
THE FLORIDA STATE UNIVERSITYCOLLEGE OF ARTS AND SCIENCES
COMPILER MODIFICATIONS TO SUPPORT INTERACTIVECOMPILATION

ByBAOSHENG CAI
A Thesis submitted to theDepartment of Computer Sciencein partial ful�llment of therequirements for the degree ofMaster of Science

Degree Awarded:Spring Semester, 2001

The members of the Committee approve the thesis of Baosheng Cai defended onMarch 30 2001.

David B. WhalleyProfessor Directing ThesisXin YuanCommittee MemberRobert van EngelenCommittee Member
Approved:Theodore P. Baker, ChairDepartment of Computer Science

ACKNOWLEDGEMENTSI am deeply indebted in gratitude to my major professor, Dr. David Whalley,for his guidance, support, patience, and promptness during my research. He wasalways available to discuss new problems and exchange ideas. I cannot complete thisthesis without his excellent teaching and mentoring. I thank my committee membersDr. Yuan and Dr. van Engelen for reviewing this thesis and subsequent valuablesuggestions. I also thank Wankang Zhao for his assistance. The interface describedin this thesis is implemented by Wankang Zhao.

iii

TABLE OF CONTENTSList of Figures : viAbstract : vii1. INTRODUCTION : 12. RELATED WORK : 53. VISTA'S OPTIMIZATION ENGINE : 74. FUNCTIONALITY OF THE INTERACTIVE COMPILATIONSYSTEM : 94.1 Viewing the Low-Level Representation . 94.2 Directing the Order and Scope of the Optimization Phases 114.3 Specifying Code-Improving Transformations by Hand 134.4 Undoing Previously Applied Transformations 165. SUPPORTING VIEWING OF TRANSFORMATIONS : : : : : : : : 185.1 Supporting Viewing of Transformations in Assembly Mode 195.2 Inter-Process Communication between Vpo and the User Interface . . . 195.2.1 Framework of the Main Function . 205.2.2 Protocols from Vpo to the Viewer . 216. DIRECTINGTHEORDERAND SCOPEOF THEOPTIMIZATIONPHASES : 246.1 Protocol from the Viewer to Vpo . 246.2 Modi�cations to Vpo . 257. SUPPORTING LOOP INFORMATION QUERIES : : : : : : : : : : : : 298. SUPPORTING HAND-SPECIFIED TRANSFORMATIONS : : : 328.1 Related Messages . 328.2 Hand-Speci�ed Changes at the Basic Block Level 338.3 Hand-Speci�ed Changes at the Instruction Level 33iv

8.3.1 Translating an Assembly Instructions to an Encoded RTL 348.3.2 Translating a Human-Readable RTL into an Encoded RTL 348.3.3 Syntax and Semantic Check . 358.3.4 Update Program Representation . 359. REVERSINGPREVIOUSLYAPPLIEDTRANSFORMATIONSOR CHANGES : 379.1 Related Messages . 389.2 Data Structure . 389.3 Modi�cations to Vpo . 4010. DIAGNOSING PROBLEMS : 4210.1 Client Simulator . 4210.2 Diagnosing Problems when Undoing Transformations 4310.3 Check the Consistency of the Control Flow . 4411. FUTURE WORK : 4512. CONCLUSIONS : 47APPENDICESA. PROTOCOLS OF MESSAGES FROM VPO TO THE USERINTERFACE : 48B. PROTOCOLS FROM USER INTERFACE TO THE COMPILER 52REFERENCES : 55BIOGRAPHICAL SKETCH : 57

v

LIST OF FIGURES1.1 Overview of the Interactive Compilation Process 34.1 User Interface Depicting a History of the Compilation Phases Performed 104.2 User Interface for Specifying a Sequence of Optimization Phases 124.3 User Interface for Specifying a Transformation by Hand 154.4 Example of a Hand-Speci�ed Transformation . 165.1 Main Function Framework . 216.1 Algorithm for Reading User Commands . 266.2 Algorithm for Performing User Requests on a Function 287.1 An Example with Nested Loops . 319.1 Data Structures Used for Undoing Transformations 399.2 Algorithm to Undo a Change . 4110.1 Algorithm to Simulate the User Interface . 43

vi

ABSTRACTThis thesis describes the modi�cations to a compiler to support an interactivecompilation paradigm. Unlike traditional compiler systems where the smallest unitof compilation is typically a function and the programmer has no control over the op-timization process other than what optimizations to apply, an interactive compilationsystem opens the optimization process and gives the application programmer, whennecessary, the ability to �nely control it. In particular, we allow the applicationdeveloper to (1) direct the order and scope in which the optimization phases areapplied, (2) specify code-improving transformations by hand, (3) undo previouslyapplied transformations, and (4) support user-speci�ed queries.

vii

CHAPTER 1INTRODUCTIONThe problem of automatically generating acceptable code for embedded micro-processors is much more complicated than for general-purpose processors. First,embedded applications are optimized for a number of con
icting constraints, suchas speed, code size, and power consumption. In fact, in many applications, thecon
icting constraints of speed, code density, and power consumption are managedby the software designer writing and tuning assembly code. Unfortunately, theresulting software is less portable, less robust, and more costly to develop andmaintain. Second, embedded microprocessors often have specialized architecturalfeatures that make optimization and code generation di�cult [13]. While someprogress has been made in developing high-level language compilers and embeddedsoftware development tools, most embedded applications are still coded in assemblylanguage because current compiler technology cannot produce code that meets thecost and performance goals for the application.This thesis presents a new compilation paradigm that we believe can achieve thecost/performance tradeo�s (i.e., size vs. power vs. speed vs. cost) demanded forembedded applications. The traditional compilation framework has a �xed order inwhich the optimization phases are executed and there is no control over individualtransformations, except for compilation
ags to turn code-improving phases on oro�. In contrast, our compilation framework, called vista (Vpo Interactive Systemfor Tuning Applications) gives the application user the ability to �nely control thecode-improvement process. 1

We had the following goals when developing the vista compilation framework.First, the user should be able to direct the order of the compilation phases thatare to be performed. The order of the compilation phases in a typical compiler is�xed, which is unlikely to be the best order for all types of applications. Second,hand-speci�ed transformations should be possible. For instance, the user may providea sequence of instructions that vista inserts and integrates into the program. Weare not aware of any compiler that allows a user such direct and �ne control overthe optimization process. Third, the user should be able to undo code-improvingtransformations previously applied since a user may wish to experiment with otheralternative phase orderings or types of transformations. Finally, the low-levelprogram representation should appear in an easily readable display. The useof dynamically allocated structures by optimizing compilers and the inadequatedebugging facilities of conventional source-level symbolic debuggers makes it di�cultfor a typical user to visualize the low-level program representation of an applicationduring the compilation process. To assist the user when interacting with theoptimization engine, vista should provide the ability for the user to view the currentprogram representation and any relevant compilation state information (i.e., liveregisters, available registers, def-use information, etc.).Beyond vista's primary purpose of supporting development of embedded systems,it has several other uses. First, vista can assist a compiler writer to develop newlow-level code-improving transformations. The ability to specify transformationsby hand can help a compiler writer to prototype new low-level code-improvingtransformations. The ability of viewing low-level representations can help a compilerwriter diagnose problems when developing new transformations. In vista, when atransformation is applied, the exact portion of the representation that is alteredwill be indicated in the viewer. This feature can assist the compiler writer inidentifying the problem. Second, it can help compiler writers in understanding theinteraction and interplay of di�erent optimizations. Finally, an instructor or educator2

File

Source

Compiler
User

Interface

Selections

Program Representation
Information

Display

Optimization Requests
and Queries

Program

Representation

Assembly

File
User

Saved

State

Figure 1.1. Overview of the Interactive Compilation Processteaching compilation techniques can use the system to illustrate code-improvingtransformations to students.Fig. 1.1 depicts a high-level overview of the
ow of information in the interactivecompilation system. The user would initially specify a source �le to be compiled.The user retains control over the code-improvement process by specifying requeststo the compiler, which includes the order of the optimization phases and actualtransformations that are performed. The compiler responds to optimization requestsby performing the speci�ed actions and sends information about the changes tothe program representation back to the user interface. Likewise, the compilersends information regarding queries of the program representation state to the userinterface. At some point a user session may be terminated and the current stateof the program representation is saved to a �le to enable future updates. The usermay also wish to save multiple optimized versions to contrast their performance.Eventually, the user may be satis�ed with the generated code and can produce theassembly. In addition, the user may wish to collect some preliminary results aboutthe performance of the generated code, which can be accomplished by producingassembly that is instrumented with additional instructions that collect a variety ofmeasurements during the program's execution.The remainder of this thesis is structured as follows. Chapter 2 reviews relatedwork regarding alternative compilation paradigms and user interfaces for compilers.3

Chapter 3 presents the functional capabilities of vista. Chapters 4 to 9 discussimplementation issues that were involved in achieving these functionalities. Chapter10 presents some techniques used in diagnosing problems during the implementation.Chapter 11 discusses future work in this topic and Chapter 12 gives the conclusionsfor the thesis.

