
THE FLORIDA STATE UNIVERSITYCOLLEGE OF ARTS AND SCIENCESGRAPHICAL VISUALIZATIONOFCOMPILER OPTIMIZATIONSByMICKEY BOYDA Thesis submitted to theDepartment of Computer Sciencein partial ful�llment of therequirements for the degree ofMaster of ScienceDegree Awarded:Summer Semester, 1993

The members of the Committee approve the thesis ofMickey Boyd defended on July 19, 1993.David WhalleyProfessor Directing ThesisTheodore BakerCommittee MemberGregory RiccardiCommittee Member

This work is dedicated to three very special people: My parents, Don and Toki, fortheir love and understanding throughout my existence, and to my beloved Sheryl,for being kind enough to share her life with me.

iii

AcknowledgementsI would like to o�er special thanks to my advisor, Dr. David Whalley, for hissupport and insight during this research. Also, I o�er thanks to committee mem-bers Dr. Ted Baker and Dr. Greg Riccardi, for their review of and subsequentsuggestions concerning this document.

iv

ContentsList of Tables viiList of Figures viiiAbstract ix1 Introduction 12 Overview of the Compiler 32.1 General Overview : 32.2 Enhancements for Xvpodb : 52.3 Vpoiso : 53 Functional Description of Xvpodb 63.1 Method of Use : 63.2 Message Passing : 63.3 RTL Display Window : 73.4 Informational Labels : 93.5 Step and Continue Buttons : 93.6 Setting Breakpoints : 113.7 Options Menu : 123.8 RTL/Basic Block Information Popup : : : : : : : : : : : : : : : : : 13v

3.9 Debugging Example : 144 Implementing Xvpodb 164.1 Message Passing : 164.2 Main Data Structures : 174.3 Control
ow Arcs and Highlighting : : : : : : : : : : : : : : : : : : : 184.4 Breakpoints : 184.5 Sanity Check : 184.6 Implementation Summary : 195 Comparison with Related Work 206 Existing and Future Enhancements to Xvpodb 226.1 Existing Enhancements : 226.2 Future Enhancements : 227 Conclusions 24Bibliography 25Vita 26
vi

List of Tables4.1 Message Types in Xvpodb : 16

vii

List of Figures2.1 Compiler Structure : 43.1 Typical Use of xvpodb : 73.2 Main Display of xvpodb : 83.3 Breakpoint Menus : 113.4 Options Menu : 123.5 Information Popup : 14

viii

AbstractThis document describes xvpodb, a visualization tool developed to support the anal-ysis of optimizations performed by the vpo optimizer. It was designed to aid andsimplify the process of retargeting vpo to a new machine architecture. The tool isa graphical viewer/debugger that can display each change made by the optimizerto the generated instructions during an actual compilation. The format used todisplay these changes is simple and intuitive. The information and insight suchvisualization provides can greatly simplify debugging of the optimizer. Unique fea-tures of xvpodb include reverse viewing (or \undoing") of changes, and the abilityto stop at breakpoints associated with the generated instructions. In addition tofacilitating debugging, the tool also simpli�es experimentation with new optimiza-tion techniques. Lastly, xvpodb is a valuable teaching aid in compiler courses, as itallows students to see a precise depiction of what happens to generated instructionsas they are optimized.
ix

Chapter 1IntroductionTo increase portability compilers are often split into two parts, a front end anda back end. The front end processes a high-level language program and emitsintermediate code. The back end processes the intermediate code and generatesassembly instructions for the target machine architecture. Thus, the front end isdependent on the source language and the back end is dependent on the instructionset for the target machine. Retargeting such a compiler for a new machine requirescreating a new back end. While the time and e�ort required to retarget a backend of a compiler to a new machine has decreased over the years, performing thistask in an expeditious manner still remains a problem. One reason is that therate at which new machines are being introduced has increased. Also, there isan increasing reliance on compilers to perform highly sophisticated optimizationsthat exploit architectural features. Usually these optimizations can be appliedmost e�ectively in the back ends of compilers [BeD88].Much of the e�ort required to retarget a back end occurs during testing. Largeamounts of time are spent attempting to determine why incorrect code is gener-ated, or why optimizations cannot be applied for speci�c programs. Many backends store information about the program being compiled in an encoded internalformat, which exacerbates the problem. While such formats consume less memoryand allow optimizations to occur more rapidly, they also increase the di�culty ofanalyzing speci�c problems within the code.1

