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ABSTRACT

Statically pipelined processors offer a new way to improve the performance beyond that of a tra-

ditional in-order pipeline while simultaneously reducing energy usage by enabling the compiler to

control fine-grained details of the program execution. This paper describes how a compiler can

exploit the features of the static pipeline architecture to apply optimizations on transfers of control

that are not possible on a conventional architecture. The optimizations presented in this paper

include hoisting the target address calculations for branches, jumps, and calls out of loops, per-

forming branch chaining between calls and jumps, hoisting the setting of return addresses out of

loops, and exploiting conditional calls and returns. The benefits of performing these transfer of

control optimizations include a 6.8% reduction in execution time and a 3.6% decrease in estimated

energy usage.
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CHAPTER 1

INTRODUCTION

Power and energy have become critical design constraints in processors for several reasons. Some

of these reasons include that mobile devices rely on low power usage to improve battery life,

embedded devices have a limited power budget, processor clock rates are constrained due to thermal

limitations, and electricity costs are increasing. Designing power efficient processors helps address

all of these issues.

A recent approach to processor design, the Static Pipeline (SP), reduces energy usage by giving

the compiler fine-grained control over the scheduling of pipeline effects. This approach enables

the compiler to avoid many redundant pipeline actions, such as accesses to registers whose values

are already available within the datapath. Additionally, this approach enables the processor to

be simplified because design issues such as data forwarding and many hazards are handled by the

compiler instead of the hardware.

The focus of this paper is to evaluate how a compiler can make transfers of control (ToCs) faster

and more energy efficient in the SP architecture. The primary contributions of this paper are:

1. Adjusting ToCs in the SP architecture to deal with an extra stage in the pipeline

2. Providing a detailed description of how SP ToCs are implemented in the hardware

3. Implementing a variety of new SP ToC optimizations that exploit the decoupling of ToC

effects in a fully datapath that would not otherwise be possible

4. evaluating the impact of these SP ToC optimizations.

The author has published the work outlined in this paper in [1].

1.1 Static Pipeline ISA

In order to illustrate the difference between a Static Pipeline ISA and a more traditional ISA,

consider an example of a mips instruction: “lw $3, 4($5)”. The programmer thinks of this in-
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struction as a single operation (loading a value from memory), but it can be broken down into five

operations that happen in the pipeline:

1. The retrieval of the immediate value 4 from the instruction

2. The read of register $5

3. The addition of the value 4 and the address from register $5

4. The load from memory based on the result from the addition

5. The write to register $3.

Typically, these operations happen in the Decode, Register Fetch, Execute, Memory, and Write-

back stages of the pipeline; sequential operations are packaged into an instruction because we think

of them as a single operation. At any given time, a traditional pipeline simultaneously processes

one stage of several instructions. The processor is tasked with dynamically deciding when stalls

have to be introduced due to hazards, and when values can be forwarded from different stages of

the pipeline in order to avoid stalling.

The static pipeline tasks the compiler with determining when these operations are performed;

instead leaving a sequence of effects packaged into an instruction, the compiler breaks the traditional

instructions down into their micro-effect components, and schedules those micro-effects to determine

which effects are executed at the same time within the processor. The effects that can be scheduled

at the same time are combined into an instruction, and the scheduling of the effects must take into

account limitations of the instruction encoding.

Figure 1.1 illustrates the difference between instruction effects in the SP approach compared

to a traditional pipeline. The load instruction in Figure 1.1(b) requires one cycle for each stage

after being fetched and decoded and remains in the pipeline from cycles six through nine. In a

conventional processor, the sequence of effects composing the load is encoded in a single instruction

but occurs over several cycles (in this case, 6-9). Figure 1.1(c) illustrates how an SP processor op-

erates. Conventional operations, such as a load, still require multiple cycles to complete. However,

the effects that make up a conventional operation are explicitely encoded, spread over multiple SP

instructions. After decoding an instruction, an SP processor executes in parallel the effects encoded

in the instruction, which originated from multiple conventional pipeline operations.
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Figure 1.1: Traditionally Pipelined vs. Statically Pipelined Architecture

Unfortunately, allowing for every possible combination of effects in an SP instruction would

require more than 80 bits per instruction. To keep the instruction size at 32 bits, we use a template

based instruction encoding. In this encoding, we have several template forms, shown in Figure 1.2,

which serve the purpose of keeping fields within templates aligned well enough to be easily decoded

by the processor.

Each template is a set of effects that can be encoded if that template is selected. To generate

templates, the compiler generates wide-format code, but restricts the instructions generated to

be instructions that could possibly fit in a template. The template selector iteratively selects

the template that can encode the most instructions which aren’t covered by previously selected

templates. The process for generating the templates is covered by more detail in [2].