4

CHAPTER 2RELATED WORKSome systems have been developed that are used for simple visualization of thecompilation process. The UW Illustrated Compiler [1], also known as icomp, hasbeen used in undergraduate compiler classes to illustrate the compilation process.The xvpodb system [6, 7] has been used to illustrate low-level code-improving trans-formations in the vpo compiler system [4]. Xvpodb has also been used when teachingcompiler classes and to help ease the process of retargeting the compiler to a newmachine or diagnosing problems when developing new code-improving transforma-tions. Unlike these visualization systems, vista allows a user to interactively controlthe optimization process.There have also been several systems that provide some visualization supportfor the parallelization of programs. These systems include the pat toolkit [2],the parafrase-2 environment [16], the e/sp system [8], and a visualization systemdeveloped at the University of Pittsburgh [11]. All of these systems providesupport for a programmer by illustrating the possible dependencies that may preventparallelzing transformations from occurring. A user can inspect these dependenciesand assist the compilation system by verifying whether a dependency is valid or canbe removed.In contrast, vista supports interactive compilation on a low-level representation(machine instruction) as opposed to a high-level representation (source code). Be-cause of the di�culty of producing code for embedded processors that meets thecon
icting constraints of space, speed, and power consumption, there is a wide body5

of research that has advanced the state of the art [13, 14, 12, 10, 17]. There hasalso been some work on experimenting with optimization phase ordering and othertechniques to produce better code. Coagulating code generators have been developedthat use run-time pro�les to perform optimizations phases on the most frequent sec-tions of the code before the less frequently executed sections [15]. Genetic algorithmshave been used to experiment with di�erent orders of applying optimization phases inattempt to reduce code size [9]. vista allows a user to interactively experiment withthe order of optimizations and the region in which the optimizations are performed.

6

CHAPTER 3VISTA'S OPTIMIZATION ENGINEVista's optimization engine is based on vpo, the Very Portable Optimizer [3, 5].Vpo has several properties that make it an ideal starting point for realizing the vistacompilation framework.First, vpo performs all code improvements on a single low-level representationcalled RTLs (register transfer lists). RTL is a low-level, machine and languageindependent representation that encodes machine-speci�c instructions. The com-prehensive use of RTLs in vpo has several important consequences. One advan-tage of using RTLs as the sole intermediate representation is that many phaseordering problems are eliminated. In contrast, a more conventional compiler sys-tem will perform optimizations on various di�erent representations. For instance,machine-independent transformations are often performed on intermediate code andmachine-dependent transformations are often performed on assembly code. Localtransformations (within a basic block) are often performed on DAG representationsand global transformations (across basic blocks) are often performed on three-addresscodes. Thus, the order in which optimizations are performed is �xed. By only usingRTLs, most optimizations can be invoked in any order and allowed to iterate until nofurther improvements can be found, which is one of the goals that we want to achievein vista. In addition, the use of RTLs allows vpo to be largely machine-independent,yet e�ciently handle machine-speci�c aspects such as register allocation, instructionscheduling, memory latencies, multiple condition code registers, etc. Vpo, in e�ect,improves object code. Machine-speci�c optimization is important because it is a7

viable approach for realizing high-level language compilers that produce code thate�ectively balances target-speci�c constraints such as code density, power consump-tion, and execution speed. Another advantage of using RTLs is that the e�ect of anoptimization can be easily understood since each RTL represents an instruction onthe machine.A second important property of vpo is that it is easily retargeted to a new machine.Retargetability is key for embedded microprocessors where chip manufacturersprovide many di�erent variants of the same base architecture and some chips arecustom designed for a particular application. To retarget vpo to a new machine,one must write a description of the architecture's instruction set, which consists ofa grammar and semantic actions. It is easier to write a machine description foran instruction set than it is to write a grammar for a programming language. Thetask is further simpli�ed by the similarity of RTLs across machines, which permitsa grammar for one machine to be used as the model for a description of anothermachine. Since the general RTL form is machine independent, the algorithms thatmanipulate RTLs are also machine independent, which makes most optimization codemachine independent. So the bulk of vpo is machine- and language- independent.Overall, no more than 15 percent of the code of vpo may require modi�cation tohandle a new machine or language.A third property of vpo is that it is easily extended to handle new architecturalfeatures as they appear. Extensibility is also important for embedded chips wherecost, performance, and power consumption considerations often mandate develop-ment of specialized features centered around a core architecture.A fourth and �nal property of vpo is that vpo's analysis phases (e.g. data
owanalysis, control
ow analysis, etc.) were designed so that information is easilyextracted and updated. This property makes writing new optimizations easier andit allows the information collected by the analyzers to be obtained for display.8

CHAPTER 4FUNCTIONALITY OF THE INTERACTIVECOMPILATION SYSTEMIn this section we describe the functionality of vista from a user's viewpoint.This functionality includes viewing the low-level representation, controlling when andwhere optimization phases are applied, specifying code-improving transformations byhand, and undoing previously applied transformations.4.1 Viewing the Low-Level RepresentationFig. 4.1 depicts the user interface that was developed to support low-levelinteractive compilation. The programmer is presented with a view of the programrepresentation on the right portion of the user interface. This representation is shownin basic blocks, which is a common method for displaying low-level control
ow.Within the basic blocks are machine instructions. The programmer has the option todisplay these instructions as RTLs or assembly code. Displaying the representationin RTLs may be preferred by compiler writers, while assembly may be preferredby embedded systems application developers who are familiar with the assemblylanguage for a particular machine. In addition, options are provided to displayadditional information about the program representation that a compiler writer may�nd useful.The left side of Fig. 4.1 can vary depending upon the speci�c action requested.This �gure shows the default type of display. Other types will be shown in subsequentsections. The function being compiled and the current transformation are indicated9

Figure 4.1. User Interface Depicting a History of the Compilation Phases Performedat the top of the left portion of the user interface. Each transformation consists of aset of changes, where the program representation before and after the transformationare semantically equivalent. A transformation is displayed in a before or after state.In the before state, the transformation has not yet been applied. However, theinstructions that are about to be modi�ed or deleted are highlighted. In the afterstate, the transformation has been applied. At this point, the instructions that havebeen modi�ed or inserted are highlighted. This highlighting allows a user to quicklygrasp the e�ects of each individual transformation. The use of before and after stateshas been used in previous graphical compilation viewers [6, 7].The bottom portion of the left side of Fig. 4.1 contains a variety of buttonsrepresenting selections that the user can make. The >, >>, >| buttons allow a user toadvance through the transformations that were performed. The actions associatedwith the |<, <<, < buttons are described in Section 4. The > button allows a user todisplay the next transformation. A user can display an entire transformation (beforeand after states) with two clicks of this button. The >> button allows a user to10

advance to the next phase. A phase is a sequence of transformations applying thesame type of transformation. The >| button allows the user to view the programrepresentation after advancing through all of the transformations that have beenperformed.The middle portion of the left side of Fig. 4.1 shows the history of optimizationphases that have been performed, which includes phases that have been applied in theuser interface and the phases yet to be applied. For instance, the state represented inthe �gure is in the before state of the fourth transformation of the second phase. Wehave found that displaying a history of optimization phases in this manner helps togive a user some context to the current state being represented. Such visualizationof the low-level representation provides the information and insight that can simplifythe debugging of problems with the optimizer.4.2 Directing the Order and Scope of the OptimizationPhasesA programmer typically has little control over the order in which optimizationphases are applied by a compiler. Usually the only control a programmer has is theability to turn a compiler optimization on or o� for the entire compilation of a �leor function. For some compilation units, one phase ordering may produce the mostsuitable code, while a di�erent phase ordering may be best for other compilationunits. Vista provides the ability to specify what optimizations to apply to a programregion and the order to apply them. A knowledgeable embedded systems applicationdeveloper can use this capability for critical program regions to specify that the mostappropriate transformations are applied in the most advantageous order.The left portion of the window shown in Fig. 4.2 depicts the user selectingoptimization phases. The user can make selections from a number of di�erentrequired and code-improving transformation phases that are applied in the backend of a compiler. As each phase is selected, it is added to a numbered list of11

