THE FLORIDA STATE UNIVERSITY
COLLEGE OF ARTS AND SCIENCES

GRAPHICAL VISUALIZATION
or
COMPILER OPTIMIZATIONS

By

MICKEY BOYD

A Thesis submitted to the
Department of Computer Science
in partial fulfillment of the
requirements for the degree of

Master of Science

Degree Awarded:

Summer Semester, 1993

The members of the Committee approve the thesis of

Mickey Boyd defended on July 19, 1993.

David Whalley

Professor Directing Thesis

Theodore Baker

Committee Member

Gregory Riccardi

Committee Member

This work is dedicated to three very special people: My parents, Don and Toki, for
their love and understanding throughout my existence, and to my beloved Sheryl,

for being kind enough to share her life with me.

11

Acknowledgements

I would like to offer special thanks to my advisor, Dr. David Whalley, for his
support and insight during this research. Also, I offer thanks to committee mem-
bers Dr. Ted Baker and Dr. Greg Riccardi, for their review of and subsequent

suggestions concerning this document.

v

Contents

List of Tables vii
List of Figures viii
Abstract X
1 Introduction 1
2 Overview of the Compiler 3
2.1 General Overview 3
2.2 Enhancements for Xvpodbo 5
2.3 VPOISOo . . . o o o e e)
3 Functional Description of Xvpodb 6
3.1 Methodof Use. 6
3.2 Message Passing L oo 6
3.3 RTL Display Window 7
3.4 Informational Labels 9
3.5 Step and Continue Buttons L. 9
3.6 Setting Breakpoints Lo 11
3.7 Options Menu 12
3.8 RTL/Basic Block Information Popup 13

3.9

Debugging Example.o oo

4 TImplementing Xvpodb

4.1
4.2
4.3
4.4
4.5
4.6

Message Passing L
Main Data Structures.o
Controlflow Arcs and Highlighting
Breakpoints

Sanity Check oo

Implementation Summary

5 Comparison with Related Work

6 Existing and Future Enhancements to Xvpodb

6.1
6.2

Existing Enhancements o oL

Future Enhancements

7 Conclusions

Bibliography

Vita

vi

16
16
17
18
18
18
19

20

22
22
22

24

25

26

List of Tables

4.1 Message Types in Xvpodb

Vil

List of Figures

2.1
3.1
3.2
3.3
3.4
3.5

Compiler Structure oL 4
Typical Use of zopodb 7
Main Display of zvpodbo 8
Breakpoint Menus. L L 11
Options Menuo Lo 12
Information Popup L 14

Vil

Abstract

This document describes xvpodb, a visualization tool developed to support the anal-
ysis of optimizations performed by the vpo optimizer. It was designed to aid and
simplify the process of retargeting vpo to a new machine architecture. The tool is
a graphical viewer/debugger that can display each change made by the optimizer
to the generated instructions during an actual compilation. The format used to
display these changes is simple and intuitive. The information and insight such
visualization provides can greatly simplify debugging of the optimizer. Unique fea-
tures of zvpodb include reverse viewing (or “undoing”) of changes, and the ability
to stop at breakpoints associated with the generated instructions. In addition to
facilitating debugging, the tool also simplifies experimentation with new optimiza-
tion techniques. Lastly, zvpodb is a valuable teaching aid in compiler courses, as it
allows students to see a precise depiction of what happens to generated instructions

as they are optimized.

X

Chapter 1

Introduction

To increase portability compilers are often split into two parts, a front end and
a back end. The front end processes a high-level language program and emits
intermediate code. The back end processes the intermediate code and generates
assembly instructions for the target machine architecture. Thus, the front end is
dependent on the source language and the back end is dependent on the instruction
set for the target machine. Retargeting such a compiler for a new machine requires
creating a new back end. While the time and effort required to retarget a back
end of a compiler to a new machine has decreased over the years, performing this
task in an expeditious manner still remains a problem. One reason is that the
rate at which new machines are being introduced has increased. Also, there is
an increasing reliance on compilers to perform highly sophisticated optimizations
that exploit architectural features. Usually these optimizations can be applied
most effectively in the back ends of compilers [BeD8§].