Figure 1.2: Static Pipeline Template Formats
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1.2 Static Pipeline Architecture

A static pipeline’s hardware is much simpler than a traditional pipeline. The processor fetches

an instruction that represents a set of effects, decodes the instruction, and executes all of the effects

in parallel. Since all of the effects have been scheduled ahead of time by the compiler, there isn’t

any need for forwarding logic and the hazard detection is much simpler.

A high-level overview of the datapath for our current SP design is shown in Figure 1.3. Most

SP effects (all except stores, register writes and ToCs) update a dedicated internal register within

the execute stage, which is cheaper than propagating information through the pipeline, storing it

to a general purpose register file, and later retrieving it from the register file and propagating it

back into the execute stage for use by another instruction (as done by a traditional processor).

There are ten internal registers that can be accessed in SP instructions:

• The SEQ (sequential address) register gets the address of the next sequential instruction at

the time it is written.

• The RS1 and RS2 (register source) registers contain source values read from the register file.

• The SE (sign extend) register contains a signed-extended immediate value.

• The CP1 and CP2 (copy) registers hold values copied from one of the other internal registers.

• The OPER1 (ALU result) register receives values calculated in the ALU.

• The OPER2 (FPU result) register acquires results calculated in the FPU, which is used for

multi-cycle operations.

• The ADDR (address) register holds the result of an integer addition and is often used as an

address to access either the instruction cache or data cache.

• The LV (load value) register gets assigned a value loaded from the data cache.

Each internal register requires less power to access than the centralized register file since these

internal registers are small and can be placed near the portion of the processor that accesses them.

1.3 Changes to the Static Pipeline Architecture

The SP pipeline previously consisted of two stages, instruction fetch (IF) and execute (EX),

in our simulations; instruction decode was assumed to be part of the EX stage. In order to make
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Figure 1.3: Static Pipeline Datapath

the clock period comparable to a baseline MIPS processor in a VHDL implementation for [2], we

added an instruction decode (ID) stage between the IF and EX stages in which the instructions

are converted into control signals. This change now requires that target addresses for ToCs be

computed one instruction earlier. We also now require the address of a load/store operation to be

calculated before the load/store effect is executed, which enables us to maintain 1-cycle loads for

data cache accesses. The previous SP framework had a dedicated TARG register that was used to

hold the address of a PC-relative target. We now use a single ADDR register for data memory address

calculations, and for target address calculations for both conditional and unconditional PC-relative

ToCs. The costs of these hardware changes are that all loads and stores go through a single adder

(creating extra name dependencies), we sometimes require an extra effect to move an address to

the ADDR register, there is an increase in dependence height for blocks ending with a ToC (creating

extra instructions in small basic blocks), and branch mispredictions stall for an extra cycle.
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CHAPTER 2

TRANSFERS OF CONTROL

In order to understand the benefits of the way our Static Pipeline handles transfers of control

(ToCs), it’s important to understand how ToCs are handled in both traditional pipeline architec-

tures and static pipeline.

2.1 Traditional Pipeline Transfers of Control

Traditional pipelines often handle transfers of control by always performing extra work to rem-

edy the fact that their design dictates a demand for information that isn’t yet available. A common

way of handling transfers of control is shown in Figure 2.1. In the IF stage during cycle 1, the pro-

cessor accesses the BTB, BPB, and RAS. The BTB caches target addresses for ToC instructions;

it can often recognize a branch that has already been seen and return the branch target address for

direct jumps and conditional branches. The RAS keeps track of the return addresses on the call

stack so that the innermost functions can return efficiently. The BPB is used to predict whether or

not conditional branches will be taken. Since the processor does not know whether the instruction

currently being fetched is a transfer of control, it accesses these structures during every cycle. The

information from these structures determines what instruction will be fetched in cycle 2.

IF ID EX ...
IF ID EX ...

IF ID ...
IF ...

Branch
Predicted Target

Target for BTB miss
Target for BPB miss

Figure 2.1: Traditional ToC

In the decode stage in cycle 2, the processor can determine whether or not the instruction

fetched in cycle 1 was actually a ToC. If the instruction was a jump but was not in the BTB, the IF

stage in cycle 2 needs to be cleared and the instruction fetched in cycle 3 will be the jump target.
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During the execute stage in cycle 3, the condition can be evaluated for a branch fetched in cycle

1. If the prediction was incorrect, the fetch and decode stages need to be flushed and the correct

instruction will be fetched in cycle 4 (correctly resolving the branch).

The processor is using extra energy to access predictive structures for every instruction that is

not a branch, and to speculatively fetch an unnecessary instruction in the case of mispredictions.

