops informationpassed from the compiler to the user interface is

defined below:

< loops-msg > ::= BEGINLOOPS < loop-msg >+ ENDLOOPS
< loop_msg > = LOOP < nesting_level >< header_id >

< inner_td > *

ENDLOOP
< header_id > = block_id
<inner_id > = block.id | -header_id

The loops information consists of all the loops in the current function. The
information for each loop includes its nesting level, header ID, and the IDs of other
basic blocks in this loop. If there are other nested loops in this loop, only their header
IDs are included in the loop information. The negated number of the header ID is

used to distinguish the header of a nested loop and a normal basic block. For
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example, for the basic block structure in Fig. 7.1, the loop message is

BEGINLOOPS
LOOP 12 -3 7 ENDLOOP
LOOP 2 3 -4 -5 6 ENDLOOP
LOOP 3 4 ENDLOOP
LOOP 3 5 ENDLOOP
ENDLOOPS.

The loop message will be passed to the user interface, which displays the message

in the format shown in Fig. 4.2.

30



Block 1

Block 2
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Block 5

Block 6

Block 7

Block 8

Figure 7.1. An Example with Nested Loops
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CHAPTER 8

SUPPORTING HAND-SPECIFIED
TRANSFORMATIONS

As previously mentioned, the feature of supporting hand-specified transforma-
tions was added due to the difficulty of automatically exploiting special features
of different architectures in embedded systems by a compiler. A hand-specified
change, which can be a basic block level change or an instruction level change,
can be specified via the user interface. The change is then sent to the compiler,
which will check its validity. If the change is valid, the compiler will update the
program representation and send back actual changes occurred in the compiler to the
user interface. Otherwise, the compiler will just send back an error message. The
program representation used by the compiler for an instruction is an encoded RTL.
The user enters either human readable RTL or assembly instructions. Translators

were developed to convert the human readable instructions to encoded RTLs.

8.1 Related Messages

The message related hand-specified transformations is defined as below:
hand _trans ::= HAND_TRANS < change > QUIT_TRANS.

Each hand-specified transformation consists of one change, and ends with a
QUIT_TRANS. Changes can be classified as block level changes and instruction
level changes. Block level changes include inserting a basic block, deleting a basic

block, and modifying the label of a basic block. Instruction level changes include
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inserting/deleting/modifying/moving an instruction, while the instruction can be
either in assembly format or in RTL format. The following sections describe the
implementation related with basic block level changes and instruction level changes,

respectively.

8.2 Hand-Specified Changes at the Basic Block Level

Since we do not need any translators, it was relatively easy to implement hand-
specified changes at the basic block level. First, a hand-specified change received
from the user interface has to be checked by the compiler to ensure that it is valid.
For example, deleting a non-empty basic block is illegal. If the change is illegal, the
compiler will just send an error message. Otherwise, the compiler will update the
program representation corresponding to the required change, and then send back
the actual changes to the user interface. One change in a command from the user
interface can result in several changes. For example, inserting or deleting a basic

block can cause changes in the control flow.

8.3 Hand-Specified Changes at the Instruction Level

After the compiler receives an instruction level change, it will first translate the
specified instruction, whether in RTL or assembly, into an encoded RTL, which is
the format used in the compiler. We developed two translators for this purpose. The
first translator converts a human readable RTL into an encoded RTL. The second
translator converts an assembly instruction into an encoded RTL. The translated
encoded RTL will then be checked by the compiler to verify its validity. This check
includes ensuring not only that the syntax of an instruction is valid, but also that
its semantics are valid with regard to the rest of the program representation. If the

change is valid, the compiler will update the program representation and send back
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actual changes to the user interface. Otherwise, the compiler will just send back an

error message.
8.3.1 Translating an Assembly Instructions to an Encoded RTL

We developed a translator to convert a single assembly instruction into an encoded
RTL. It is used when the user modifies or inserts an assembly instruction using the
user interface. The new assembly instruction will be sent to the compiler, which
calls the translator to translate it into an encoded RTL before updating the program
representation. Each assembly instruction corresponds to one RTL. The translator
was implemented by checking the operator first, and then the operands based on the
operator. After that, a simple syntax check is performed to check if the number and
types of operands match the operator. Finally an encoded RTL will be generated
according to the RTL standard.