Much of the effort required to retarget a back end occurs during testing. Large
amounts of time are spent attempting to determine why incorrect code is gener-
ated, or why optimizations cannot be applied for specific programs. Many back
ends store information about the program being compiled in an encoded internal
format, which exacerbates the problem. While such formats consume less memory
and allow optimizations to occur more rapidly, they also increase the difficulty of

analyzing specific problems within the code.

The goal of the research described in this document is to simplify the task of
debugging the wpo optimizer. A visualization tool was developed that allows the
programmer to view each optimization performed by the optimizer in a way that
is both flexible and easy to understand.

One could obtain the same information using a standard symbolic debugger
to examine internal data structures by hand. However, this is both labor inten-
sive and prone to human error. The abstract, yet precise way the optimizations
are presented by the viewer allows the programmer to concentrate on what the
optimizer is doing to the instructions, rather than struggling with inadequate de-
bugging tools. Also, this debugging tool recognizes the temporal element of a
compilation. This is particularly important with vpo, as it can reapply optimiza-
tion phases many times during a compilation. The viewer identifies not only what
changes occurred, but also when they occurred during the compilation (relative to
other changes). This greatly simplifies the eradication of bugs that only manifest
with a certain cascading set of optimization phases and instructions.

Selective viewing of the optimizations performed by vpo is accomplished using
breakpoints. The breakpoint paradigm used is simple yet powerful, allowing the
programmer to quickly focus in on the desired portion of the compilation.

Finally, this debugging tool has the ability to reverse the effects of any or all
optimizations made during a compilation. With this feature, the programmer need
not be concerned about executing the compiler “one step too far,” and being forced

to reexecute the current test.

Chapter 2

Overview of the Compiler

2.1 General Overview

The tool described in this paper supports the compiler technology known as vpo
(Very Portable Optimizer) [BeD88, Dav86, DalF84]. The optimizer, vpo, replaces
the traditional code generator used in many compilers and has been used to build
C, Pascal, and Ada compilers. The back end is retargeted by supplying a descrip-
tion of the target machine. Using the diagrammatic notation of Wulf [WJWT75],
Figure 2.1 shows the overall structure of a set of compilers constructed using
vpo. Vertical columns within a box represent logical phases which operate seri-
ally. Columns divided horizontally into rows indicate that the sub-phases of the
column may be executed in an arbitrary order. IL is the Intermediate Language
generated by a front end. Register transfer lists (RTLs) describe the effects of ma-
chine instructions and have the form of conventional expressions and assignments
over the hardware’s storage cells. For example, the RTL

r[1] = r[1] + r[2]; cc = r[1] + r[2] ? O;
represents a register-to-register integer add on many machines. While any partic-
ular RTL is machine-specific, the form of the RTL is machine-independent.

All phases of the optimizer manipulate RTLs. The RTLs are stored in a data
structure that also contains information about the order and controlflow of the
RTLs within a function. One advantage of using RTLs as the sole intermediate

representation is that many phase ordering problems are eliminated. Most opti-

Intel 80386 ——=
MC68020 ——=
VAX-11——=>
MC88100 ——=
MIPS™ =
SPARC———=

mizations can be invoked in any order and are allowed to iterate until no further
improvements can be found. Another advantage is that since each RTL repre-
sents a legal machine instruction, the effect of a modification to the set of RTLs
comprising a function is relatively simple to grasp. In contrast, most conventional

compiler systems generate code after optimizations. In these systems the effect of

(source languages)

Machine

Description

Processor

Pascal C Ada
Fr\knt Fr\cb)nt Fr\knt
End End End
IL IL IL
Code Code Code
Expanders Expanders Expanders
register |transfers
Branch Optimizations
Instruction Selection
Evaluation Order Determination
Register Allocation
Basic Common Subexpression Instruction Fill
Block | Global Elimination Scheduling | Delay
Opts | Dataflow Dead Variable Elimination Slots

Analysis

Code Motion

Recurrences

Strength Reduction

Induction Variable
Elimination

{

Object File

Figure 2.1: Compiler Structure

a modification may not be trivial to deduce.