2The goal of the research described in this document is to simplify the task ofdebugging the vpo optimizer. A visualization tool was developed that allows theprogrammer to view each optimization performed by the optimizer in a way thatis both
exible and easy to understand.One could obtain the same information using a standard symbolic debuggerto examine internal data structures by hand. However, this is both labor inten-sive and prone to human error. The abstract, yet precise way the optimizationsare presented by the viewer allows the programmer to concentrate on what theoptimizer is doing to the instructions, rather than struggling with inadequate de-bugging tools. Also, this debugging tool recognizes the temporal element of acompilation. This is particularly important with vpo, as it can reapply optimiza-tion phases many times during a compilation. The viewer identi�es not only whatchanges occurred, but also when they occurred during the compilation (relative toother changes). This greatly simpli�es the eradication of bugs that only manifestwith a certain cascading set of optimization phases and instructions.Selective viewing of the optimizations performed by vpo is accomplished usingbreakpoints. The breakpoint paradigm used is simple yet powerful, allowing theprogrammer to quickly focus in on the desired portion of the compilation.Finally, this debugging tool has the ability to reverse the e�ects of any or alloptimizations made during a compilation. With this feature, the programmer neednot be concerned about executing the compiler \one step too far," and being forcedto reexecute the current test.

Chapter 2Overview of the Compiler2.1 General OverviewThe tool described in this paper supports the compiler technology known as vpo(Very Portable Optimizer) [BeD88, Dav86, DaF84]. The optimizer, vpo, replacesthe traditional code generator used in many compilers and has been used to buildC, Pascal, and Ada compilers. The back end is retargeted by supplying a descrip-tion of the target machine. Using the diagrammatic notation of Wulf [WJW75],Figure 2.1 shows the overall structure of a set of compilers constructed usingvpo. Vertical columns within a box represent logical phases which operate seri-ally. Columns divided horizontally into rows indicate that the sub-phases of thecolumn may be executed in an arbitrary order. IL is the Intermediate Languagegenerated by a front end. Register transfer lists (RTLs) describe the e�ects of ma-chine instructions and have the form of conventional expressions and assignmentsover the hardware's storage cells. For example, the RTLr[1] = r[1] + r[2]; cc = r[1] + r[2] ? 0;represents a register-to-register integer add on many machines. While any partic-ular RTL is machine-speci�c, the form of the RTL is machine-independent.All phases of the optimizer manipulate RTLs. The RTLs are stored in a datastructure that also contains information about the order and control
ow of theRTLs within a function. One advantage of using RTLs as the sole intermediaterepresentation is that many phase ordering problems are eliminated. Most opti-3

4
Front

End

Front

End

Front

End

Ada

Expanders

Code

Expanders

Code

Expanders

Machine

Description

Processor

register

MC68020

VAX-11

MC88100

MIPS
SPARC

transfers

Block Scheduling Delay

Slots

Basic

Analysis

Global

Branch Optimizations

Instruction Selection

Evaluation Order Determination

Register Allocation

Common Subexpression
Elimination

Dead Variable Elimination

Code Motion

Recurrences

Strength Reduction

Induction Variable
Elimination

Object File

Code

IL IL IL

Instruction Fill

Opts Dataflow

CPascal

(source languages)

Intel 80386

Figure 2.1: Compiler Structuremizations can be invoked in any order and are allowed to iterate until no furtherimprovements can be found. Another advantage is that since each RTL repre-sents a legal machine instruction, the e�ect of a modi�cation to the set of RTLscomprising a function is relatively simple to grasp. In contrast, most conventionalcompiler systems generate code after optimizations. In these systems the e�ect ofa modi�cation may not be trivial to deduce.