Registers in RTL are encoded as two characters, based on the register type and
register number. First, the translator reads in the register type and number in
assembly. The translator then encodes this register based on its type and number.
For a variable, the translator must search the global variable list and the local variable
list to determine the variable type (global or local) and its identifier number. It then
encodes this variable based on these two attributes of this variable. Constant are not

encoded at all.
8.3.2 Translating a Human-Readable RTL into an Encoded RTL

We developed a translator to convert a human readable RTL to an encoded RTL.
This translator is needed when a user modifies or inserts an RTL using the user
interface. The new RTL will be transferred in a human-readable form. It must be
encoded by the compiler before updating the program representation. This translator
is quite similar to the translator from assembly into encoded RTL. However, since the

format of a human-readable RTL is quite similar to that of its corresponding encoded
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RTL, it was relatively simple to implement. The translator simply reads in each word,
and encoded registers, local variables and global variables while scanning the RTL.
Since it is difficult to distinguish between global variable, local variables and labels,
we restricted the user to use a special form to identify a global variable or a local
variable. A global variable must be represented as global(variable name). Similarly,
a local variable must be represented as local(variable name). For example, L31 in
r[8]=HI[L31+/] represents a label. The user can indicate that it represents a global
variable in r/8/=HI[global(L31)+4], or a local variable in r/8/=HI[local(L31)+4].

8.3.3 Syntax and Semantic Check

The above two translators do not completely check the syntax of a user specified
instruction before encoding it. The compiler will check the syntax of the encoded
RTL after the translation. It uses the machine description in the compiler to check
if the generated encoded RTL was legal for the machine.

Semantic checks related with instruction level changes are required. The semantic
check of a non-branch instruction is quite straightforward. For a register, the compiler
will check whether this register is defined in the system. For a variable, the compiler
will search the global or local variable list to find out whether it has been previously
defined. This has to be done before translation. The semantic check of a branch
instruction is more complicated since extra checks are required. The compiler must
ensure that a branch instruction is at the end of a basic block. Furthermore, if the
branch instruction contains a label, then the label must exist. Semantic checks were

performed before the compiler committed to insert, modify, or move an instruction.
8.3.4 Update Program Representation

After the compiler determines that the semantics of the instruction is valid, the
program representation is updated and actual changes are sent back to the user

interface. For a non-branch instruction, one change specified in a command sequence
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will only result in one actual change in the compiler. But for a branch instruction,
one change specified in a command sequence may result in several actual changes in
the compiler. For example, inserting a branch at the end of a basic block not only
results in inserting an instruction, it can also modify the control flow of the program
representation. These changes will be grouped together as a transformation and sent

back to the user interface for consistency.
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CHAPTER 9

REVERSING PREVIOUSLY APPLIED
TRANSFORMATIONS OR CHANGES

Vista provides the ability to undo previously applied transformations or changes
for two purposes. First, this ability can help the user to experiment with different
ordering of phases and/or hand-specified transformations in an attempt to improve
the generated code. Second, this feature gives the user the ability to change his/her
mind. For normal transformations, the user can request to undo one or more
previously applied transformations. For hand-specified transformations, the user can
request to undo one or more previously applied changes. These undo commands are
sent to the compiler, which reverses the effects of specified number of transformations
or changes.

There are several difficulties related with reversing transformations or changes.
First, the compiler must have enough and correct information required for reversing
a transformation or a change. This requires that each time a change occurs, the
compiler must record the required information correctly. Second, the control flow
of the “reversed” program representation must be consistent. For example, when
undoing the effect of inserting a basic block, not only should the compiler delete this
basic block from its program representation, it must also update the control flow

information of the basic blocks to which it falls through or jumps.
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9.1 Related Messages

The messages related with reversing commands from the user interface to the

compiler are defined as below:

undo_command ::= UNDO_TRANS < number >
undo_change ::= UNDO_CHANGE < number >.

The definition of a transformation is the same between the user interface and the
compiler. However, the definition of a change is a little different between the user
interface and the compiler. A change specified by a user can result in several changes
in the compiler. When the user requests to undo a change, the user interface will
identify the number of actual changes in the compiler corresponding to this change,

and send an undo_change message to the compiler.

9.2 Data Structure

In order to undo previously applied transformations, a linked list structure was
used to keep the history of changes that occurred in the compiler. Fig. 9.1 depicts
this linked list. All changes (additions and deletions) to the linked list occur at the
tail.