2.2 Enhancements for Xvpodb

The vpo optimizer was modified to identify any change to the RTL data structure.
A serial sequence of changes that preserve the meaning of the compiled program
is referred to as a transformation. This terminology is used throughout this pa-
per. The optimizer was also modified to send messages containing descriptions of
these changes, as well as notification of the optimization phase and transformation
number in which the changes took place. The exclusive use of RTLs as the inter-
mediate representation greatly simplified the design and implementation of zvpodb.
Because there is only one type of data structure representing program information,
only one algorithm needed to be developed to process modification messages and

produce a view of the data structure.

2.3 Vpoiso

During the development of xvpodb, another tool was created to assist programmers
in debugging the vpo optimizer. The tool depends upon some of the enhancements
made to vpo for xvpodb. This tool, called vpoiso, will automatically isolate the first
transformation in a compilation that causes the program being compiled to produce
incorrect output when executed [BoW93]. After performing such an isolation,
zvpodb is ideal for viewing the transformation that is found to determine the cause
of the error. Thus, these two tools compliment each other well, and together they

form a powerful environment for facilitating the retargeting of wvpo.

Chapter 3
Functional Description of Xvpodb

3.1 Method of Use

In typical usage, vpo would be executed from within a source level debugger, to
allow the viewing of internal structures and to control execution. It would be
invoked with the command line switches needed to activate the routines that build
and pass messages to zvpodb, which would be running concurrently. The message
passing paradigm chosen provides the user with the option of running vpo and
zvpodb on two different machines. Due to the use of X Windows, the user also has
the option to view the output windows of these two process groups on yet another
machine. This allows the user to use the resources of up to three machines, thus
speeding up the debugging cycle. Figure 3.1 illustrates this relationship, with
the circles representing processes and the arrows showing communication channels

between processes.

3.2 Message Passing

Before performing any optimizations, vpo will pass a set of messages that describe
the initial state of all RTLs in the function currently being compiled. After receiv-
ing these messages, zvpodb will display this initial set to the user. Subsequently,
descriptions of all changes to the RTLs will be passed to zvpodb, which stores them

for later interpretation at the request of the user.

XVPODB

X-Window Server

Figure 3.1: Typical Use of zvpodb

3.3 RTL Display Window

Figure 3.2 depicts zvpodb displaying an Instruction Selection transformation. The
large middle section of the window displays a portion of the RTL structure (these
RTLs are targeted to the SMCC SPARC architecture). The RTLs are shown
contained in rectangles, which represent basic blocks. Transfers of control between
basic blocks are depicted using arcs (the arrowheads on the arcs indicate direction
of transfer). The basic blocks are shown in the order in which they will appear when
generated as assembly instructions. The RTLs themselves are displayed in human
readable form (not the encoded internal format used by wpo). This flowchart-like
model is a common way of abstracting a program representation, and is used in

many textbooks. The scrollbar to the left of the display area can be used to view

[*][K] ¥PO Optimization Viewer F]
Function | nunber{} || BEFORE Trans Hun
Opt Phase | Instruction Selection | Total Transformations
r[331=RIr[14]1+,2_c]:
IC=r[3217%48: r[Z3]
PC=IC 0,LBO0:
PC=LE1:
+|Lao

r[2E1=RIr[141+,2_c1t

r[361r[37]

PC=IC70,L7V3:

+ | L81
r[321=0r
r[BI=RSIr[3211: rl32]
FC=RT:

+|L79
r[E21=r[141+,2_n:
r[33]1=RIr[321]: rl32]
r[E3]=r[331%10:
r[E41=r[141+,2_ct

Options
Set Breakpoints < < < > > >

Figure 3.2: Main Display of zvpodb

any part of the set of RTLs currently being processed by the optimizer. Also, one
can center the screen on a basic block’s right or left pointer destination by clicking
the right or left mouse buttons on the block header. This feature, called magic
Jumping, allows the user to follow an execution path without having to search for

branch and jump destinations.