2.2 Static Pipeline Transfers of Control

In an SP ToC, all of the information required to perform the ToC, with the exception of the

branch condition, is always available before the point of the ToC. ToC operations (branches, jumps,

calls, and returns) in an SP architecture are explicitly separated into three parts that span multiple

SP instructions: (1) the target address calculation, (2) the prepare to branch (PTB) command,

and (3) the point of the ToC.

Figure 2.2 depicts the way ToCs are handled in the Static Pipeline. The PTB and Address

calculation provide the target address of the ToC before the instruction is fetched in cycle 2. The

comparison occurs in cycle 3, and if a misprediction is revealed the IF and ID stage must be flushed

and the correct instruction will be fetched in cycle 4. This approach still uses extra energy in the

case of conditional branch mispredictions, but never makes accesses to the BPB for instructions

that are not conditional branches, and doesn’t require a BTB or an RAS.

IF ID EX ...
IF ID EX ...

IF ID EX ...
IF ID EX ...

Address Calculation
PTB

Comparison
Speculative Target

IF ID EX ...
IF ID EX ...

Speculative Instruction
Target if Mispredicted

Figure 2.2: Static Pipeline ToC

Figure 2.3 provides examples of how ToCs are accomplished in the SP architecture. Before

optimization, SP targets are always calculated by either adding the program counter (PC) and a

constant for a PC-relative address or by using two long immediate effects to construct an absolute

address, as depicted in Figures 2.3(a) and 2.3(b), respectively. After the target address is calcu-

lated, a prepare-to-branch (PTB) effect is issued. PTB instructions have been proposed in other

architectures, but PTB effects have a low cost in the SP architecture because they can be encoded
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as a 4-bit effect, rather than as an entire instruction. These 4 bits consist of one enable bit, one bit

to select between conditional and unconditional ToCs, and 2 bits to select a source to obtain the

target address. The possible SP target address sources are ADDR (PC-relative targets), SE values

(direct call targets), RS2 (originally used for only indirect targets such as returns), and SEQ (top

of innermost loop targets). The PTB effect indicates that the point of the ToC is in the following

instruction. If the conditional bit (c) is set, a comparison effect must be within the instruction

immediately following the PTB. Calls and returns are made using the same control-flow effects as

any other ToC. Instead of using a unified jump and link instruction for a call, we represent the set

of the return address register as a separate effect to accomplish this goal (r[31]=PC+1;).

SE=offset(label);

ADDR=PC+SE;

...

PTB=c:ADDR;

PC=OPER1!=RS1,ADDR;

(a) PC-Relative SP Branch

SE=LO(label);

SE=SE|HI(label);

...

PTB=u:SE;

PC=SE;r[31]=PC+1;

(b) Absolute SP Call

Figure 2.3: SP Transfer of Control Examples

Figure 2.4 contains a pipeline diagram showing how the SP effects that comprise a ToC operation

are pipelined. We require that the target address be assigned at least one instruction before the

instruction containing the PTB effect is executed, as shown in Figure 2.4. Likewise, the PTB effect

has to occur in the instruction immediately preceding the point of the ToC. The PTB effect is

performed during the ID stage as it only determines whether or not the next instruction is a ToC,

if the ToC is conditional or unconditional, and which source is used for the target address. In the

diagram in Figure 2.4 both the target address calculation and the PTB effect are completed at the

end of cycle 3. Thus, the exact target address is always known before the instruction at the target

address is fetched, which occurs in cycle 4 in Figure 2.4.

One advantage of SP ToCs is that accesses to a branch target buffer (BTB) and a return

address stack (RAS) are eliminated and many accesses to a branch prediction buffer (BPB) can

be avoided. A conventional processor accesses a BTB, RAS, and a BPB on every cycle. The BTB

and RAS are accessed in the IF stage in a conventional processor because the processor otherwise

does not have the target address early enough to perform a branch in the decode stage, and are

8



IF ID

1 2 3 4 5 6

EX

IF ID

IF ID EX

IF ID EXtarget instruction

point of ToC instruction

PTB effect

set target address

Figure 2.4: Pipelining SP Transfers of Control

accessed for every instruction because the processor does not differentiate between different types

of instructions until the decode stage. Since our SP processor’s PTB effect specifies the target

address and that the next instruction is a ToC, our SP processor has no need for a BTB or RAS;

both structures are completely removed. Removing the need for a BTB has a significant impact

on energy usage since the BTB is a large and expensive structure to always access during the IF

stage. A branch prediction buffer (BPB) in a conventional processor is also accessed in the IF stage

for every instruction and contains bits to indicate if the branch is predicted to be taken or not

taken. Since conditional ToCs in an SP processor are indicated in the PTB effect that immediately

precedes the point of the ToC, the SP processor only needs to access the BPB for conditional

branches.