When a phase of transformations is applied, the compiler inserts a BEGINPHASE
node at the beginning. There can be several transformations in one phase. Each time
a transformation is applied, a BEGINTRANS node is inserted. Usually there are
multiple changes in a transformation. Each time a change occurs, the change type,
as well as the information needed to reverse this change, are stored in the linked list.
The end of a transformation is indicated by an ENDTRANS node, while the end of
the whole phase is indicated by an ENDPHASE node. When the compiler is required
to undo a transformation, it will search the linked list from the tail and reverse the

effect of each node until it finds a BEGINTRANS node. When the compiler is

38



required to undo several changes, it will just reverse the specified number of nodes

in the linked list.

History of Changes

Head Tail

| Begin Phase N 1]

‘ Begin Transformation ‘

‘ Change 1 ‘l‘q\‘
‘ Change 2 ‘l‘q‘\‘
‘ Change 3 ‘ ‘ ! ‘

‘ End Transformation

‘ Begin Transformation ‘

‘ Change 1 ‘

‘ Change 2 ‘

‘ End Transformation ‘

‘ End Phase ‘ ‘

Figure 9.1. Data Structures Used for Undoing Transformations

Enough information regarding each change must be saved so its effect can be
reversed if requested by the user. For instance, if a change reflects a modification
to an instruction, then the compiler must save the previous representation of the
instruction before the modification. If a change reflects inserting or deleting a basic
block, the previous control flow information before the change must be saved. So a
node in the undo linked list includes the change type, basic block ID, previous label
for the basic block, previous RTL instruction, previous control flow information, and

SO on.
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9.3 Modifications to Vpo

As described in the previous section, new data structures must be added to the
vpo to store changes needed for reversing purpose. Besides the data structures, there
are two major modifications in vpo.

First, in each place where a change of the program presentation occurs, code was
added to record this change. A new node is created first. The information needed to
undo this change is then stored in this node. Finally this node is added to the tail
of the linked list used. Since there are a lot of changes of program representation in
the vpo, modifications were required to many parts of the compiler.

Second, functions were added to implement the reversing ability. The compiler
first determines the type of the change being reversed. It reverses the effect of this
change based on its type and the information stored in the linked list. Finally, if the
change results in other changes in the control flow, the control flow information has
to be recalculated. Fig. 9.2 shows the algorithm to undo a change.

Because of the numerous modifications in the vpo, the regression test becomes
very important. Each time a new change was added to the compiler, the regression
test had to be done to ensure that the new change did not introduce errors to the

compiler.
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SWITCH(type of modification)

CASE UPDATEBB:
Reorder the RTLs in this basic block to its original order;
BREAK;

CASE LABELBB:
Restore the label;
BREAK;

CASE MOD _LEFT:

CASE MOD_RIGHT:

CASE MOD_DOWN:
Restore the corresponding pointer;
Restore the predecessors of the blocks that it jumps to or falls through;
BREAK;

CASE NEWRTL:
Delete the inserted RTL from RTL list;
BREAK;

CASE DELRTL:
Insert the deleted RTL to original location;
BREAK;

CASE MOVERTL:
Move RTL back to its original location;
BREAK;

CASE MODRTL:
Modify the RTL back to its original value;
BREAK;

END SWITCH

Figure 9.2. Algorithm to Undo a Change
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CHAPTER 10

DIAGNOSING PROBLEMS

One difficulty in this project was diagnosing problems. Because the user interface
and the compiler were developed separately, it was always difficult to locate where a
problem occurs. I needed to work together with the developer of the user interface in
order to find out the location of the problematic code. One change in the compiler
may affect some other unknown parts of the code. So special techniques were

developed for diagnosing purposes.

10.1 Client Simulator

As described above, it is always difficult to find out whether a certain problem
is in the compiler or in the user interface. Even worse, sometimes the progress
of the user interface development is not the same as that of the compiler. For
example, the compiler may have been updated to implement the functions to support
hand-specified transformations, while this feature in the user interface was still under
development. Instead of wasting time to wait until the user interface has been fully
implemented, we developed simulators to simulate the user interface for debugging
purposes.