3.4 Informational Labels

The labels at the top of the window provide the name of the function being ex-
amined, the optimization phase in which the current transformation occurred, the
unique number of this transformation, the total number of transformations that
have been received for this function, and the state of the viewer. In Figure 3.2,
the state is BEFORE transformation 16, which indicates that this is what the
RTLs look like before this transformation is applied. If the state were AFTER,
the middle display would show what the RTLs look like after transformation 16 is

applied. These are the only two states in which the viewer can be.

3.5 Step and Continue Buttons

At the bottom of the window, there are four large buttons that resemble the con-
trols on an audio cassette player (this is not a coincidence). The > and < buttons
are, respectively, Step Forward and Step Backward. These buttons will dis-
play the effects of the next or previous transformations, again respectively. A full
transformation is shown using two clicks of the left mouse button. In the case of
the Step Forward button, the first click would show the BEFORE state of the
RTLs. The RTLs to be affected are highlighted, and the screen is centered on these
RTLs. Clicking again on the same button would perform the transformation, and
cause the viewer to display the AFTER state of that transformation. The RTLs
that were affected by the transformation would be updated and highlighted (they
are not always the same RTLs seen in the BEFORE state, as in the case of an RTL
insertion or deletion). The reverse case works similarly, except one views the AF-
TER state first, then the BEFORE. The user can apply and reverse (or vice-versa)

a transformation as many times as needed, which is useful for grasping the full

10

effect of a complicated transformation. The >> and << buttons are, respectively,
Continue Forward and Continue Backward. They are similar to > and <,
except they stop on breakpoints (as opposed to the next or previous transforma-
tion). Breakpoints are set with the Set Breakpoints button and menus, and are
discussed in section 3.6.

The user can view the transformations serially or at specified breakpoints, either
in the forward (showing the transformations being applied) or reverse (showing
them being undone) direction. In other words, the user does not need to reexecute
anything to view a previously applied transformation. The viewer can reverse
the effects of any or all transformations with a few mouse clicks. This process
does not affect the ability to interpret transformations in the forward direction.
Thus, the user can view a transformation or set of transformations being applied
and reversed as many times and in as many areas of the compilation as desired.
Also, the programmer need not compile the entire function to be able to view
transformations. The viewer will allow the user to see any transformations that
have already been received from wpo. If desired, the programmer can step wvpo
through its optimization of a function one transformation at a time, thus being
able both to view the graphical representation of the transformation and to study
the actual data structures and source code in the optimizer that produced it.
Information is provided by zvpodb that allows the programmer to easily locate the
proper data structures. For example, the programmer can find the pointer address
in vpo of the structure that contains an RTL or basic block simply by clicking on

it in zvpodb.

[#] K] YPO Optimization Viewer Ed]
Function | rain() | [BEFORE | Trans Mum [323]
Opt Phase | Dead Variable Elinination | Total Transfornations 431

r[81=r[101+LOCLEE]: rL10] Gat Opl Phase 7

ST=HIL_printf1+L00_printf1.72,1: §

Tosrructd

11

Shift-Right-Click RTLs to select

r[161=0z

r[191=HI[stringl:

00233860 r[81=r[101+L0[L561;

rl201=r[19]:
r[211=HI[LE41:
rL221=HI[_smonl:
rL2Z]1=HI[LED]:
r[241=HIILEET:
r[251=HI[LET]:
rl261=HI[_daywl:
r[271=r[19];

| r[291=r[22]1; |

!
+ L5
riinl=0;
r[91=r[13];

!

. |L6Z

r[81=r[91+L00 _stringl:

0028920 r[261=HI[_daywls
00234b08 r[81=r[91+L 0l _stringl;

Fili Helag sioco

BLr[10]+r[B8]11=0: r(B] e 2
. ¢ ALL ®
| Y |
I r101=r[10]+1; I Proveed Yo BIL Selectdon
Boiny Bptione : i Fritianion Bnig
¢ P
H i i { Lanoe
Set Breskeoints @ ‘Q ‘{ }

3.6 Setting Breakpoints

Figure 3.3: Breakpoint Menus

There are two main types of breakpoints in axvpodb. The first, and simplest, are

Transformation Number breakpoints. The user inputs a transformation number or

numbers, and zvpodb will break at the beginning or end of those transformations

(depending on the direction of viewing). Since the transformation numbers are

determined by wpo, this provides a convenient way to coordinate breakpoints in

both the compiler and the viewer.