There are several other advantages of breaking a ToC operation into separate effects that occur

in different instructions. Most ToCs are to direct targets, meaning that the target address does not

change during the application’s execution. One advantage of decoupling these effects is that the

compiler can perform transformations on the target address calculation that are not possible using a

conventional instruction set where these calculations are tightly coupled with ToC instructions. For

instance, by decoupling the target address calculation from the point of the ToC, the calculation

can be hoisted out of loops. Likewise, the target address calculation for multiple ToCs to the

same target address can be done once. Thus, many redundant target address calculations can be

eliminated.

Other SP ToC optimizations are possible. Since unconditional jump, call, and return operations

are also separated into three parts, the compiler can perform additional optimizations, such as

chaining between jumps and calls and hoisting return address assignments out of loops. The SP
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processor supports both direct and indirect sources for conditional and unconditional ToCs, which

the compiler can exploit by converting conditional branches that are preceded by a call or followed

by a call or a return into conditional calls and conditional returns. Conditional indirect jumps are

not available in most conventional instruction sets.

2.3 Compilation for the SP Architecture

In this section, we describe the overall compilation process in more detail. For an SP archi-

tecture, the compiler is responsible for controlling each portion of the datapath during each cycle,

so effective compiler optimizations are critical to achieve acceptable performance and code size.

Because the instruction set architecture (ISA) for an SP processor is quite different from that of

a RISC architecture, many compilation strategies and optimizations have to be reconsidered when

applied to an SP architecture.

Figure 2.5 shows the steps of our compilation process. First, C code is input to the frontend,

which consists of the LCC compiler [3] frontend that converts LCC’s output format into the register

transfer list (RTL) format used by the VPO compiler [4].

Modified

MIPS Backend

Effect Expander SP Backend

MIPS RTLs

Optimized MIPS RTLs

C Code

Assembly

Frontend

Statically Pipelined RTLs

Figure 2.5: SP Compilation Process

These RTLs are then input into a modified MIPS backend, which performs all the conventional

compiler optimizations applied in VPO with the exception of instruction scheduling. These op-

timizations are performed before conversion to SP instructions because many are more difficult

to apply on the lower level SP representation, which breaks many assumptions in a conventional

compiler backend. VPO’s optimizations include those typically performed on ToCs, such as branch

chaining, reversing branches to eliminate unconditional jumps, minimizing loop jumps by dupli-
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cating a portion of a loop, reordering basic blocks to eliminate unconditional jumps, and removing

useless conditional branches and unconditional jumps whose target is the following positional block.

This strategy enables us to concentrate on optimizations specific to the SP as all conventional op-

timizations have already been performed.

The effect expander breaks the MIPS instructions into instructions that are legal for the SP.

This process works by expanding each MIPS RTL into a sequence of SP RTLs, each containing

a single effect, that together perform the same computation. Thus, ToCs are also broken into

multiple effects at this point.

Lastly, these instructions are fed into the SP backend, also based on VPO, which was ported

to the SP architecture since its RTL intermediate representation is at the level of machine instruc-

tions. A machine-level representation is needed for performing code improving transformations

on SP generated code. This backend applies additional optimizations, which include the SP ToC

optimizations described in this paper, and produces the final assembly code.
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CHAPTER 3

SP TRANSFER OF CONTROL OPTIMIZATIONS

Several new ToC optimizations are possible and beneficial due to the way ToCs are represented in

the SP architecture. The relevant optimizations we describe are (1) using the SEQ register to hoist

top of innermost loop target address calculations out of loops, (2) using general-purpose registers

to hoist other target address calculations out of loops, (3) performing call-jump and jump-call

chaining, (4) hoisting return address assignments out of loops, and (5) exploiting conditional calls

and returns. With the exception of the SEQ hoisting optimization, all of these optimizations are

new as compared to prior SP studies [5, 6].

3.1 Hoisting the Top of Innermost Loop Target

In a conventional ISA, address calculations are typically tightly coupled with ToC instructions;

even though the target addresses do not change, they are recalculated every loop iteration. For

PC-relative ToCs requiring addition, this means the addition is performed every time the ToC

is encountered, which requires both additional energy usage and encoding space. Even for ToCs

that use an absolute PC address, the encoding space for that address is still required in the ToC

instruction. The encoding space for calculating SP target addresses could impact performance if

not hoisted out of loops since more instructions may need to be executed.

The most frequent ToCs in an application are typically in the innermost loops of the most

deeply nested functions. The SP architecture provides the SEQ internal register which can be set

to the next sequential instruction address. The operations involving the SEQ register that are

supported by the SP architecture are (1) assigning the incremented value of the program counter

to the SEQ register (SEQ=PC+1;), (2) storing the SEQ register value to memory (M[ADDR]=SEQ;),

and (3) assigning the value from the LV register (result of a load operation) to the SEQ register

(SEQ=LV;). The last two operations are used to save and restore the SEQ register value so that its

value can be preserved across a function call. The compiler exploits this register by assigning it

12



the address of the top-most instruction of an innermost loop, which allows the elimination of any

calculations of this address within the body of the loop.