The first simulator we developed just reads from a file. The compiler reads in
commands from a file instead of the user interface. The communication is disabled
in this mode and the commands in the file should also follow the protocol defined
in Appendix B. When the compiler needs to send information to the user interface,

the information is also written to a file. However, the communication between the
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user interface and the compiler cannot be simulated by this simulator. So we soon
moved to another real client simulator, which is also a separate program written in C.
When starting the client simulator, it first establishes a communication socket with
the compiler. Then the simulator reads commands from a file, sends the commands to
the compiler, and reads information back from the compiler. This simulator simulates
most of the features of the user interface that is needed to debug the compiler.

The simulator of the user interface is illustrated in Fig. 10.1

Establish a connection with the compiler;
Read in initial set from the compiler;
Write the initial set to an output file;
IF the compiler is accepting commands THEN
WHILE not end of the input file
Read in a command sequence from the input file;
Write this command sequence to the compiler;
Read information back from the compiler;
END WHILE
END IF
Close the connection with the compiler.

Figure 10.1. Algorithm to Simulate the User Interface

10.2 Diagnosing Problems when Undoing Transformations

To diagnose problems when undoing transformations or changes, we defined the

following commands:

write_.command ::= WRITE_RTLS_TRANS filename
cmp_files_.command ::= CMP_FILES_TRANS filenamel filename2

43



When testing a certain transformation, the typical sequence of commands is as below:

WRITE_RTLS_TRANS filenamel
Transformation

Undo this transformation
WRITE_RTLS_TRANS filename2
CMP_FILES_TRANS filenamel filename2

A write_command is inserted before the transformation to write the program repre-
sentation to a file. The transformation is performed, and then reversed. The reversed
result is written to another file. Finally these two files are compared to see whether
they are identical. If so, the reversing of this transformation is successful. Otherwise,

the difference between these two files is inspected to debug the problem.

10.3 Check the Consistency of the Control Flow

Because of the numerous modifications in vpo, it is difficult to maintain the control
flow consistency of the program representation. For example, it is very easy to delete
a basic block without updating the predecessor list or successor list of the related
basic block. The inconsistency of the control flow is difficult to find. So a check_cf
function was developed to check the consistency of the control flow. Each time the
compiler performs a change to the program representation, the compiler writer can

insert a check_cf call to check the consistency of the control flow.
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CHAPTER 11

FUTURE WORK

Vista is still undergoing development. However, the core features of the system
have been implemented. This includes the ability to view the low-level program
representation, interactively direct the order of the optimization phases, specify
code-improving transformations by hand, undo previously applied transformations
in the compiler, limit the scope in which an optimization phase will be applied, and
support queries about loop information.

A user can currently request queries about loop information. We envision more
queries that are useful, such as live variable information and symbolic expansion of
expressions at given points in the control flow. Such requests will be useful when
specifying transformations by hand or deciding which optimization phases to perform
next. Besides these static queries, we also plan to allow a user to query for profile
information, such as call edge counts, basic block counts, flow edge counts, and so
on. This information will be helpful for a user to determine the scope of the program
representation on which transformations should be applied. These queries will be
sent to the compiler, which will obtain the desired information and send it back to
the user interface to be displayed.

Currently, a user has to perform a compilation of a file in a single session. We
plan to eventually allow a user to end a session at any time. The sequence of changes
applied to the program representation will be saved in a configuration file. When

the user wishes to resume a session later, the corresponding configuration file will be
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read in. The past history of the transformations will still be valid as if it were never
interrupted. This capability will give the user more flexibility when using wista.

We also plan to allow a user to achieve more abstract goals. For example, a user
may wish a certain loop to be executed in a given amount of time, or to be compiled
in no more than a specified number of bytes, or to consume a maximum amount of
power. The compiler will try different combinations of optimizations in an attempt

to find the combination that satisfies the user’s goals.
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CHAPTER 12

CONCLUSIONS

This thesis describes the modifications made to vpo to support a new interactive
compilation paradigm to give the user the ability to finely control an optimization
process. This modified vpo is used in a compilation framework called wvista. Its
features include the ability to graphically display the low-level representation of a
program, allow a user to interactively direct the order and scope of the optimization
phases, support the hand specification of code-improving transformations, undo
previously applied transformations, and allow a user to query the state of the program
representation. This system can be used by embedded systems developers to tune
application code, by compiler writers to debug errors and/or prototype proposed
code-improving transformations, and by instructors or educators to illustrate code-

improving transformations to students learning compilation techniques.
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APPENDIX A

PROTOCOLS OF MESSAGES FROM VPO TO
THE USER INTERFACE

Below is the definition of the syntax of the messages sent from vpo to the user
interface. The definition of many of the defined constants (words in capital letters)

can be found in view.h.