Figure 4.2. User Interface for Specifying a Sequence of Optimization Phasesoptimization phases. In addition, the user is allowed to specify control over whichselected phase is speci�ed to be performed next. For instance, the �gure showsthat as long as changes to the representation are detected, the compiler is directedto repeatedly perform register allocation, common sub-expression elimination andinstruction selection. Thus, we are in essence providing the programmer with theability to program the optimizer in an optimization phase language. Once the usercon�rms the selection of the sequence of phases to be performed, this sequence is sentto the compiler, which performs the phases in the speci�ed order and sends a series ofmessages back to the user interface describing the resulting program representationchanges.As shown in the left side of the �gure, the user cannot select some of the phases.The reason for this is due to restrictions in the compiler concerning the order inwhich the phases can be performed. For instance, the compiler does not allow theregister allocation phase (allocating variables to registers) to be selected until theregister assignment phase (assigning pseudo registers to hardware registers) has beencompleted. Rather than allowing a user to make selections and later informing the12

user that the selections were invalid, we decided to prevent the user from making aninvalid selection.In addition to specifying the order of the optimization phases, a user canalso restrict the scope of the region of the program representation in which anoptimization phase is applied. The user can select a number of basic blocks that theoptimization phases are to be applied by just clicking within the basic blocks. Forloop optimization phases, such as minimize loop jumps, loop invariant code motion,loop strength reduction, recurrence elimination, and induction variable elimination,it only makes sense to select a complete loop inside the scope. So we provide theuser the ability to query for loops information. Fig. 4.2 shows a loops informationwindow which displays all the loops in the function being optimized. The bracketsaround a basic block indicates that it is the header of an inner loop. A user can selecta complete loop just by clicking the corresponding loop information in this window.This has the e�ect of selecting all of the basic blocks within the loop. Some phasescannot have their scope restricted due to the method in which they were implementedin the compiler or how they interact with other phases (e.g. �ll delay slots). Notethat by default the scope in which a phase is applied is unrestricted (i.e. the entirefunction).4.3 Specifying Code-Improving Transformations by HandMany embedded architectures have special features (e.g., zero overhead loopbu�ers, modulo address arithmetic, etc) not commonly available on general-purposeprocessors. Automatically exploiting these features is di�cult due to the high rate atwhich these architectures are introduced and the time required for a highly optimizingcompiler to be produced. Yet generating an application entirely in assembly code byhand is not an attractive alternative due to the labor involved. It would be desirableto have a system that supports traditional compiler optimization phases and the13

ability to hand-specify transformations that are not automatically performed by acompiler.Fig. 4.3 shows the interface used to support specifying code-improving trans-formations by hand. The user selects an instruction with a GUI pointing device(e.g. mouse) and a list of possible types of hand-speci�ed changes that can beperformed associated with that instruction is displayed. As each change is selected,the change is sent to the compiler, which checks it for validity. For instance, ifan instruction is inserted, then the syntax is checked to make sure it is valid. Anumber of semantic checks are also necessary. For instance, if the target of a branchis modi�ed, then the compiler checks to ensure that the target label in the branch isactually a label of a basic block. The compiler responds to each change by indicatingif the change was valid and sending the appropriate change messages to the userinterface so the presentation of the program representation can be updated. Theapproach of immediately querying the compiler for the validity of each change atthe point the change was speci�ed allows the compiler to ensure that the user nevercauses the program representation to be placed in an inconsistent state. We alsoplan to eventually integrate vista with the ability to validate entire transformations,where the semantic e�ects of a region of code before and after a hand-speci�edtransformation are determined to be equivalent [19].Fig. 4.4 shows an example of the improvement that can be obtained by specifyinga transformation by hand. Fig. 4.4(a) depicts a loop in the whetstone benchmarkand Fig. 4.4(b) shows the SPARC assembly code generated for the call to the sqrtfunction. The SPARC calling sequence speci�es that the �rst six words of argumentsbe passed in integer registers. Moving a double-precision value from a pair of
oating-point registers to integer registers on the SPARC requires accesses to memorysince a
oating-point register and an integer register cannot be referenced in the sameinstruction. A knowledgeable programmer can determine that the sqrt functioncan be accomplished with the fsqrtd instruction that is available on the SPARC.14

Figure 4.3. User Interface for Specifying a Transformation by HandFig. 4.4(c) shows that the call and four preceding instructions can be replaced witha single instruction by performing this hand-speci�ed transformation.The user also can query the compiler for information that can be helpful whenspecifying a transformation by hand. For instance, a user may wish to know whichregisters are live at a particular point in the control
ow. The query is sent to thecompiler, the compiler obtains the requested information (calculating it on demand)and sends it back to the user interface to be displayed. Thus, the compiler can beused to help ensure that the changes associated with hand-speci�ed transformationsare properly made or to guide the user in generating valid and more e�cient code.The ability to specify low-level code-improving transformations by hand hasanother interesting application. Unlike high-level code-improving transformations, itis di�cult to prototype the e�ectiveness of low-level code-improving transformations.One cannot simply modify the source code of an application to gauge the e�ectivenessof most low-level transformations. Often architectural features may need to beexploited and these features can only be accessed after the low-level representation15

...
st %f0,[%sp+68]
st %f1,[%sp+72]
ld [%sp+68],%o0
ld [%sp+72],%o1
call sqrt
...

(b) Generated Code for the sqrt Call

(a) Loop in Whetstone

 x = sqrt(exp(log(x)/t1));
bc2: for (i = 1; i <= n11; i++)

...
fsqrtd %f0,%f0
...

(c) After Hand-Specifing ChangesFigure 4.4. Example of a Hand-Speci�ed Transformationhas been generated and other code-improving transformations have been applied.However, vista allows a compiler writer to specify the proposed transformation byhand at the appropriate point in the compilation process, perform additional opti-mization phases in the compiler, generate assembly code, and gather measurements.Thus, one can easily prototype low level code-improving transformations using vista.4.4 Undoing Previously Applied TransformationsOne issue with an interactive compilation system is how to allow an embeddedsystem application developer to experiment with di�erent orderings of phases and/orhand-speci�ed transformations in an attempt to improve the generated code. Inorder to support such experimentation, we provide the ability for the user to reversepreviously made decisions regarding phases and transformations that have beenspeci�ed.This undoing of transformations is accomplished using the (|<, <<, <) buttons,as previously shown in Fig. 4.1. The (|<, <<, <) buttons allow a user to undo thetransformations that were previously applied. The < button allows a user to displaythe previous transformation. The << button allows a user to back up to the previousoptimization phase. Likewise, the |< button allows the user to view the programrepresentation before any transformations have been applied. The ability to backup and view previously applied transformations is very useful for understanding howcode was generated or to grasp the e�ects of individual transformations.16

If the user invokes an optimization phase or hand-speci�ed transformation whileviewing a prior state of the program representation, then the subsequent transfor-mations will be removed and the state of the program representation in the compilerwill be adjusted to re
ect the currently viewed state. Thus, the user has the abilityto permanently undo previously applied phases and transformations.The ability to undo transformations can also be useful in a non-interactive com-pilation environment. A traditional compiler could use this feature to exhaustivelyattempt a variety of optimizations and select the phase ordering that produces themost e�ective code. In addition, it is sometimes easier to perform a portion of atransformation before completely determining whether the transformation is legal orworthwhile. Being able to undo changes to the program representation will facilitatethe development of such transformations.