52.2 Enhancements for XvpodbThe vpo optimizer was modi�ed to identify any change to the RTL data structure.A serial sequence of changes that preserve the meaning of the compiled programis referred to as a transformation. This terminology is used throughout this pa-per. The optimizer was also modi�ed to send messages containing descriptions ofthese changes, as well as noti�cation of the optimization phase and transformationnumber in which the changes took place. The exclusive use of RTLs as the inter-mediate representation greatly simpli�ed the design and implementation of xvpodb.Because there is only one type of data structure representing program information,only one algorithm needed to be developed to process modi�cation messages andproduce a view of the data structure.2.3 VpoisoDuring the development of xvpodb, another tool was created to assist programmersin debugging the vpo optimizer. The tool depends upon some of the enhancementsmade to vpo for xvpodb. This tool, called vpoiso, will automatically isolate the �rsttransformation in a compilation that causes the program being compiled to produceincorrect output when executed [BoW93]. After performing such an isolation,xvpodb is ideal for viewing the transformation that is found to determine the causeof the error. Thus, these two tools compliment each other well, and together theyform a powerful environment for facilitating the retargeting of vpo.

Chapter 3Functional Description of Xvpodb3.1 Method of UseIn typical usage, vpo would be executed from within a source level debugger, toallow the viewing of internal structures and to control execution. It would beinvoked with the command line switches needed to activate the routines that buildand pass messages to xvpodb, which would be running concurrently. The messagepassing paradigm chosen provides the user with the option of running vpo andxvpodb on two di�erent machines. Due to the use of X Windows, the user also hasthe option to view the output windows of these two process groups on yet anothermachine. This allows the user to use the resources of up to three machines, thusspeeding up the debugging cycle. Figure 3.1 illustrates this relationship, withthe circles representing processes and the arrows showing communication channelsbetween processes.3.2 Message PassingBefore performing any optimizations, vpo will pass a set of messages that describethe initial state of all RTLs in the function currently being compiled. After receiv-ing these messages, xvpodb will display this initial set to the user. Subsequently,descriptions of all changes to the RTLs will be passed to xvpodb, which stores themfor later interpretation at the request of the user.6

7
XVPODB

X-Window Server

VPO

Symbolic

Debugger

Figure 3.1: Typical Use of xvpodb3.3 RTL Display WindowFigure 3.2 depicts xvpodb displaying an Instruction Selection transformation. Thelarge middle section of the window displays a portion of the RTL structure (theseRTLs are targeted to the SMCC SPARC architecture). The RTLs are showncontained in rectangles, which represent basic blocks. Transfers of control betweenbasic blocks are depicted using arcs (the arrowheads on the arcs indicate directionof transfer). The basic blocks are shown in the order in which they will appear whengenerated as assembly instructions. The RTLs themselves are displayed in humanreadable form (not the encoded internal format used by vpo). This
owchart-likemodel is a common way of abstracting a program representation, and is used inmany textbooks. The scrollbar to the left of the display area can be used to view

8

Figure 3.2: Main Display of xvpodbany part of the set of RTLs currently being processed by the optimizer. Also, onecan center the screen on a basic block's right or left pointer destination by clickingthe right or left mouse buttons on the block header. This feature, called magicjumping, allows the user to follow an execution path without having to search forbranch and jump destinations.

93.4 Informational LabelsThe labels at the top of the window provide the name of the function being ex-amined, the optimization phase in which the current transformation occurred, theunique number of this transformation, the total number of transformations thathave been received for this function, and the state of the viewer. In Figure 3.2,the state is BEFORE transformation 16, which indicates that this is what theRTLs look like before this transformation is applied. If the state were AFTER,the middle display would show what the RTLs look like after transformation 16 isapplied. These are the only two states in which the viewer can be.3.5 Step and Continue ButtonsAt the bottom of the window, there are four large buttons that resemble the con-trols on an audio cassette player (this is not a coincidence). The > and < buttonsare, respectively, Step Forward and Step Backward. These buttons will dis-play the e�ects of the next or previous transformations, again respectively. A fulltransformation is shown using two clicks of the left mouse button. In the case ofthe Step Forward button, the �rst click would show the BEFORE state of theRTLs. The RTLs to be a�ected are highlighted, and the screen is centered on theseRTLs. Clicking again on the same button would perform the transformation, andcause the viewer to display the AFTER state of that transformation. The RTLsthat were a�ected by the transformation would be updated and highlighted (theyare not always the same RTLs seen in the BEFORE state, as in the case of an RTLinsertion or deletion). The reverse case works similarly, except one views the AF-TER state �rst, then the BEFORE. The user can apply and reverse (or vice-versa)a transformation as many times as needed, which is useful for grasping the full