The second type of breakpoint is more general. Figure 3.3 shows several of the

menus used to set this type of breakpoint. Basically, the user selects some number

of optimization phases from a toggle menu. After completing this, a decision is

12

Proceed to next Function

|
| Harp to Initial 5et
|

Harp to End of Transformnations

Output ETL= & BBs to stderr

Hide Controlflow Arcs

Show Transformation Details

|
|
|
C Done j

Figure 3.4: Options Menu

made to break on one of two criteria. The user can choose to break whenever
one of the selected phases is encountered (at the beginning or end of the phases,
depending on the direction of viewing), or the user can select a set of specific RT'Ls
that should be recognized. In this latter case, the viewer will break whenever any
of the RTLs selected is changed in any way during any of the selected optimization
phases. The user can break on any change to a set of RTLs simply by selecting all
optimization phases when setting the breakpoint (there is a button provided to do
this with one click). Thus, breakpoints can be set on specific optimization phases,

specific RTLs, or any combination of both.

3.7 Options Menu

The Options button pops up a menu of buttons that implement less commonly
used features of the viewer, or features that that need not be available at all times
(Figure 3.4). This was done to reduce screen clutter, and provides a convenient

place for future developers to add minor features to the viewer. The Proceed to

13

Next Function button instructs zvpodb to discard the current function data and
interpret the next function that was compiled. The Warp To Initial Set button
allows the user to undo all transformations and be returned to a view of the initial
set of RTLs for the current function. The Warp to End of Transformations
button will display the completely optimized set of generated instructions, applying
all transformations that have been received for the current function. Both of these
functions skip all breakpoints. The Output RTLs and BBs to stderr button
outputs a formatted textual version of the current set of RTLs to standard error,
where it can easily be grabbed and inserted into a file for later study. The Hide
Controlflow Arcs button toggles the drawing of the control flow arcs in the main
display. This can be useful when using an extremely slow X server. Finally, the
Show Transformation Details button toggles the verbosity of the step forward
and step backward functions. When this toggle is selected, detailed information
about each change in the current transformation being displayed is presented to
the user while stepping forward or backward. This option is turned off by default,
as it typically provides too much data to look at while searching for a particular
transformation. However, after that transformation is found, this extra data is

more likely to be of interest, and is easily accessible by activating this button.

3.8 RTL/Basic Block Information Popup

At any time, if the user clicks the middle mouse button on any RTL in the main
RTL display, or on a basic block header, a small window will pop up showing
extended information about the RTL or basic block. For an RTL, this would
include its dead register list and exact pointer address in vpo. The latter piece of

information allows the user to easily find and examine the RTL in the debugger

14

BASIC BLOCK IHFORHATIOH =
Pointer Address in YPO: 0022edel

Right Pointer: a22ebf 0
Left Pointer: 022each
Label: L46

Figure 3.5: Information Popup

within which wvpo is running. Similarly, if the middle button is clicked on a basic
block header, the addresses the block itself, its left and right pointers, and the
block label are displayed (Figure 3.5).

Enhancements to this popup that produce more information about basic blocks

have been developed, and are discussed in section 6.1.

3.9 Debugging Example

The following example illustrates the power of both reverse viewing and breakpoint
selection in zvpodb by showing how a programmer could view the entire genesis of
a single generated instruction. After executing vpo and zvpodb, and after sending
all messages associated with the function in which the RTL resides, the user clicks
on the Warp to End of Transformations button (located in the options menu).
This will display the completely optimized set of RTLs. Then, the user goes to
the breakpoint menus (by clicking Set Breakpoints) and sets a breakpoint in