17

CHAPTER 5SUPPORTING VIEWING OFTRANSFORMATIONSXvpodb, a X-Window based visualization tool, had previously been developed tosupport the analysis of optimizations performed by the vpo optimizer. It is a graphicaloptimization viewer that can display the state of the program representation beforeand after transformations. The xvpodb viewer is a separate program that can executeconcurrently with the vpo optimizer.In order to view the program representation, the vpo optimizer �rst passed a set ofmessages that describes the initial state of all RTLs in the function currently beingcompiled before performing optimizations. After receiving these messages, xvpodbdisplayed this initial set to the user. Subsequently, messages containing descriptionsof all changes to the RTLs as they occur are passed to xvpodb, which stores them forlater interpretation at the request of the user. All of these messages passed from vpoto xvpodb were accomplished via system calls using Unix sockets.The implementation details of xvpodb were described in [7]. In vista, we usedthe similar techniques as in xvpodb, that is, using Unix sockets to pass programrepresentation and changes from vpo to the viewer. The existing message-passingframework of xvpodb made this task easier. The following sections in this chapterdescribe some changes that we made to support our new viewer, as well as newfeatures in viewing.
18

5.1 Supporting Viewing of Transformations in AssemblyModeIt is likely that most users would prefer viewing program representations inassembly language as opposed to viewing them in RTLs. Thus, we decided to addthe functionality of viewing the program representation in assembly language. Wehave two modes of viewing: assembly and RTLs. The user would be given the optionto select which mode he/she prefers. There are two things that we did to supportthis functionality.First we provided the ability to translate an encoded RTL into an assemblyinstruction. In vpo, we have a machine description, which will parse the encoded RTL.The machine description is used to check if the encoded RTL is a legal instructionand to print the RTL to standard output as an assembly instruction. So we modi�edthe machine description to output the assembly instruction to a global characterstring instead of standard output. This string can then either be used in passingmessages or being printed to standard output.Second, in order to view the instructions in the assembly language for the machine,we augmented the existing protocol to send the assembly instruction after theRTL in the messages that contain RTLs. The user interface keeps both types ofrepresentation for each instruction.The right side of Fig. 4.1 shows the program representation in RTL mode, whilethe right side of Fig. 4.2 shows the program representation in assembly mode. So theuser is o�ered the
exibility to view the program representation in his/her favoriteformat.5.2 Inter-Process Communication between Vpo and theUser InterfaceThe user interface was implemented using Java to enhance its portability. Theversion used was Java 1.2, which includes the Java Swing user interface toolkit to19

create graphical user interfaces. Java is often interpreted rather than compiled,which can result in slower execution. We found that the aspects of the interface thatlimit its speed are the displaying of information and the communication with thecompiler. The performance of the interface was satisfyingly fast, despite having notbeen implemented in a traditionally compiled language.We separated the compiler and the user interface into di�erent processes forseveral reasons. First, we were concerned that the amount of memory used by thecompiler and the user interface may be excessive for a single process. Second, theuse of separate processes provides additional
exibility. For instance, the sequenceof change messages sent from the compiler to the user interface can be saved and asimple simulator has been used instead of the compiler to facilitate demonstrationsof the interface. Likewise, a set of user commands can be read from a �le by a simplesimulator that replaces the user interface, which can be used to support batch modeexperimentation with di�erent phase orderings. Finally, separating the compilerand the user interface into separate processes allows users to access the interactivecompilation system on a di�erent machine from which the compiler executes. Thecommunication between the compiler and the user interface was accomplished usingUNIX sockets.5.2.1 Framework of the Main FunctionWe developed a main function to support communication with the user interface.Fig. 5.1 contains pseudocode that depicts the logic for the main function.
20

main()f Create a socket;Bind this socket with a certain port number;Listen to this socket;WHILE (1) DOAccept a listening socket;Fork a child process to handle new connection;IF (Child Process) THENPerform User request;Exit;END IFEND WHILEg Figure 5.1. Main Function FrameworkA port number is assigned to our vpo program. The optimizer runs as a server,listening to the socket. If there is a request from the user interface requesting forconnection of this server, our vpo will accept this connection, and fork a child processto serve the user interface. The parent process will continue to listen for otherconnections. With this typical server framework, vpo could even serve multiple userrequests in parallel.5.2.2 Protocols from Vpo to the ViewerAs a client/server system, an important aspects to ensure reliable communicationbetween client and server is de�ning communication protocols. The protocol mustbe de�ned carefully and precisely. In the vista system, there are several issues thata�ect the de�nition of the protocols.First, the protocols that we de�ned must be robust. That is, when an erroroccurs during the connection, the server cannot be crashed. Because of this reason,we considered many error conditions that might occur, and de�ned error messageprotocols between the client and the server. The error message is de�ned as below:21

< error msg > ::= ERROR MSG error type.The error type is de�ned both in the user interface and the compiler, so that bothof them can give a correct error message.Second, the messages must be short to acquire reasonable speed. The aspectsof the interface that limits its speed are the displaying of information and thecommunications with the compiler. To shorten the messages, each type of messagesbegins with a single character, which identi�es the type of this message. The delimiterof each message component is just a single blank. For example, the \delete RTL"message is de�ned as:< del rtl msg >::= DELRTL < rtl id >< block id >,in which DELRTL is de�ned as a single character '-'. When the user interface seesthis character, it knows that this is a \delete RTL" message, so that it can read inrtl id and block id accordingly.Finally, to simplify the passing of messages and diagnosing problems, all thecommunication between the compiler and the user interface were accomplished usingcharacter strings. Binary number must be converted into character strings beforebeing transferred. There are several problems related with passing binary values.1. Di�erent implementations store binary numbers in di�erent formats. Forexample, some implementations store binary numbers in big endian byte order,while some implementations store binary numbers in little endian byte order.2. Di�erent languages store the same data type di�erently. For example, thesize of an integer in Java is always 32 bits, while that in C is di�erent amongdi�erent architectures.3. Di�erent implementations pack structures di�erently.22

Although we can explicitly de�ne the binary formats of the supported datatypes(number of bits, big or little endian) and pass all binary data across socketsin this format, it is quite complicated. By only allowing text strings passed throughsockets, the di�culties of passing binary numbers are eliminated.Appendix A de�nes the protocol of the messages that are transferred from vpo tothe user interface. The protocol de�nes the initial program representation messages,transformations, and changes that occur in transformations. After the communi-cation is established, the compiler �rst sends the initial set to the user interface.Then it reads commands from the user interface, and do the speci�ed transformationphases. Finally it sends the phases to the user interface. Each phase consists of oneor more transformations, while each transformation consists of one or more changes.To reduce message tra�c, empty transformations (transformations which containno changes) and empty phases (phases which contain no transformations) are notallowed.In this protocol, each RTL has to be uniquely identi�ed to support messagesrelated with RTLs during transformations. A global variable max rtl id was used torecord the maximum number of RTLs currently used. When an RTL is allocated,max rtl id is increased by 1, and then assigned to the RTL. We used a similar strategyto uniquely identify each basic block.

23

CHAPTER 6DIRECTING THE ORDER AND SCOPE OFTHE OPTIMIZATION PHASESOne advantage of using RTLs as the sole intermediate representation is that manyphase ordering problems are eliminated. By only using RTLs, most optimizations canbe invoked in any order and allowed to iterate until no further improvements can befound. In other words, using RTLs as the only intermediate representation facilitatesthe implementation of the ability to interactively direct the order of the optimizationphases. The ability to limit the scope of the optimization phases also gives the usermore control over the optimization process. To implement these capabilities, wede�ned the protocol for the commands being passed from the viewer to the compiler.Numerous modi�cations were also made to vpo to support these functions.6.1 Protocol from the Viewer to VpoBesides the protocol from the compiler to the viewer, we also de�ned a protocolfrom the user interface to the compiler. This protocol de�ne sequences of commandsthat a user can select, including phase order command sequences, hand-speci�edtransformation sequences, undo command sequences, loops query sequences, andso on. Each sequence is terminated by QUIT TRANS. A phase order commandsequence is de�ned as below:normal sequence ::= numblocks ids commands,
24

where numblocks indicates the number of blocks to which the sequence of optimiza-tions is applied, ids indicates the unique identi�ers of these blocks, and commandsindicates the sequence of optimization phases, which will be performed in order. Azero value of numblocks means to apply the transformation to all the basic blocksin the function. After receiving the commands, vpo will perform this sequence ofoptimization phases, send information back to the user interface, and wait for anothersequence. No more sequences of commands will be issued from the user interface forthe optimization of a function when a STOP TRANS is encountered. The completeprotocol from the user interface to vpo is de�ned in Appendix B.6.2 Modi�cations to VpoThere were numerous modi�cations to vpo that were required to support inter-active speci�cation of the order of optimization phases. First, a function calledgetcmds() is used to read in a sequence of commands from the viewer. Then thecommands are parsed and stored in a data structure to be used during the interactiveoptimization. Fig. 6.1 shows the pseudo code of getcmds function. It implements theprotocol from the viewer to the compiler.Second, the high-level functions in vpo to perform the optimization phases for afunction had to be rewritten. Vpo had a �xed order, depending upon the compilation
ags selected, in which optimization phases were attempted. Fig. 6.2 shows therevised logic used for responding to user requests. It is used to support directingthe order of the optimization phases, and limiting the scope of the optimizationphases, which are described in this chapter. It is also used to support queries,hand-speci�ed transformations and reversing previous applied transformation, whichwill be discussed in later chapters.After composing a sequence of optimization phase commands, this sequence issent by the user interface to vpo and the compiler interprets these commands untilan exit command is encountered. The compiler �rst sets the inscope �eld in each basic25