10e�ect of a complicated transformation. The >> and << buttons are, respectively,Continue Forward and Continue Backward. They are similar to > and <,except they stop on breakpoints (as opposed to the next or previous transforma-tion). Breakpoints are set with the Set Breakpoints button and menus, and arediscussed in section 3.6.The user can view the transformations serially or at speci�ed breakpoints, eitherin the forward (showing the transformations being applied) or reverse (showingthem being undone) direction. In other words, the user does not need to reexecuteanything to view a previously applied transformation. The viewer can reversethe e�ects of any or all transformations with a few mouse clicks. This processdoes not a�ect the ability to interpret transformations in the forward direction.Thus, the user can view a transformation or set of transformations being appliedand reversed as many times and in as many areas of the compilation as desired.Also, the programmer need not compile the entire function to be able to viewtransformations. The viewer will allow the user to see any transformations thathave already been received from vpo. If desired, the programmer can step vpothrough its optimization of a function one transformation at a time, thus beingable both to view the graphical representation of the transformation and to studythe actual data structures and source code in the optimizer that produced it.Information is provided by xvpodb that allows the programmer to easily locate theproper data structures. For example, the programmer can �nd the pointer addressin vpo of the structure that contains an RTL or basic block simply by clicking onit in xvpodb.

11

Figure 3.3: Breakpoint Menus3.6 Setting BreakpointsThere are two main types of breakpoints in xvpodb. The �rst, and simplest, areTransformation Number breakpoints. The user inputs a transformation number ornumbers, and xvpodb will break at the beginning or end of those transformations(depending on the direction of viewing). Since the transformation numbers aredetermined by vpo, this provides a convenient way to coordinate breakpoints inboth the compiler and the viewer.The second type of breakpoint is more general. Figure 3.3 shows several of themenus used to set this type of breakpoint. Basically, the user selects some numberof optimization phases from a toggle menu. After completing this, a decision is

12
Figure 3.4: Options Menumade to break on one of two criteria. The user can choose to break wheneverone of the selected phases is encountered (at the beginning or end of the phases,depending on the direction of viewing), or the user can select a set of speci�c RTLsthat should be recognized. In this latter case, the viewer will break whenever anyof the RTLs selected is changed in any way during any of the selected optimizationphases. The user can break on any change to a set of RTLs simply by selecting alloptimization phases when setting the breakpoint (there is a button provided to dothis with one click). Thus, breakpoints can be set on speci�c optimization phases,speci�c RTLs, or any combination of both.3.7 Options MenuThe Options button pops up a menu of buttons that implement less commonlyused features of the viewer, or features that that need not be available at all times(Figure 3.4). This was done to reduce screen clutter, and provides a convenientplace for future developers to add minor features to the viewer. The Proceed to

13Next Function button instructs xvpodb to discard the current function data andinterpret the next function that was compiled. The Warp To Initial Set buttonallows the user to undo all transformations and be returned to a view of the initialset of RTLs for the current function. The Warp to End of Transformationsbutton will display the completely optimized set of generated instructions, applyingall transformations that have been received for the current function. Both of thesefunctions skip all breakpoints. The Output RTLs and BBs to stderr buttonoutputs a formatted textual version of the current set of RTLs to standard error,where it can easily be grabbed and inserted into a �le for later study. The HideControl
ow Arcs button toggles the drawing of the control
ow arcs in the maindisplay. This can be useful when using an extremely slow X server. Finally, theShow Transformation Details button toggles the verbosity of the step forwardand step backward functions. When this toggle is selected, detailed informationabout each change in the current transformation being displayed is presented tothe user while stepping forward or backward. This option is turned o� by default,as it typically provides too much data to look at while searching for a particulartransformation. However, after that transformation is found, this extra data ismore likely to be of interest, and is easily accessible by activating this button.3.8 RTL/Basic Block Information PopupAt any time, if the user clicks the middle mouse button on any RTL in the mainRTL display, or on a basic block header, a small window will pop up showingextended information about the RTL or basic block. For an RTL, this wouldinclude its dead register list and exact pointer address in vpo. The latter piece ofinformation allows the user to easily �nd and examine the RTL in the debugger