< compilation > = < function > *
< end_compilation_msg >

< function > = < begin_func_msg >
<initialset >
(< phase > | < valid_response_msg > | < loops_msg >)*
< end_func_msg >

< initialset > n= < nitbasicblock > *
< end_init_set_msg >

< initbasicblock > = < new_bb_msg >
[< new_bbleft_msg >|
[< new_bbright_msg >|
< rtl_init_msg > *

< phase > = < begin_phase_msg >
< transformation > +
< end_phase_msg >
[< end_seq_msg >|

< transformation > = < begin_trans-msg >
< change > +
< end_trans-msg >

< rtl_init-msg > = VET_RTL < rti_id >< rtl_type >< rtl_val > [< assem_val >
48



< valid_response_msg >::
< loops_msg >

< loop-msg >

< change >

< end_init_set_msg >
< begin_phase_msg >
< end_phase_msg >
< begin_trans_msg >
< end_trans-msg >
< end_seq_msqg >

< new_bb_msg >

[VET_RTLLINKS < rtl_link > *0]
[VET_DEADS < rtl_deads >]
[VET_SIDE < rtl_side >]

VALID | INVALID
BEGINLOOPS < loop-msg > + ENDLOOPS

LOOP < nesting_level >< header_id >
< inner_id > *

ENDLOOP

< new_bb_msg >

| < update_bb_msg >

| < label_bb_msg >

| < del_bb_msg >

| < mod_bb_ptrs_msg >
| < insert_rtl_msg >

| < del_rtl-msg >

| < move_rtl_msg >

| < mod_rtl_msg >

| < mod_links_msg >
| < mod_side_msg >

| < mod_res_msg >

| < mod_deads_msg >
| < move_rtls_msg >

ENDINITSET

BEGINPHASE < phasenum >
ENDPHASE

BEGINTRANS

ENDTRANS

ENDSEQ

NEWBB < blk_id >< label >
//id for new block, label for new block

49



< new_bb_left_msg > = BBLEFT < blk_d >

< new_bb_right_-msg > = BBRIGHT < blk_id >
< update_bb_msg > = UPDATEBB
< blk_id >{VET_RTL < rtl_id >}*
ENDUPDATE

// id for block being update, ids of rtls in block

< label_bb_msg > = LABELBB < blk_id >< label >
// block id with label being updated, new label

< del_-bb_msg > == DELBB < blk_id >
// block id of block being deleted

< mod_bb_ptrs_msg > == (MOD_DOWN | MOD_LEFT | MOD_RIGHT)
< blk_id >< blk_d >
// block id of block being updated, new value of ptr

<nsert_rtl_msg > n= NEWRTL < rtlad >< rtl type >< rtl_val >< assem_val >
< blkad >< rtled >
// id of new rtl, type of new rtl, val of new rtl,
// assembly of new rtl,
// block in which new rtl is inserted,
// old rtl before which new rtl precedes

< del_rtl_msg > = DELRTL < rtlid >< blk_id >
// rtl to be deleted, block containing deleted rtl

< move_rtl_msg > = MOVERTL < rtlad >< blk_id >< rtl_id >< blk_id >
// rtl to be moved, block where rtl was,
// rtl before moved rtl precedes,
// block where rtl is now

< move_rtls_msg > = MOVERTL < blk_id >< blk_id >
// block where rtls to be moved currently reside

// block where rtls are to be appended at the end

< mod_rtl-msg > 2= MOD_RTL < rtlad >< rtl_type >< rtl_val >
< assem_val >< blk_id >
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< mod_links_msg >

< mod_side_msg >

< mod_res-msg >

< mod_deads-msg >

/] fields

< rtlad >

< rtltype >

< rtl_val >

< assem_val >
< rtllink >

< rtl_deads >
< rtl_side >

< funcname >
< phasenum >
< header_id >
< inner_id >
< blkad >

< label >

< nesting_level >

// rtl to be modified, rtl type, new rtl val,
// assembly of new rtl,
// block containing rtl