//Read the first part of the commands, e.g. number of blocks//followed by block IDsRead in the �rst element E.IF E is STOP TRANS or QUIT TRANS THENRETURN.ELSE IF E is UNDO TRANS OR UNDO CHANGERead in the number of transformations (or changes) to reverse.ELSE IF E is the number of blocks that the sequence will applyRead in each block ID.ELSEERROR.END IF//Read in the sequence of commands that follows block IDsDORead in an element E.IF E is IF TRUE GOTO TRANS OR IF FALSE GOTO TRANSRead in the destination transformation number.END IFWHILE E is not STOP TRANS AND E is not QUIT TRANSFigure 6.1. Algorithm for Reading User Commandsblock to indicate that it is in the scope that the transformations are applied. Thenthe command sequence is applied to this scope. When applying the transformations,only the basic blocks in the scope can be changed. The branch command allows auser to specify a transfer of control based on whether or not changes to the programrepresentation were encountered. Before each optimization phase, vpo performs theanalysis needed for the phase that is not already marked as valid. After performingthe optimization phase, vpo marks which analysis could possibly be invalidated bythe current phase. Identifying the analysis needed for each optimization and theanalysis invalidated by each optimization was accomplished in a table-driven fashionto facilitate maintenance of the compiler.We had to also identify which optimization phases that were required duringthe compilation (e.g. �xing the entry and exit to conform to calling sequence26

conventions), which optimization phases could only be performed once (e.g. registerassignment), and the restrictions on the order in which optimization phases couldbe applied. Fortunately, many ordering restrictions required by other compilersare not required in vpo since all optimization phases are applied on a singleprogram representation (RTLs). The ordering restrictions that were required wereaccomplished in a table-driven fashion.

27

Read request from the user.WHILE (user selects additional requests to be performed) DOIF user selected a sequence of phases to be performed THENFOR Each basic block in the scope speci�edSet its inscope �eld to TRUE.pc = 0.WHILE commands[pc].oper != EXIT DOIF commands[pc].oper == BRANCH THENAdjust pc according to branch command.CONTINUE.END IFPerform analysis needed for current phase.SWITCH (commands[pc].oper)CASE BRANCH CHAINING:remove branch chains.BREAK....END SWITCHMark analysis invalidated by current phase.pc += 1.END WHILEELSE IF user selected a hand-speci�ed change THENPerform hand-speci�ed change selected by the user.ELSE IF user selected to reverse transformations THENReverse transformations as speci�ed by the user.ELSE IF user requested a query THENCalculate query information and send to user interface.Read request from the user.END WHILEFigure 6.2. Algorithm for Performing User Requests on a Function
28

CHAPTER 7SUPPORTING LOOP INFORMATIONQUERIESTo specify the scope that the transformations are applied, the user may needinformation about the loops in the function being optimized. For example, it doesnot make sense to apply a loop transformation to only part of a loop. This chapterwill discuss the implementation to support loop information queries.The command for a query is de�ned as a unique character. When the compilerreceives this command, it will send loops information back to the user interface. Theprotocols for the loops informationpassed from the compiler to the user interface isde�ned below:< loops msg > ::= BEGINLOOPS < loop msg > + ENDLOOPS< loop msg > ::= LOOP < nesting level >< header id >< inner id > �ENDLOOP< header id > ::= block id< inner id > ::= block id j -header idThe loops information consists of all the loops in the current function. Theinformation for each loop includes its nesting level, header ID, and the IDs of otherbasic blocks in this loop. If there are other nested loops in this loop, only their headerIDs are included in the loop information. The negated number of the header ID isused to distinguish the header of a nested loop and a normal basic block. For29

example, for the basic block structure in Fig. 7.1, the loop message isBEGINLOOPSLOOP 1 2 -3 7 ENDLOOPLOOP 2 3 -4 -5 6 ENDLOOPLOOP 3 4 ENDLOOPLOOP 3 5 ENDLOOPENDLOOPS.The loop message will be passed to the user interface, which displays the messagein the format shown in Fig. 4.2.

30

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8Figure 7.1. An Example with Nested Loops
31

CHAPTER 8SUPPORTING HAND-SPECIFIEDTRANSFORMATIONSAs previously mentioned, the feature of supporting hand-speci�ed transforma-tions was added due to the di�culty of automatically exploiting special featuresof di�erent architectures in embedded systems by a compiler. A hand-speci�edchange, which can be a basic block level change or an instruction level change,can be speci�ed via the user interface. The change is then sent to the compiler,which will check its validity. If the change is valid, the compiler will update theprogram representation and send back actual changes occurred in the compiler to theuser interface. Otherwise, the compiler will just send back an error message. Theprogram representation used by the compiler for an instruction is an encoded RTL.The user enters either human readable RTL or assembly instructions. Translatorswere developed to convert the human readable instructions to encoded RTLs.8.1 Related MessagesThe message related hand-speci�ed transformations is de�ned as below:hand trans ::= HAND TRANS < change > QUIT TRANS.Each hand-speci�ed transformation consists of one change, and ends with aQUIT TRANS. Changes can be classi�ed as block level changes and instructionlevel changes. Block level changes include inserting a basic block, deleting a basicblock, and modifying the label of a basic block. Instruction level changes include32

inserting/deleting/modifying/moving an instruction, while the instruction can beeither in assembly format or in RTL format. The following sections describe theimplementation related with basic block level changes and instruction level changes,respectively.8.2 Hand-Speci�ed Changes at the Basic Block LevelSince we do not need any translators, it was relatively easy to implement hand-speci�ed changes at the basic block level. First, a hand-speci�ed change receivedfrom the user interface has to be checked by the compiler to ensure that it is valid.For example, deleting a non-empty basic block is illegal. If the change is illegal, thecompiler will just send an error message. Otherwise, the compiler will update theprogram representation corresponding to the required change, and then send backthe actual changes to the user interface. One change in a command from the userinterface can result in several changes. For example, inserting or deleting a basicblock can cause changes in the control
ow.8.3 Hand-Speci�ed Changes at the Instruction LevelAfter the compiler receives an instruction level change, it will �rst translate thespeci�ed instruction, whether in RTL or assembly, into an encoded RTL, which isthe format used in the compiler. We developed two translators for this purpose. The�rst translator converts a human readable RTL into an encoded RTL. The secondtranslator converts an assembly instruction into an encoded RTL. The translatedencoded RTL will then be checked by the compiler to verify its validity. This checkincludes ensuring not only that the syntax of an instruction is valid, but also thatits semantics are valid with regard to the rest of the program representation. If thechange is valid, the compiler will update the program representation and send back33

actual changes to the user interface. Otherwise, the compiler will just send back anerror message.8.3.1 Translating an Assembly Instructions to an Encoded RTLWe developed a translator to convert a single assembly instruction into an encodedRTL. It is used when the user modi�es or inserts an assembly instruction using theuser interface. The new assembly instruction will be sent to the compiler, whichcalls the translator to translate it into an encoded RTL before updating the programrepresentation. Each assembly instruction corresponds to one RTL. The translatorwas implemented by checking the operator �rst, and then the operands based on theoperator. After that, a simple syntax check is performed to check if the number andtypes of operands match the operator. Finally an encoded RTL will be generatedaccording to the RTL standard.Registers in RTL are encoded as two characters, based on the register type andregister number. First, the translator reads in the register type and number inassembly. The translator then encodes this register based on its type and number.For a variable, the translator must search the global variable list and the local variablelist to determine the variable type (global or local) and its identi�er number. It thenencodes this variable based on these two attributes of this variable. Constant are notencoded at all.8.3.2 Translating a Human-Readable RTL into an Encoded RTLWe developed a translator to convert a human readable RTL to an encoded RTL.This translator is needed when a user modi�es or inserts an RTL using the userinterface. The new RTL will be transferred in a human-readable form. It must beencoded by the compiler before updating the program representation. This translatoris quite similar to the translator from assembly into encoded RTL. However, since theformat of a human-readable RTL is quite similar to that of its corresponding encoded34