the following manner. First, Optimization Phase/RTL Breakpoint is clicked,

15

followed by All Optimization Phases, and Proceed to RTL Selection. Now,
the user chooses the RTL of interest, and clicks on Done. At this point, the user
can see each successive transformation to that RTL being “undone” by clicking
the << button. If a transformation is encountered but not understood, the user
can examine it (and other closely preceding and following transformations to gain
context) as many times as necessary by clicking the < and > buttons. When the
transformation is fully understood, the << button is again clicked. Eventually,
the user will be informed that there is no other transformation involving that RTL
(therefore, at that point the RTL is in its initial state, before any transformations).
If desired, the user could click the >> button to watch the transformations be suc-
cessively reapplied to just that RTL. Eventually, the user would again be informed
that there are no more transformations involving that RTL (thus implying that it
is currently in the fully optimized form in which wpo will output to the object file).
Using this technique, a programmer can determine exactly how any specific RTL

in the final output of the optimizer was generated.

Chapter 4
Implementing Xvpodb

4.1 Message Passing

To simplify the implementation, each message from wvpo to zvpodb reflects at most
a single change to the data structure containing the RTLs. All communications
are one way, from vpo to zvpodb. Table 4.1 lists some of the types of messages that
are sent.

A transformation is defined by a set of change messages bracketed by begin and
end transformation messages. A set of transformations occurring in a particular
optimization phase would be bracketed by begin and end phase messages. Thus,
in general the message stream from wvpo to zvpodb can be thought of as a set of
transformation blocks (a begin transformation, some number of change messages,
and an end transformation message), sometimes with either begin or end phase

messages in between to show transitions to different optimization phases. A set of

begin function insert RTL
end function delete RTL
start optimization phase | move RTL

end optimization phase | modify RTL

start transformation modify RTL dead register list

end transformation modify controlflow successor of basic block
create new basic block modify output position successor of basic block
free up basic block end compilation

modify basic block label

Table 4.1: Message Types in Xvpodb

16

17

these messages representing an entire function compilation will be bracketed with
begin and end function messages. There are special messages that communicate
the initial set of RTLs, basic blocks, and dead register lists for a function (they are

sent after the begin function message, and before any change information).

4.2 Main Data Structures

There are two main data structures in zvpodb, the Optimization List and the Screen
List. The optimization list is a doubly linked list of nodes, each node representing a
decoded message. This list is descended when performing forward transformations,
and ascended when reversing them. A single pointer to this list represents the point
during the compilation that is currently being displayed by the viewer. The act
of stepping or continuing forward or backward merely moves this pointer in the
appropriate direction, interpreting nodes along the way. All transformations above
the pointer and none below will have been applied to the initial set of RTLs. When
a transformation is applied, all information needed to reverse it is stored in the
node. When ascending the list (undoing transformations), this information is used
to restore the screen representation of the RTL or basic block to its previous state.

The screen list is a singly linked list of nodes, each node containing (among
other things) one small section of the main RTL viewing area. These nodes repre-
sent the current state of all RTLs and basic blocks. These nodes are modified as
transformations are applied or reversed. After the changes are complete, a simple
routine copies all of the small screen sections to the actual viewer window. These
nodes are created or deleted during RTL or basic block insertions or deletions
(none of the optimization nodes are deleted until the user proceeds to the next

function).

18

4.3 Controlflow Arcs and Highlighting

The arcs showing transfers of control are drawn after the middle section of the RTL
display is created (from the screen list, as described above). If the length of the arc
will be longer than two video pages a small stub arrow is drawn instead, as very
long arcs are difficult to follow, and it is easier to use magic jumping (Section 3.2)
to locate left and right pointer destinations. Finally, a routine highlights the RTLs

pertinent to the current transformation and centers the screen on them.

4.4 Breakpoints

Breakpoints are stored in several small linked lists. The transformations are
scanned for criteria that the user has indicated should be stopped upon before
any changes are applied. If any of the breakpoint criteria is met, the viewer stops

and displays the state of the RTLs at that point.