MOD_RTLLINKS < rtlad >< rtl_type >
< rtlid > %0 < blk_id >

// rtl containing new links, rtl type,

// new links of rtl, block containing rtl

MOD_SIDE < rtl_id >< rtl_type >< rtl_side >< blk_id >
// rtl containing new reserve line, type of rtl,
// new side effect, block containing rtl

MOD_RES < rtlid >< rtl_type >< rtl_val >< blk_id >
// rtl containing new reserve line, type of rtl,
// new reserve line, block containing rtl

MOD_DEADS < rtlid >< rtl_type >< rtl_deads >< blk_id >
// rtl containing modified deads, type of rtl,
// new deads for rtl, block containing rtl

INTEGER
INTEGER
CHARACTER_STRING

= CHARACTER_STRING

= INTEGER

= CHARACTER_STRING

= CHARACTER_STRING

= CHARACTER_STRING

= INTEGER

= < blk_d >

= < blk_id > | — < header_id >

INTEGER
CHARACTER_STRING
INTEGER
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APPENDIX B

PROTOCOLS FROM USER INTERFACE TO
THE COMPILER

Below is the current protocol of messages that will be passed from the user
interface to vpo. This protocol defines a sequence of commands that a user can select.
Vpo will perform this sequence, send information back to the user interface, and wait
for another sequence. No more sequences of commands will be issued from the user

interface for the optimization of a function when a STOP_TRANS is encountered.

func_msgs = requests STOP_TRANS

requests ::= requests request | request

request = sequence QUIT_TRANS

sequence = hand_trans | loops_query
| undo_command | write_.command | cmp_files_command
| normal sequence

hand_trans m= HAND_TRANS < change > QUIT_TRANS

loops_query = LOOPS_QUERY

normal_sequence  ::= numblocks ids commands

commands = commands command | command

command ::= branch_command | phase_command | other_command

| trans_command

branch_command := (IF_.TRUE_.GOTO_TRANS | IF_FALSE_.GOTO_TRANS) offset
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phase_command

phase_oper

undo_command
write_command
cmp_files_command ::
rtl

filename

offset

numblocks

phase_oper

(DEAD_CODE_ELIM_TRANS
FIX_CONTROL_FLOW_TRANS
REG_ASSIGNMENT_TRANS
DEAD_ASG_ELIM_TRANS
COMMON_SUBEXPR_ELIM_TRANS
FIX_ENTRY_EXIT_TRANS
INST_SCHED_TRANS
FILL_DELAY_SLOTS_TRANS
MINIMIZE_LOOP_JUMPS_TRANS
CODE_MOTION_TRANS
LOOP_STRENGTH_REDUCT_TRANS
RECURRENCE_ELIM_TRANS
INDUCT_VAR_ELIM_TRANS
REG_ALLOCATION_TRANS
BRANCH_CHAINING_TRANS
ELIM_EMPTY_BLOCKS_TRANS
USELESS_JUMP_ELIM_TRANS
REVERSE_BRANCHES_TRANS
BLOCK_REORDERING_TRANS
MERGE_BLOCKS_TRANS
EVAL_.ORDER_DETER_TRANS
INST_SELECT_TRANS
GLOBAL_INST_SELECT_TRANS
STRENGTH_ REDUCT_TRAN

)

UNDO_TRANS < number >
WRITE_RTLS_TRANS filename
CMP_FILES_TRANS filename filename
< characterstring >

< characterstring >

< number >

< number >
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ids
id

change

mod _rtl_msg
del_rtl_msg

insert_rtl_msg

mod_assem_msg

insert_assem_msg

rtl_id
rtl_type
rtl_val

assem_val

blk_id

ids id | id

< number >
mod _rtl_msg
del_rtl_msg
insert_rtl_msg

mod_assem_msg
insert_assem_msg

del_bb_msg

insert_bb_msg

END_TRANS

BEGIN_TRANS

MOD_RTL rtl.id rtl_type rtl_val blk_id
DELRTL rtl.id blk_id

NEWRTL rtl.id rtl_type rtl_val
blk_id rtl_id

MOD_ASSEM rtl.id rtl_type assem_val
END_ASSEM blk_id

NEW_ASSEM rtlid rtl_type assem _val
END_ASSEM blk_id rtl.id

< number >
< number >
< characterstring >
< characterstring >

< number >
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