The example in Figure 3.1 depicts the RTLs within an innermost loop that contains ToCs to the

top of a loop. All of the examples in this paper showing SP ToC optimizations are depicted at the

time the optimizations are applied, which is before multiple effects are scheduled in each instruction.

PTB effects are actually inserted during scheduling, but are included to clarify the examples. The

compiler exploits the SEQ register by placing the SEQ=PC+1; effect in the last instruction of the block

immediately preceding the innermost loop. This block has to dominate the header of the loop, which

is usually the case as the block is typically the loop preheader. Thus, executing this effect results

in the address of the top-most instruction in the loop (L1 in Figure 3.1) being assigned to the SEQ

register. The top-most block in the loop is not always the loop header, but is always a target of one

or more ToCs within the loop. The compiler then modifies all conditional and unconditional ToCs

to the top-most block of the loop to reference the SEQ register instead of performing a PC-relative

address calculation. Two effects in the loop are eliminated for each ToC referencing the SEQ register,

which on average improves performance because it often decreases the number of instructions in the

loop after scheduling SP effects. For instance, Figure 3.1(a) has two conditional ToCs in the loop

that both have the same target, which is the top-most instruction within the loop and both of the

ToCs can now just reference the SEQ register after the transformation, as depicted in Figure 3.1(b).

for(...) {
if(...) {

...

}
}

(a) Loop at Source Code Level

L1 # Beginning of loop

...

SE=offset(L1);

ADDR=PC+SE;

PTB=c:ADDR;

PC=RS2==LV,ADDR(L1);

...

SE=offset(L1);

ADDR=PC+SE;

PTB=c:ADDR;

PC=OPER1!=CP1,ADDR(L1);

(b) Before SEQ Optimization

SEQ=PC+1;

L1 # Beginning of loop

...

PTB=c:SEQ;

PC=RS2==LV,SEQ(L1);

...

PTB=c:SEQ;

PC=OPER1!CP1,SEQ(L1);

(c) After SEQ Optimization

Figure 3.1: Example of SEQ Optimization
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3.2 Hoisting Other Target Address Calculations

There are often several other ToCs in loops whose targets are not to the top-most instruction

in an innermost loop. In a prior version of the SP datapath [6], only one other target address

calculation was hoisted out of loops into a dedicated internal TARG register, which is no longer

supported in the SP datapath. The compiler now hoists these target address calculations out of

the loop using an integer register when one is available, which can reduce both execution time

(because there are fewer effects to schedule) and energy usage.

We hoist both PC-relative target address calculations (conditional branches and unconditional

jumps) and absolute target address calculations (direct calls) out of loops using registers from the

integer register file. Due to the irregularity of the SP ISA, conventional loop-invariant code motion

is unable to hoist these target address calculations. The algorithm for this optimization, which is

shown in Figure 3.2, hoists target address calculations starting with the innermost loops. When

there are multiple target address calculations in a given loop, the compiler must prioritize which

ones to hoist as each target requires a separate register and there are a limited number of available

registers. The prioritization is based on estimated benefits. We consider the likelihood of the block

containing the ToC being executed to be the most important factor as hoisting a computation that

rarely gets executed would not be beneficial. The next factor is the number of ToCs in the loop

to the same target, as a single register assigned the target address outside the loop can replace

multiple target address calculations inside the loop. The next factor is if an absolute target address

calculation is performed versus a PC-relative target address calculation. An absolute target address

calculation occurs for direct calls and requires two long immediate effects, which each require 17

bits (see Figure 1.2). In contrast, a PC-relative target address calculation is used for conditional

branches and unconditional jumps and typically requires a short immediate and an integer addition,

which each require 7 bits (see Figure 1.2). We consider the least important factor to be the number

of instructions in the basic block containing the ToC. The effects associated with an absolute or

PC-relative target address calculation do not have any true dependences with other effects in the

loop. A basic block with fewer instructions will likely have fewer available slots to schedule the

target address calculation effects with the instructions comprising the other SP effects within the

block. A target address calculation can only be hoisted out of a loop if an integer register is available
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to hold the target address and RS2 is available at the point of the ToC since RS2 is used to read

the register value and serve as the target specified in a PTB effect.