4.5 Sanity Check

During the development of zwpodb, the need was recognized to ensure that the
viewer be bug free, in terms of accurately depicting the state of RTLs at any time.
There can be few things in life more irritating than a buggy debugger. To aid
in this effort, a sanity check module was incorporated into zvpodb. By issuing a
function call within vpo (typically through the use of a symbolic debugger), the
tester can invoke a routine that sends to zvpodb a set of messages that describe
the current state of the RTLs in vpo. The viewer will compare this to its internal
representation of the RTLs, and will report any differences found. This can be
done at any time during a debugging session, and as many times as desired. Of

course, the tester must ensure that all transformations that have been sent to

19

zvpodb have been applied (i.e. zvpdob must be displaying the AFTER state of the
last transformation that was sent), or differences will surely be found. The sanity
check module was relatively simple to implement, as it reuses many of the routines
needed to send the initial set messages.

The sanity check module was primarily intended to aid implementation and to
provide a method for testing the accuracy of the viewer. However, it is conceivable
that users might also like the ability to perform an occasional sanity check simply
to ensure that the problem being examined really represents a bug in the optimizer,

and not a debugger error.

4.6 Implementation Summary

Primary goals in the implementation of the viewer included ease of portability, sim-
plicity of extension or upgrade, and robustness. The KISS principle was applied
whenever possible, even when it implied some efficiency loss. The resulting appli-
cation is satisfyingly fast on a Sun IPC running over a stock MIT X11R5 server.
Interactive response time is quite adequate, enabling the user to click buttons and
see transformations as rapidly as desired. Graphic drawing time is minimal due
to the use of the the small screen sections in the screen list nodes. On the wpo
end, virtually all modifications are localized to the machine independent portion
of the source. The modifications required were relatively minor, and should be
easy to incorporate when adding or modifying optimization phases in the future.
Message passing is currently implemented using UNIX sockets, but could easily
be redone using RPCs. Internet stream sockets were used to guarantee reliable

communications and to allow long haul operation of the viewer.

Chapter 5
Comparison with Related Work

The UW [lustrated Compiler [AHY88], also known as icomp, graphically displays
its control and data structures during the compilation of a program. A feature
called hookpoints are used to specify points in the compiler to update the windows
that have changed since the last hookpoint was executed. By specifying hookpoints
and breakpoints in the compiler a user can control the rate at which views are dis-
played during a compilation. The icomp compiler has been used by undergraduate
compiler classes to illustrate the compilation process.

There are many differences between icomp and xvpodb. The purpose for de-
veloping the icomp compiler was for use as a teaching tool in an undergraduate
compiler class. The main purpose for constructing zvpodb is to assist a compiler
writer when retargeting the vpo compiler to a new machine. The zvpodb tool can
also be used as a teaching tool in a compiler class to illustrate various compiler
optimizations. The source programs compiled by icomp are written in a subset
of Pascal called PL/0. The vpo back end currently interfaces with a front end
called vpce (Very Portable C compiler) that supports the complete C language.
The icomp compiler shows views of different portions of the compilation process
which includes lexical analysis, parsing, semantic analysis, and code generation.
No optimizations are performed by the compiler. In contrast, zvpodb displays the
effects of optimizations exclusively. The icomp compiler allows breakpoints and

hookpoints to be set at different locations in the source code of the compiler. It

20

21

does not have the ability to stop when a user-specified portion of a view is up-
dated. The xvpodb tool allows breakpoints to be set associated with updates to
a specific portion of the information representing a function. The icomp compiler
was written in Interlisp-D to access facilities in the language for implementing
hookpoints and producing graphical displays. Both the vpo compiler and zvpodb
are written in C. Thus, optimization viewers could be developed for other existing
compilers written in conventional programming languages using the techniques to
implement zvpodb. Finally, icomp does not allow reverse viewing of transforma-
tions. It was stated, “icomp cannot be run in reverse because of the complexity
of implementing such a feature.” Reverse viewing was feasible in zvpodb since the
information about a function is represented in only a single type of data structure.
By retaining information about each change to this data structure the ability to

undo transformations was accomplished without excessive complexity.

Chapter 6

Existing and Future Enhancements to Xvpodb

6.1 Existing Enhancements

The viewer has been enhanced by members of an advanced compiler course as a
semester project. The enhancement allows the user to see live registers informa-
tion (i.e. which registers are live coming into and leaving a basic block) and see
dominator information for the basic blocks. In addition, a special Fat Boy edition
of zvpodb (in honor of the Harley motorcycle of similar name) has been provided
for students working with a version of wpo targeted to an VLIW (Very Large In-
struction Word) architecture. The Fat Boy can display RTLs that are over one

hundred characters in length.