14
Figure 3.5: Information Popupwithin which vpo is running. Similarly, if the middle button is clicked on a basicblock header, the addresses the block itself, its left and right pointers, and theblock label are displayed (Figure 3.5).Enhancements to this popup that produce more information about basic blockshave been developed, and are discussed in section 6.1.3.9 Debugging ExampleThe following example illustrates the power of both reverse viewing and breakpointselection in xvpodb by showing how a programmer could view the entire genesis ofa single generated instruction. After executing vpo and xvpodb, and after sendingall messages associated with the function in which the RTL resides, the user clickson theWarp to End of Transformations button (located in the options menu).This will display the completely optimized set of RTLs. Then, the user goes tothe breakpoint menus (by clicking Set Breakpoints) and sets a breakpoint inthe following manner. First, Optimization Phase/RTL Breakpoint is clicked,

15followed by All Optimization Phases, and Proceed to RTL Selection. Now,the user chooses the RTL of interest, and clicks on Done. At this point, the usercan see each successive transformation to that RTL being \undone" by clickingthe << button. If a transformation is encountered but not understood, the usercan examine it (and other closely preceding and following transformations to gaincontext) as many times as necessary by clicking the < and > buttons. When thetransformation is fully understood, the << button is again clicked. Eventually,the user will be informed that there is no other transformation involving that RTL(therefore, at that point the RTL is in its initial state, before any transformations).If desired, the user could click the >> button to watch the transformations be suc-cessively reapplied to just that RTL. Eventually, the user would again be informedthat there are no more transformations involving that RTL (thus implying that itis currently in the fully optimized form in which vpo will output to the object �le).Using this technique, a programmer can determine exactly how any speci�c RTLin the �nal output of the optimizer was generated.

Chapter 4Implementing Xvpodb4.1 Message PassingTo simplify the implementation, each message from vpo to xvpodb re
ects at mosta single change to the data structure containing the RTLs. All communicationsare one way, from vpo to xvpodb. Table 4.1 lists some of the types of messages thatare sent.A transformation is de�ned by a set of change messages bracketed by begin andend transformation messages. A set of transformations occurring in a particularoptimization phase would be bracketed by begin and end phase messages. Thus,in general the message stream from vpo to xvpodb can be thought of as a set oftransformation blocks (a begin transformation, some number of change messages,and an end transformation message), sometimes with either begin or end phasemessages in between to show transitions to di�erent optimization phases. A set ofbegin function insert RTLend function delete RTLstart optimization phase move RTLend optimization phase modify RTLstart transformation modify RTL dead register listend transformation modify control
ow successor of basic blockcreate new basic block modify output position successor of basic blockfree up basic block end compilationmodify basic block labelTable 4.1: Message Types in Xvpodb16

17these messages representing an entire function compilation will be bracketed withbegin and end function messages. There are special messages that communicatethe initial set of RTLs, basic blocks, and dead register lists for a function (they aresent after the begin function message, and before any change information).4.2 Main Data StructuresThere are two main data structures in xvpodb, the Optimization List and the ScreenList. The optimization list is a doubly linked list of nodes, each node representing adecoded message. This list is descended when performing forward transformations,and ascended when reversing them. A single pointer to this list represents the pointduring the compilation that is currently being displayed by the viewer. The actof stepping or continuing forward or backward merely moves this pointer in theappropriate direction, interpreting nodes along the way. All transformations abovethe pointer and none below will have been applied to the initial set of RTLs. Whena transformation is applied, all information needed to reverse it is stored in thenode. When ascending the list (undoing transformations), this information is usedto restore the screen representation of the RTL or basic block to its previous state.The screen list is a singly linked list of nodes, each node containing (amongother things) one small section of the main RTL viewing area. These nodes repre-sent the current state of all RTLs and basic blocks. These nodes are modi�ed astransformations are applied or reversed. After the changes are complete, a simpleroutine copies all of the small screen sections to the actual viewer window. Thesenodes are created or deleted during RTL or basic block insertions or deletions(none of the optimization nodes are deleted until the user proceeds to the nextfunction).