FOR each loop L (innermost first) DO

create list A of all targets of ToCs at outer level in L

prioritize the order of A based on following constraints:

1. estimated frequency of block containing target calc

2. number of target calcs to that target

3. absolute over PC-relative target calcs

4. fewest instructions in block containing target calc

WHILE a register R is available DO

IF RS2 available at ToCs in first target in A THEN

assign to T first target in A not yet hoisted

place target calc C for T in L’s preheader

after C assign C’s result to R

replace target calc(s) of T in L with reads of R

Figure 3.2: Algorithm for Hoisting Target Address Calculations

Figure 3.3 depicts an example of applying this optimization within a loop nest. Figure 3.3(a)

shows C source code that results in five ToCs in SP instructions, which are two conditional branches

associated with the if statement, one direct call associated with the call to f, and two conditional

branches associated with the for statements. Figure 3.3(b) shows the SP instructions, where the

conditional branch associated with the inner for statement already has a target of SEQ. The two

conditional branches associated with the if statement both have L2 as a PC-relative target address.

Having multiple branches to the same target is common when logical AND or OR operators are

used in conditional expressions. The call to f is constructed using two large immediate effects.

Figure 3.3(c) shows the SP instructions after applying this optimization.

The target address calculation of L2 and f have been hoisted out of the loop nest and their

values have been stored in r[17] and r[18], respectively. Storing the address of PC+1 into a register

was designed to be used to store the return address into r[31] for a call, but we now use this effect

to assign PC+1 to a register to the address of the topmost block of outer loops (r[19]=PC+1;). Each

modified ToC in the loop now requires three effects instead of four. The target address calculations

associated with the ToCs have been replaced with the appropriate register read effect. Note that

only one target address calculation is performed for L2, where two distinct calculations are required
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for (...) {
for (...) {

...

if (...&&...)

f();

...

}
}

(a) Loop at Source
Code Level

L1 # start of outer loop

...

SEQ=PC+1; # SEQ=L2

L2 # start of inner loop

...

SE=offset(L3);

ADDR=PC+SE; # 1st if

PTB=c:ADDR; # ToC

PC=OPER1!=RS1,ADDR(L3);

...

SE=offset(L3);

ADDR=PC+SE; # 2nd if

PTB=c:ADDR; # ToC

PC=LV!=RS1,ADDR(L3);

...

SE=LO:f; # call to

SE=SE|HI:f; # f

PTB=u:SE;

PC=SE(f);r[31]=PC+1;

L3 ... # inner for

PTB=b:SEQ; # ToC

PC=OPER1!=SE,SEQ(L2);

...

SE=offset(L1);

ADDR=PC+SE; # outer for

PTB=b:ADDR; # ToC

PC=OPER1!=SE,ADDR(L1);

(b) Loop after SEQ
Transformation

SE=offset(L3);

ADDR=PC+SE;

r[17]=ADDR; # r17=L3

SE=LO:f;

SE=SE|HI:f;

r[18]=SE; # r18=f

r[19]=PC+1; # r19=L1

L1# start of outer loop

...

SEQ=PC+1; # SEQ=L2

L2# start of inner loop

...

RS2=r[17]; # 1st if

PTB=c:RS2; # ToC

PC=OPER1!=RS1,RS2(L3);

...

RS2=r[17]; # 2nd if

PTB=c:RS2; # ToC

PC=LV!=RS1,RS2(L3);

...

RS2=r[18]; # call to

PTB=u:RS2; # f

PC=RS2(f);r[31]=PC+1;

L3... # inner for

PTB=b:SEQ; # ToC

PC=OPER1!=SE,SEQ(L2);

...

RS2=r[19]; # outer for

PTB=b:RS2; # ToC

PC=OPER1!=SE,RS2(L1);

(c) Loop after Hoisting other
Target Address Calculations

Figure 3.3: Example of Target Address Calculation Hoisting

in the loop in Figure 3.3(b) if the values of SE or ADDR are overwritten between the two ToCs. The

second read of r[17] in Figure 3.3(c) will be eliminated after common subexpression elimination is

applied if RS2 is not overwritten before that point. The transformation increases the static number

of effects and often the overall code size, but decreases the dynamic number of effects and often
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the number of instructions within a loop, which results in improvements in energy usage and often

performance.

3.3 Performing Call-Jump and Jump-Call Chaining

When a call is followed by an unconditional jump or the target block of an unconditional jump

contains a call, the unconditional jump can be eliminated by adjusting the return address.

Figure 3.4 shows how a jump is eliminated when a call is followed by a jump. We move the

instructions between the call and the jump to before the call when there are no dependences so

this transformation can be more frequently applied. Figure 3.4(a) shows a call to f1 in the then

portion of an if-then-else statement. As shown in Figure 3.4(b), the call to f1 is followed by

an unconditional jump to L2 that jumps over the else portion of the if-then-else statement.