RTL, it was relatively simple to implement. The translator simply reads in each word,and encoded registers, local variables and global variables while scanning the RTL.Since it is di�cult to distinguish between global variable, local variables and labels,we restricted the user to use a special form to identify a global variable or a localvariable. A global variable must be represented as global(variable name). Similarly,a local variable must be represented as local(variable name). For example, L31 inr[8]=HI[L31+4] represents a label. The user can indicate that it represents a globalvariable in r[8]=HI[global(L31)+4], or a local variable in r[8]=HI[local(L31)+4].8.3.3 Syntax and Semantic CheckThe above two translators do not completely check the syntax of a user speci�edinstruction before encoding it. The compiler will check the syntax of the encodedRTL after the translation. It uses the machine description in the compiler to checkif the generated encoded RTL was legal for the machine.Semantic checks related with instruction level changes are required. The semanticcheck of a non-branch instruction is quite straightforward. For a register, the compilerwill check whether this register is de�ned in the system. For a variable, the compilerwill search the global or local variable list to �nd out whether it has been previouslyde�ned. This has to be done before translation. The semantic check of a branchinstruction is more complicated since extra checks are required. The compiler mustensure that a branch instruction is at the end of a basic block. Furthermore, if thebranch instruction contains a label, then the label must exist. Semantic checks wereperformed before the compiler committed to insert, modify, or move an instruction.8.3.4 Update Program RepresentationAfter the compiler determines that the semantics of the instruction is valid, theprogram representation is updated and actual changes are sent back to the userinterface. For a non-branch instruction, one change speci�ed in a command sequence35

will only result in one actual change in the compiler. But for a branch instruction,one change speci�ed in a command sequence may result in several actual changes inthe compiler. For example, inserting a branch at the end of a basic block not onlyresults in inserting an instruction, it can also modify the control
ow of the programrepresentation. These changes will be grouped together as a transformation and sentback to the user interface for consistency.

36

CHAPTER 9REVERSING PREVIOUSLY APPLIEDTRANSFORMATIONS OR CHANGESVista provides the ability to undo previously applied transformations or changesfor two purposes. First, this ability can help the user to experiment with di�erentordering of phases and/or hand-speci�ed transformations in an attempt to improvethe generated code. Second, this feature gives the user the ability to change his/hermind. For normal transformations, the user can request to undo one or morepreviously applied transformations. For hand-speci�ed transformations, the user canrequest to undo one or more previously applied changes. These undo commands aresent to the compiler, which reverses the e�ects of speci�ed number of transformationsor changes.There are several di�culties related with reversing transformations or changes.First, the compiler must have enough and correct information required for reversinga transformation or a change. This requires that each time a change occurs, thecompiler must record the required information correctly. Second, the control
owof the \reversed" program representation must be consistent. For example, whenundoing the e�ect of inserting a basic block, not only should the compiler delete thisbasic block from its program representation, it must also update the control
owinformation of the basic blocks to which it falls through or jumps.
37

9.1 Related MessagesThe messages related with reversing commands from the user interface to thecompiler are de�ned as below:undo command ::= UNDO TRANS < number >undo change ::= UNDO CHANGE < number >.The de�nition of a transformation is the same between the user interface and thecompiler. However, the de�nition of a change is a little di�erent between the userinterface and the compiler. A change speci�ed by a user can result in several changesin the compiler. When the user requests to undo a change, the user interface willidentify the number of actual changes in the compiler corresponding to this change,and send an undo change message to the compiler.9.2 Data StructureIn order to undo previously applied transformations, a linked list structure wasused to keep the history of changes that occurred in the compiler. Fig. 9.1 depictsthis linked list. All changes (additions and deletions) to the linked list occur at thetail.When a phase of transformations is applied, the compiler inserts a BEGINPHASEnode at the beginning. There can be several transformations in one phase. Each timea transformation is applied, a BEGINTRANS node is inserted. Usually there aremultiple changes in a transformation. Each time a change occurs, the change type,as well as the information needed to reverse this change, are stored in the linked list.The end of a transformation is indicated by an ENDTRANS node, while the end ofthe whole phase is indicated by an ENDPHASE node. When the compiler is requiredto undo a transformation, it will search the linked list from the tail and reverse thee�ect of each node until it �nds a BEGINTRANS node. When the compiler is38

required to undo several changes, it will just reverse the speci�ed number of nodesin the linked list.

End Transformation

Begin Phase

Begin Transformation

Change 1

Change 2

Begin Transformation

Change 1

Change 2

Change 3

End Transformation

...

Head Tail

History of Changes

End PhaseFigure 9.1. Data Structures Used for Undoing TransformationsEnough information regarding each change must be saved so its e�ect can bereversed if requested by the user. For instance, if a change re
ects a modi�cationto an instruction, then the compiler must save the previous representation of theinstruction before the modi�cation. If a change re
ects inserting or deleting a basicblock, the previous control
ow information before the change must be saved. So anode in the undo linked list includes the change type, basic block ID, previous labelfor the basic block, previous RTL instruction, previous control
ow information, andso on.
39

9.3 Modi�cations to VpoAs described in the previous section, new data structures must be added to thevpo to store changes needed for reversing purpose. Besides the data structures, thereare two major modi�cations in vpo.First, in each place where a change of the program presentation occurs, code wasadded to record this change. A new node is created �rst. The information needed toundo this change is then stored in this node. Finally this node is added to the tailof the linked list used. Since there are a lot of changes of program representation inthe vpo, modi�cations were required to many parts of the compiler.Second, functions were added to implement the reversing ability. The compiler�rst determines the type of the change being reversed. It reverses the e�ect of thischange based on its type and the information stored in the linked list. Finally, if thechange results in other changes in the control
ow, the control
ow information hasto be recalculated. Fig. 9.2 shows the algorithm to undo a change.Because of the numerous modi�cations in the vpo, the regression test becomesvery important. Each time a new change was added to the compiler, the regressiontest had to be done to ensure that the new change did not introduce errors to thecompiler.

40

SWITCH(type of modi�cation)CASE UPDATEBB:Reorder the RTLs in this basic block to its original order;BREAK;CASE LABELBB:Restore the label;BREAK;CASE MOD LEFT:CASE MOD RIGHT:CASE MOD DOWN:Restore the corresponding pointer;Restore the predecessors of the blocks that it jumps to or falls through;BREAK;CASE NEWRTL:Delete the inserted RTL from RTL list;BREAK;CASE DELRTL:Insert the deleted RTL to original location;BREAK;CASE MOVERTL:Move RTL back to its original location;BREAK;CASE MODRTL:Modify the RTL back to its original value;BREAK;...END SWITCHFigure 9.2. Algorithm to Undo a Change
41