184.3 Control
ow Arcs and HighlightingThe arcs showing transfers of control are drawn after the middle section of the RTLdisplay is created (from the screen list, as described above). If the length of the arcwill be longer than two video pages a small stub arrow is drawn instead, as verylong arcs are di�cult to follow, and it is easier to use magic jumping (Section 3.2)to locate left and right pointer destinations. Finally, a routine highlights the RTLspertinent to the current transformation and centers the screen on them.4.4 BreakpointsBreakpoints are stored in several small linked lists. The transformations arescanned for criteria that the user has indicated should be stopped upon beforeany changes are applied. If any of the breakpoint criteria is met, the viewer stopsand displays the state of the RTLs at that point.4.5 Sanity CheckDuring the development of xvpodb, the need was recognized to ensure that theviewer be bug free, in terms of accurately depicting the state of RTLs at any time.There can be few things in life more irritating than a buggy debugger. To aidin this e�ort, a sanity check module was incorporated into xvpodb. By issuing afunction call within vpo (typically through the use of a symbolic debugger), thetester can invoke a routine that sends to xvpodb a set of messages that describethe current state of the RTLs in vpo. The viewer will compare this to its internalrepresentation of the RTLs, and will report any di�erences found. This can bedone at any time during a debugging session, and as many times as desired. Ofcourse, the tester must ensure that all transformations that have been sent to

19xvpodb have been applied (i.e. xvpdob must be displaying the AFTER state of thelast transformation that was sent), or di�erences will surely be found. The sanitycheck module was relatively simple to implement, as it reuses many of the routinesneeded to send the initial set messages.The sanity check module was primarily intended to aid implementation and toprovide a method for testing the accuracy of the viewer. However, it is conceivablethat users might also like the ability to perform an occasional sanity check simplyto ensure that the problem being examined really represents a bug in the optimizer,and not a debugger error.4.6 Implementation SummaryPrimary goals in the implementation of the viewer included ease of portability, sim-plicity of extension or upgrade, and robustness. The KISS principle was appliedwhenever possible, even when it implied some e�ciency loss. The resulting appli-cation is satisfyingly fast on a Sun IPC running over a stock MIT X11R5 server.Interactive response time is quite adequate, enabling the user to click buttons andsee transformations as rapidly as desired. Graphic drawing time is minimal dueto the use of the the small screen sections in the screen list nodes. On the vpoend, virtually all modi�cations are localized to the machine independent portionof the source. The modi�cations required were relatively minor, and should beeasy to incorporate when adding or modifying optimization phases in the future.Message passing is currently implemented using UNIX sockets, but could easilybe redone using RPCs. Internet stream sockets were used to guarantee reliablecommunications and to allow long haul operation of the viewer.

Chapter 5Comparison with Related WorkThe UW Illustrated Compiler [AHY88], also known as icomp, graphically displaysits control and data structures during the compilation of a program. A featurecalled hookpoints are used to specify points in the compiler to update the windowsthat have changed since the last hookpoint was executed. By specifying hookpointsand breakpoints in the compiler a user can control the rate at which views are dis-played during a compilation. The icomp compiler has been used by undergraduatecompiler classes to illustrate the compilation process.There are many di�erences between icomp and xvpodb. The purpose for de-veloping the icomp compiler was for use as a teaching tool in an undergraduatecompiler class. The main purpose for constructing xvpodb is to assist a compilerwriter when retargeting the vpo compiler to a new machine. The xvpodb tool canalso be used as a teaching tool in a compiler class to illustrate various compileroptimizations. The source programs compiled by icomp are written in a subsetof Pascal called PL/0. The vpo back end currently interfaces with a front endcalled vpcc (Very Portable C compiler) that supports the complete C language.The icomp compiler shows views of di�erent portions of the compilation processwhich includes lexical analysis, parsing, semantic analysis, and code generation.No optimizations are performed by the compiler. In contrast, xvpodb displays thee�ects of optimizations exclusively. The icomp compiler allows breakpoints andhookpoints to be set at di�erent locations in the source code of the compiler. It20

21does not have the ability to stop when a user-speci�ed portion of a view is up-dated. The xvpodb tool allows breakpoints to be set associated with updates toa speci�c portion of the information representing a function. The icomp compilerwas written in Interlisp-D to access facilities in the language for implementinghookpoints and producing graphical displays. Both the vpo compiler and xvpodbare written in C. Thus, optimization viewers could be developed for other existingcompilers written in conventional programming languages using the techniques toimplement xvpodb. Finally, icomp does not allow reverse viewing of transforma-tions. It was stated, \icomp cannot be run in reverse because of the complexityof implementing such a feature." Reverse viewing was feasible in xvpodb since theinformation about a function is represented in only a single type of data structure.By retaining information about each change to this data structure the ability toundo transformations was accomplished without excessive complexity.