6.2 Future Enhancements

Many other enhancements are planned for zvpodb. Its modular organization and
convenient Options menu aids the task of adding minor features. One interesting
enhancement currently planned to be implemented is to allow the user to select
a motion picture mode. This would display multiple transformations occurring to
RTLs in real time (i.e. animation of the optimization process). It is thought that
this may give students some insight into how various optimization phases perform
their tasks. There are also plans to further enhance the availability of live variable
range information. For example, the viewer could display all the live ranges of

a particular variable when clicked by the user. The ability to click on an RTL

22

23

and be presented with the actual assembly represented by that RTL has also been
discussed. Finally, there is interest in producing a version of zvpodb for the GNU

gce compiler.

Chapter 7

Conclusions

An optimization viewer, such as zvpodb, can be very useful when retargeting a
back end of a compiler. Displaying the program representation at any given point
during the optimization of a function, stopping at breakpoints associated with
the generated code, and reverse viewing of transformations are all helpful fea-
tures for analyzing problems with an optimizer. Compilers can also be used to
guide instruction set design to determine if proposed architectural features can
be exploited [DaW91]. Decreasing the time to retarget a compiler to a proposed
architecture would also decrease the time required to design and develop a new
machine.

Another use of zvpodb is as a teaching aid for advanced compiler courses. Many
recently introduced machines require sophisticated compiler optimizations to ex-
ploit their architectural features. Advanced compiler courses that present tech-
niques to perform these types of optimizations may soon become more common.
This tool, which allows students to interactively visualize the effect of each trans-

formation, would be quite useful in illustrating these optimizations.

24

Bibliography

[AHYSS]

[BeDSS]

[BoW93]

[Dav86]

[DakF84]

[DaWo1]

[WIWT75]

K. Andrews, R. R. Henry, and W. K. Yamamoto, “Design and Im-
plementation of the UW Illustrated Compiler,” Proceedings of the
SIGPLAN 88 Symposium on Programming Language Design and
Implementation, pp. 105-114 (June 1988).

M. E. Benitez and J. W. Davidson, “A Portable Global Optimizer
and Linker,” Proceedings of the SIGPLAN 88 Symposium on Pro-

gramming Language Design and Implementation, pp. 329-338 (June
1988).

M. R. Boyd and D. B. Whalley, “Isolation and Analysis of Opti-
mization Errors,” Proceedings of the SIGPLAN 93 Symposium on
Programming Language Design and Implementation, pp. 26-35 (June

1993).

J. W. Davidson, “A Retargetable Instruction Reorganizer,” Proceed-
ings of the SIGPLAN "86 Symposium on Compiler Construction, pp.
234-241 (June 1986).

J. W. Davidson and C. W. Fraser, “Code Selection through Object
Code Optimization,” Transactions on Programming Languages and

Systems 6(4) pp.7-32 (October 1984).
J. W. Davidson and D. B. Whalley, “A Design Environment for Ad-

dressing Architecture and Compiler Interactions,” Microprocessors
and Microsystems 15(9)pp. 459-472 (November 1991).

W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs, and C. M.
Geschke, The Design of an Optimizing Compiler, American Elsevier,
New York, NY (1975).

25

Vita

Mickey Boyd was born on March 15, 1968, the son of Donald and Toki Boyd. He
received his Bachelor of Science in Computer Science from Florida State University
during the summer of 1990. He also received his Master of Science in Computer
Science from Florida State University in the summer of 1993. While working on
his Master’s degree he was employed by the Department of Computer Science, first
as a system manager, then as the system administrator. He is currently the system
administrator of the Department of Mathematics at Florida State University.

He co-authored a paper, “Isolation and Analysis of Optimization Errors,” which
was based on the same research contained within this document. It was accepted
by SIGPLAN PLD&I 93 and was published in Proceedings of the SIGPLAN 93
Symposium on Programming Language Design and Implementation. He presented

the paper in Albuquerque during the conference.

26