Figure 3.4(c) shows that the jump to L2 is eliminated and before the call r[31] is now assigned the

address of L2, which was the target of the unconditional jump. Besides eliminating the PTB and

PC effects of the unconditional jump, this transformation also places the target address calculation

of the jump target at a point where it can be scheduled in parallel with effects preceding the call

and effects associated with the call itself.

if (...) {

...

f1();

...

}

else {

...

}

(a) Call Followed by Jump at
Source Code Level

SE=LO:f1;

SE=SE|HI:f1; # call

PTB=u:SE; # to f1

PC=SE(f1);r[31]=PC+1;

...

SE=offset(L2);

ADDR=PC+SE; # jump

PTB=u:ADDR; # over

PC=ADDR(L2); # else

(b) Before Chaining
Call to Jump

...

SE=offset(L2);

ADDR=PC+SE;

r[31]=ADDR; # call

SE=LO:f1; # to f1

SE=SE|HI:f1; # with

PTB=u:SE; # return

PC=SE(f1); # to L2

(c) After Chaining
Call to Jump

Figure 3.4: Example of Call-Jump Chaining

Figure 3.5 shows how a jump is eliminated when a jump is followed by a call. Figure 3.5(a) shows

a call to f2 after an if-then-else statement. As shown in Figure 3.5(b), the target block, L4, of
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the unconditional jump contains a call to f2. Figure 3.5(c) shows that the call to f2 is duplicated

at the point of the unconditional jump, the jump to L4 is eliminated, and r[31] is now assigned

the address of L5, which is the address of the instruction following the call. The transformation

eliminates two effects (assignments to PTB and PC) at the expense of duplicating the call. Jump-

call chaining is more aggressively performed than call-jump chaining since instructions at the jump

target preceding the call can always be duplicated in the jump block.

if (...) {

...

}

else {

...

}

...

f2();

(a) Jump Followed by Call at
Source Code Level

SE=offset(L4);

ADDR=PC+SE; # jump

PTB=u:ADDR; # over

PC=ADDR(L4); # else

...

L4 ...

SE=LO:f2; # call

SE=SE|HI:f2; # to f2

PTB=u:SE;

PC=SE(f2);r[31]=PC+1;

...

(b) Before Chaining
Jump to Call

...

SE=offset(L5);

ADDR=PC+SE;

r[31]=ADDR; # call to

SE=LO:f2; # f2

SE=SE|HI:f2; # with

PTB=u:SE; # return

PC=SE(f2); # to L5

...

L4 ...

SE=LO:f2; # call to

SE=SE|HI:f2; # f2

PTB=u:SE;

PC=SE(f2);r[31]=PC+1;

L5 ...

(c) After Chaining
Jump to Call

Figure 3.5: Example of Jump-Call Chaining

An interesting note about these call-jump and jump-call chaining optimizations is that both

could be performed in a conventional ISA by updating the return address register and using a

jump instead of a call instruction. However, such an optimization would not be beneficial for any

processor with a return address stack (RAS) because the resulting code would perform more return

address pops than pushes, which would result in returns to the wrong address. Note that the SP

architecture eliminates the need for a RAS since the return address is known at the point of the

return ToC.
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3.4 Hoisting Return Address Assignments

In SP generated code, the return address is set in an effect that is independent from the PTB

effect causing the ToC associated with the call operation. In some cases, it can be beneficial to set

the return address outside of the loop. Since the return address register is callee-save, loops with

a single call or loops for which all calls can be made to return to the same instruction do not need

to set the return address register every loop iteration.

Figure 3.6 shows the algorithm for hoisting return address assignments out of loops. The

optimization we implemented examines each call within a loop, starting with the outermost loop as

it can hoist at most one return address assignment out of a loop nest since the return address has

to be assigned to the single return address register r[31]. For each call in the loop, the compiler

determines the instruction associated with the return address. If the call is immediately followed by

an unconditional jump, then the return address is associated with the target of the unconditional

jump. This requires skipping over any address calculations and checking if all values computed

before the jump are dead at the point of the jump. If the return address differs for any two calls or

if no registers are available, then the optimization is not performed. Otherwise, the return address

assignment is placed in the preheader of the loop and the return address assignments within the

loop are removed along with any jumps to the common return target that follow a call.

Figure 3.7 depicts an example of this transformation performed on multiple calls within a single

loop. Figure 3.7(a) shows a loop with calls to functions f1 and f2. The ToCs in the loop include

one for the if statement condition, one for each call, one for the unconditional jump at the end

of the then portion of the if statement, and one for the for statement condition. Figure 3.7(b)

shows the SP code after hoisting all the target address calculations out of the loop. At this point

there are assignments to r[31] in the loop at each call. Note that the call to f1 is followed by

an unconditional jump to L3 and the return address from the call to f2 is also L3. Figure 3.7(c)

shows the SP code after hoisting the two return address assignments to r[31] out of the loop.