Chapter 6Existing and Future Enhancements to Xvpodb6.1 Existing EnhancementsThe viewer has been enhanced by members of an advanced compiler course as asemester project. The enhancement allows the user to see live registers informa-tion (i.e. which registers are live coming into and leaving a basic block) and seedominator information for the basic blocks. In addition, a special Fat Boy editionof xvpodb (in honor of the Harley motorcycle of similar name) has been providedfor students working with a version of vpo targeted to an VLIW (Very Large In-struction Word) architecture. The Fat Boy can display RTLs that are over onehundred characters in length.6.2 Future EnhancementsMany other enhancements are planned for xvpodb. Its modular organization andconvenient Options menu aids the task of adding minor features. One interestingenhancement currently planned to be implemented is to allow the user to selecta motion picture mode. This would display multiple transformations occurring toRTLs in real time (i.e. animation of the optimization process). It is thought thatthis may give students some insight into how various optimization phases performtheir tasks. There are also plans to further enhance the availability of live variablerange information. For example, the viewer could display all the live ranges ofa particular variable when clicked by the user. The ability to click on an RTL22

23and be presented with the actual assembly represented by that RTL has also beendiscussed. Finally, there is interest in producing a version of xvpodb for the GNUgcc compiler.

Chapter 7ConclusionsAn optimization viewer, such as xvpodb, can be very useful when retargeting aback end of a compiler. Displaying the program representation at any given pointduring the optimization of a function, stopping at breakpoints associated withthe generated code, and reverse viewing of transformations are all helpful fea-tures for analyzing problems with an optimizer. Compilers can also be used toguide instruction set design to determine if proposed architectural features canbe exploited [DaW91]. Decreasing the time to retarget a compiler to a proposedarchitecture would also decrease the time required to design and develop a newmachine.Another use of xvpodb is as a teaching aid for advanced compiler courses. Manyrecently introduced machines require sophisticated compiler optimizations to ex-ploit their architectural features. Advanced compiler courses that present tech-niques to perform these types of optimizations may soon become more common.This tool, which allows students to interactively visualize the e�ect of each trans-formation, would be quite useful in illustrating these optimizations.
24

Bibliography[AHY88] K. Andrews, R. R. Henry, and W. K. Yamamoto, \Design and Im-plementation of the UW Illustrated Compiler," Proceedings of theSIGPLAN '88 Symposium on Programming Language Design andImplementation, pp. 105-114 (June 1988).[BeD88] M. E. Benitez and J. W. Davidson, \A Portable Global Optimizerand Linker," Proceedings of the SIGPLAN '88 Symposium on Pro-gramming Language Design and Implementation, pp. 329-338 (June1988).[BoW93] M. R. Boyd and D. B. Whalley, \Isolation and Analysis of Opti-mization Errors," Proceedings of the SIGPLAN '93 Symposium onProgramming Language Design and Implementation, pp. 26-35 (June1993).[Dav86] J. W. Davidson, \A Retargetable Instruction Reorganizer," Proceed-ings of the SIGPLAN '86 Symposium on Compiler Construction, pp.234-241 (June 1986).[DaF84] J. W. Davidson and C. W. Fraser, \Code Selection through ObjectCode Optimization," Transactions on Programming Languages andSystems 6(4) pp.7-32 (October 1984).[DaW91] J. W. Davidson and D. B. Whalley, \A Design Environment for Ad-dressing Architecture and Compiler Interactions," Microprocessorsand Microsystems 15(9)pp. 459-472 (November 1991).[WJW75] W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs, and C. M.Geschke, The Design of an Optimizing Compiler, American Elsevier,New York, NY (1975).
25

VitaMickey Boyd was born on March 15, 1968, the son of Donald and Toki Boyd. Hereceived his Bachelor of Science in Computer Science from Florida State Universityduring the summer of 1990. He also received his Master of Science in ComputerScience from Florida State University in the summer of 1993. While working onhis Master's degree he was employed by the Department of Computer Science, �rstas a system manager, then as the system administrator. He is currently the systemadministrator of the Department of Mathematics at Florida State University.He co-authored a paper, \Isolation and Analysis of Optimization Errors," whichwas based on the same research contained within this document. It was acceptedby SIGPLAN PLD&I '93 and was published in Proceedings of the SIGPLAN '93Symposium on Programming Language Design and Implementation. He presentedthe paper in Albuquerque during the conference.
26