CHAPTER 10DIAGNOSING PROBLEMSOne di�culty in this project was diagnosing problems. Because the user interfaceand the compiler were developed separately, it was always di�cult to locate where aproblem occurs. I needed to work together with the developer of the user interface inorder to �nd out the location of the problematic code. One change in the compilermay a�ect some other unknown parts of the code. So special techniques weredeveloped for diagnosing purposes.10.1 Client SimulatorAs described above, it is always di�cult to �nd out whether a certain problemis in the compiler or in the user interface. Even worse, sometimes the progressof the user interface development is not the same as that of the compiler. Forexample, the compiler may have been updated to implement the functions to supporthand-speci�ed transformations, while this feature in the user interface was still underdevelopment. Instead of wasting time to wait until the user interface has been fullyimplemented, we developed simulators to simulate the user interface for debuggingpurposes.The �rst simulator we developed just reads from a �le. The compiler reads incommands from a �le instead of the user interface. The communication is disabledin this mode and the commands in the �le should also follow the protocol de�nedin Appendix B. When the compiler needs to send information to the user interface,the information is also written to a �le. However, the communication between the42

user interface and the compiler cannot be simulated by this simulator. So we soonmoved to another real client simulator, which is also a separate program written in C.When starting the client simulator, it �rst establishes a communication socket withthe compiler. Then the simulator reads commands from a �le, sends the commands tothe compiler, and reads information back from the compiler. This simulator simulatesmost of the features of the user interface that is needed to debug the compiler.The simulator of the user interface is illustrated in Fig. 10.1Establish a connection with the compiler;Read in initial set from the compiler;Write the initial set to an output �le;IF the compiler is accepting commands THENWHILE not end of the input �leRead in a command sequence from the input �le;Write this command sequence to the compiler;Read information back from the compiler;END WHILEEND IFClose the connection with the compiler.Figure 10.1. Algorithm to Simulate the User Interface10.2 Diagnosing Problems when Undoing TransformationsTo diagnose problems when undoing transformations or changes, we de�ned thefollowing commands:write command ::= WRITE RTLS TRANS �lenamecmp �les command ::= CMP FILES TRANS �lename1 �lename2
43

When testing a certain transformation, the typical sequence of commands is as below:...WRITE RTLS TRANS �lename1TransformationUndo this transformationWRITE RTLS TRANS �lename2CMP FILES TRANS �lename1 �lename2...A write command is inserted before the transformation to write the program repre-sentation to a �le. The transformation is performed, and then reversed. The reversedresult is written to another �le. Finally these two �les are compared to see whetherthey are identical. If so, the reversing of this transformation is successful. Otherwise,the di�erence between these two �les is inspected to debug the problem.10.3 Check the Consistency of the Control FlowBecause of the numerous modi�cations in vpo, it is di�cult to maintain the control
ow consistency of the program representation. For example, it is very easy to deletea basic block without updating the predecessor list or successor list of the relatedbasic block. The inconsistency of the control
ow is di�cult to �nd. So a check cffunction was developed to check the consistency of the control
ow. Each time thecompiler performs a change to the program representation, the compiler writer caninsert a check cf call to check the consistency of the control
ow.
44

CHAPTER 11FUTURE WORKVista is still undergoing development. However, the core features of the systemhave been implemented. This includes the ability to view the low-level programrepresentation, interactively direct the order of the optimization phases, specifycode-improving transformations by hand, undo previously applied transformationsin the compiler, limit the scope in which an optimization phase will be applied, andsupport queries about loop information.A user can currently request queries about loop information. We envision morequeries that are useful, such as live variable information and symbolic expansion ofexpressions at given points in the control
ow. Such requests will be useful whenspecifying transformations by hand or deciding which optimization phases to performnext. Besides these static queries, we also plan to allow a user to query for pro�leinformation, such as call edge counts, basic block counts,
ow edge counts, and soon. This information will be helpful for a user to determine the scope of the programrepresentation on which transformations should be applied. These queries will besent to the compiler, which will obtain the desired information and send it back tothe user interface to be displayed.Currently, a user has to perform a compilation of a �le in a single session. Weplan to eventually allow a user to end a session at any time. The sequence of changesapplied to the program representation will be saved in a con�guration �le. Whenthe user wishes to resume a session later, the corresponding con�guration �le will be45

read in. The past history of the transformations will still be valid as if it were neverinterrupted. This capability will give the user more
exibility when using vista.We also plan to allow a user to achieve more abstract goals. For example, a usermay wish a certain loop to be executed in a given amount of time, or to be compiledin no more than a speci�ed number of bytes, or to consume a maximum amount ofpower. The compiler will try di�erent combinations of optimizations in an attemptto �nd the combination that satis�es the user's goals.

46

CHAPTER 12CONCLUSIONSThis thesis describes the modi�cations made to vpo to support a new interactivecompilation paradigm to give the user the ability to �nely control an optimizationprocess. This modi�ed vpo is used in a compilation framework called vista. Itsfeatures include the ability to graphically display the low-level representation of aprogram, allow a user to interactively direct the order and scope of the optimizationphases, support the hand speci�cation of code-improving transformations, undopreviously applied transformations, and allow a user to query the state of the programrepresentation. This system can be used by embedded systems developers to tuneapplication code, by compiler writers to debug errors and/or prototype proposedcode-improving transformations, and by instructors or educators to illustrate code-improving transformations to students learning compilation techniques.

47

APPENDIX APROTOCOLS OF MESSAGES FROM VPO TOTHE USER INTERFACEBelow is the de�nition of the syntax of the messages sent from vpo to the userinterface. The de�nition of many of the de�ned constants (words in capital letters)can be found in view.h.< compilation > ::= < function > �< end compilation msg >< function > ::= < begin func msg >< initialset >(< phase > j < valid response msg > j < loops msg >)�< end func msg >< initialset > ::= < initbasicblock > �< end init set msg >< initbasicblock > ::= < new bb msg >[< new bbleft msg >][< new bbright msg >]< rtl init msg > �< phase > ::= < begin phase msg >< transformation > +< end phase msg >[< end seq msg >]< transformation > ::= < begin trans msg >< change > +< end trans msg >< rtl init msg > ::= VET RTL < rtl id >< rtl type >< rtl val > [< assem val >]48

[VET RTLLINKS < rtl link > �0][VET DEADS < rtl deads >][VET SIDE < rtl side >]< valid response msg >::= VALID j INVALID< loops msg > ::= BEGINLOOPS < loop msg > + ENDLOOPS< loop msg > ::= LOOP < nesting level >< header id >< inner id > �ENDLOOP< change > ::= < new bb msg >j < update bb msg >j < label bb msg >j < del bb msg >j < mod bb ptrs msg >j < insert rtl msg >j < del rtl msg >j < move rtl msg >j < mod rtl msg >j < mod links msg >j < mod side msg >j < mod res msg >j < mod deads msg >j < move rtls msg >< end init set msg > ::= ENDINITSET< begin phase msg > ::= BEGINPHASE < phasenum >< end phase msg > ::= ENDPHASE< begin trans msg > ::= BEGINTRANS< end trans msg > ::= ENDTRANS< end seq msg > ::= ENDSEQ< new bb msg > ::= NEWBB < blk id >< label >//id for new block, label for new block49

< new bb left msg > ::= BBLEFT < blk id >< new bb right msg > ::= BBRIGHT < blk id >< update bb msg > ::= UPDATEBB< blk id >fVET RTL < rtl id >g*ENDUPDATE// id for block being update, ids of rtls in block< label bb msg > ::= LABELBB < blk id >< label >// block id with label being updated, new label< del bb msg > ::= DELBB < blk id >// block id of block being deleted< mod bb ptrs msg > ::= (MOD DOWN j MOD LEFT j MOD RIGHT)< blk id >< blk id >// block id of block being updated, new value of ptr< insert rtl msg > ::= NEWRTL < rtl id >< rtl type >< rtl val >< assem val >< blk id >< rtl id >// id of new rtl, type of new rtl, val of new rtl,// assembly of new rtl,// block in which new rtl is inserted,// old rtl before which new rtl precedes< del rtl msg > ::= DELRTL < rtl id >< blk id >// rtl to be deleted, block containing deleted rtl< move rtl msg > ::= MOVERTL < rtl id >< blk id >< rtl id >< blk id >// rtl to be moved, block where rtl was,// rtl before moved rtl precedes,// block where rtl is now< move rtls msg > ::= MOVERTL < blk id >< blk id >// block where rtls to be moved currently reside// block where rtls are to be appended at the end< mod rtl msg > ::= MOD RTL < rtl id >< rtl type >< rtl val >< assem val >< blk id >50

// rtl to be modi�ed, rtl type, new rtl val,// assembly of new rtl,// block containing rtl< mod links msg > ::= MOD RTLLINKS < rtl id >< rtl type >< rtl id > �0 < blk id >// rtl containing new links, rtl type,// new links of rtl, block containing rtl< mod side msg > ::= MOD SIDE < rtl id >< rtl type >< rtl side >< blk id >// rtl containing new reserve line, type of rtl,// new side e�ect, block containing rtl< mod res msg > ::= MOD RES < rtl id >< rtl type >< rtl val >< blk id >// rtl containing new reserve line, type of rtl,// new reserve line, block containing rtl< mod deads msg > ::= MOD DEADS < rtl id >< rtl type >< rtl deads >< blk id >// rtl containing modi�ed deads, type of rtl,// new deads for rtl, block containing rtl==fields< rtl id > ::= INTEGER< rtl type > ::= INTEGER< rtl val > ::= CHARACTER STRING< assem val > ::= CHARACTER STRING< rtl link > ::= INTEGER< rtl deads > ::= CHARACTER STRING< rtl side > ::= CHARACTER STRING< funcname > ::= CHARACTER STRING< phasenum > ::= INTEGER< header id > ::= < blk id >< inner id > ::= < blk id > j � < header id >< blk id > ::= INTEGER< label > ::= CHARACTER STRING< nesting level > ::= INTEGER
51

APPENDIX BPROTOCOLS FROM USER INTERFACE TOTHE COMPILERBelow is the current protocol of messages that will be passed from the userinterface to vpo. This protocol de�nes a sequence of commands that a user can select.Vpo will perform this sequence, send information back to the user interface, and waitfor another sequence. No more sequences of commands will be issued from the userinterface for the optimization of a function when a STOP TRANS is encountered.func msgs ::= requests STOP TRANSrequests ::= requests request j requestrequest ::= sequence QUIT TRANSsequence ::= hand trans j loops queryj undo command j write command j cmp �les commandj normal sequencehand trans ::= HAND TRANS < change > QUIT TRANSloops query ::= LOOPS QUERYnormal sequence ::= numblocks ids commandscommands ::= commands command j commandcommand ::= branch command j phase command j other commandj trans commandbranch command ::= (IF TRUE GOTO TRANS j IF FALSE GOTO TRANS) o�set52

phase command ::= phase operphase oper ::= (DEAD CODE ELIM TRANSj FIX CONTROL FLOW TRANSj REG ASSIGNMENT TRANSj DEAD ASG ELIM TRANSj COMMON SUBEXPR ELIM TRANSj FIX ENTRY EXIT TRANSj INST SCHED TRANSj FILL DELAY SLOTS TRANSj MINIMIZE LOOP JUMPS TRANSj CODE MOTION TRANSj LOOP STRENGTH REDUCT TRANSj RECURRENCE ELIM TRANSj INDUCT VAR ELIM TRANSj REG ALLOCATION TRANSj BRANCH CHAINING TRANSj ELIM EMPTY BLOCKS TRANSj USELESS JUMP ELIM TRANSj REVERSE BRANCHES TRANSj BLOCK REORDERING TRANSj MERGE BLOCKS TRANSj EVAL ORDER DETER TRANSj INST SELECT TRANSj GLOBAL INST SELECT TRANSj STRENGTH REDUCT TRAN)undo command ::= UNDO TRANS < number >write command ::= WRITE RTLS TRANS �lenamecmp �les command ::= CMP FILES TRANS �lename �lenamertl ::= < characterstring >�lename ::= < characterstring >o�set ::= < number >numblocks ::= < number > 53

ids ::= ids id j idid ::= < number >change ::= mod rtl msgj del rtl msgj insert rtl msgj mod assem msgj insert assem msgj del bb msgj insert bb msgj END TRANSj BEGIN TRANSmod rtl msg ::= MOD RTL rtl id rtl type rtl val blk iddel rtl msg ::= DELRTL rtl id blk idinsert rtl msg ::= NEWRTL rtl id rtl type rtl valblk id rtl idmod assem msg ::= MOD ASSEM rtl id rtl type assem valEND ASSEM blk idinsert assem msg ::= NEW ASSEM rtl id rtl type assem valEND ASSEM blk id rtl idrtl id ::= < number >rtl type ::= < number >rtl val ::= < characterstring >assem val ::= < characterstring >blk id ::= < number >
54

REFERENCES[1] K. Andrews, R. Henry, and W. Yamamoto, \Design and implementation of theUW Illustrated Compiler," Proceedings of the ACM SIGPLAN Conference onProgramming Language Design and Implementation, pp. 105{114 (June 1988).[2] B. Appelbe, K. Smith, and C. McDowell, \Start/pat: a ParallelProgrammingToolkit," IEEE Software, (6), pp.29{40, (1988).[3] M. E. Benitez, \Retargetable Register Allocation," PhD Dissertation, Universityof Virginia, (1994).[4] M. E. Benitez and J. W. Davidson, \A Portable Global Optimizer and Linker,"Proceedings of the SIGPLAN'88 Symposium on Programming Language Designand Implementation, Atlanta, GA, pp. 329{338 (June 1988).[5] M. E. Benitez and J. W. Davidson, \The Advantages of Machine-DependentGlobal Optimization," Proceedings of the 1994 International Conference onProgramming Languages and Architectures, pp. 105{124 (1995).[6] M. Boyd and D. Whalley, \Isolation and Analysis of Optimization Errors,"Proceedings of the ACM SIGPLAN Conference on Programming LanguageDesign and Implementation, pp. 26{35 (June 1993).[7] M. Boyd and D. Whalley, \Graphical Visualization of Compiler Optimizations,"Journal of Programming Languages, (3), pp. 69{94 (1995).[8] J. Browne, K. Sridharan, J. Kiall, C. Denton, and W. Evento�, \Parallel Struc-turing of RealTime Simulation Programs," COMPCON Spring '90: ThirtyFifthIEEE Computer Society International Conference, pp. 580{584 (1990).[9] K. Cooper, P. Schielke, and D. Subramanian, \Optimizing for Reduced CodeSpace Using Genetic Algorithms," Proceedings of the ACM SIGPLAN Workshopon Language, Compilers, and Tools for Embedded Systems, pp. 1{9 (May 1999).[10] Guido Costa Souza de Araujo, \Code Generation Algorithms for Digital SignalProcessors," PhD Dissertation, Princeton University, Princeton, NJ, (June1997).[11] C. Dow, S. Chang, and M. So�a, \A Visualization System for ParallelizingPrograms," Proceedings of Supercomputing, pp. 194{203 (1992).55

[12] Christine Eisenbeis and Sylvain Lelait, \LoRA: a Package for Loop OptimalRegister Allocation," 3rd International Workshop on Code Generation forEmbedded Processors, Witten, Germany, (March 1998).[13] Rainer Luepers, \Retargetable Code Generation for Digital Signal Processors,"Kluwer Academic Publishers, Boston, (1997).[14] Peter Marwedel and Gert Goossens, \Code Generation for Embedded Proces-sors," Kluver Academic Publishers, Boston, (1995).[15] W. G. Morris, \CCG: A Prototype Coagulating Code Generator," Proceedingsof the ACM SIGPLAN Conference on Programming Language Design andImplementation, pp. 45{58 (June 1991).[16] D. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B. Leung, and D.Schouten, \Parafrase2: an Environment for Parallelizing, Partitioning, Synchro-nizing, and Scheduling Programs on Multiprocessors," Proceedings of the 1989International Conference on Parallel Processing, pp. 39{48 (1989).[17] Ashok Sudarsanam, \Code Optimization Libraries for Retargetable Compilationfor Embedded Digital Signal Processors," PhD Dissertation, Princeton Univer-sity Princeton, NJ, (November 1998).[18] J.W. Davidson and D.B. Whalley, \A Design Environment for AddressingArchitecture and Compiler Interactions," Microprocessors and Microsystems,15(9), pp. 459{472 (November 1991).[19] R. van Engelen, D. Whalley, and Xin Yuan, \Automatic Validation of Code-Improving Transformations," Proceedings of the ACM SIGPLAN Workshop onLanguage, Compilers, and Tools for Embeded Systems, June 2000.[20] Alfred V. Aho, Ravi Sethi, Je�rey D. Ullman, \Compilers: Principles, Tech-niques, and Tools," Addison-Wesley, U.S.A., 1986.[21] Richard Stevens, \Unix Network Programming Volume 1, Networking APIs:Sockets and XTI," Prentice Hall, U.S.A., 1998.
56

BIOGRAPHICAL SKETCHBaosheng CaiBaosheng Cai was born in Hebei, China in May, 1974. He received his B.E. inAutomatic Control in 1997 from Tsinghua University. At Florida State University,he received his M.S. in Computer Science in 2001.

57