The instructions comprising the unconditional jump after the call to f1 are eliminated since these

instructions can no longer be reached in the control flow. Likewise, the target address calculation

instructions resulting in the assignment to r[20] in the loop preheader are eliminated since these

assignments are now dead after the removal of the unconditional jump. In this example, the return
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FOR each loop L (outermost first) DO

IF a register unavailable within L THEN

CONTINUE

create list C of all calls in L

FOR each C DO

IF instructions following C comprise a

direct unconditional jump J THEN

associate return address of C to be target of jump J

ELSE

associate return address of C to be instruction after C

IF any two C’s have different return addresses THEN

CONTINUE

FOR each C DO

IF C is followed by a direct jump J THEN

remove instructions comprising jump J

remove return address assignment of C

place return address assignment to common target in preheader

BREAK

Figure 3.6: Hoisting Return Address Assignments Algorithm

address hoisting transformation reduces the overall code size, the number of ToCs executed, and

the energy usage required to execute the code.

3.5 Exploiting Conditional Calls and Returns

The SP ISA enables PC-relative, absolute, and indirect addresses to be used for both conditional

and unconditional ToCs. We exploit these features in our compiler by introducing conditional calls

and conditional returns without any changes to the SP architecture. A conditional branch where one

successor goes directly to a call or return can in some circumstances be replaced with a conditional

branch directly to the call target or return address. If a conditional branch falls into the call or

return, then the condition must be reversed. If a conditional branch falls into a call, then the first

instruction after the call must be the target of the original branch.

We don’t perform conditional returns in functions that will have a stack, and we don’t perform

conditional calls in any case where arguments would have to be loaded into registers speculatively. If

there are a couple of effects calculating or loading the address for a call, we speculatively compute
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for (...) {

...

if (...) {

...

f1();

}

else {

...

f2();

}

...

}

(a) Loop with Calls at
Source Code Level

SE=offset(L3);

ADDR=PC+SE;

r[20]=ADDR; # r20=L3

SEQ=PC+1; # SEQ=L1

L1 # Beginning of loop

...

RS2=r[17]; # if stmt

PTB=c:RS2; # ToC

PC=OPER1!=RS1,RS2(L2);

...

RS2=r[18]; # call to

PTB=u:RS2; # to f1

PC=RS2(f1);r[31]=PC+1;

RS2=r[20];

PTB=u:RS2; # jump

PC=RS2(L3); # to L3

L2 ...

RS2=r[19]; # call

PTB=u:RS2; # to f2

PC=RS2(f2);r[31]=PC+1;

L3 ... # for stmt

PTB=b:SEQ; # ToC

PC=OPER1!=SE,SEQ(L1);

(b) Loop without Return
Address Assignment Hoisting

SE=offset(L3);

ADDR=PC+SE;

r[31]=ADDR; # r31=L3

SEQ=PC+1; # SEQ=L1

L1 # Beginning of loop

...

RS2=r[17]; # if stmt

PTB=c:RS2; # ToC

PC=OPER1!=RS1,RS2(L2);

...

RS2=r[18]; # call to

PTB=u:RS2; # f1

PC=RS2(f1);

L2 ...

RS2=r[19]; # call to

PTB=u:RS2; # f2

PC=RS2(f2);

L3 ... # for stmt

PTB=b:SEQ; # ToC

PC=OPER1!=SE,SEQ(L1);

(c) Loop with Return Address
Assignment Hoisting

Figure 3.7: Example of Return Address Assignment Hoisting

the address in order to produce a conditional call. Similarly, we speculatively load the return

address into RS2 for a return, because this is almost always required.

Figure 3.8 depicts an example of exploiting a conditional return. Figure 3.8(a) shows a source

code fragment and Figure 3.8(b) shows the corresponding SP instructions. This transformation can

only be applied when the return immediately follows the taken path (L4) of the branch, meaning

the current function must be a leaf and no space is used for an activation record (no adjustment

of the stack pointer and no restores of register values). Figure 3.8(c) shows the SP instructions

after performing the optimization. The branch target is set to the return address and the original

address calculation is removed by dead assignment elimination. Note the second read of r[31]

will be eliminated if there is no assignment to RS2 between the conditional return and the return.
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Branches to calls are handled in a similar manner.

if (...) {

...

}

return;

(a) Branch Followed by Return
at Source Code Level

...

SE=offset(L4);

TARG=PC+SE; # if stmt

PTB=c:ADDR; # ToC

PC=LV==SE,ADDR(L4);

...

L4 RS2=r[31]; # return

PTB=u:RS2;

PC=RS2;

(b) Without Conditional Return

...

RS2=r[31]; # cond

PTB=c:RS2; # return

PC=LV==SE,RS2;

...

L4 RS2=r[31]; # return

PTB=u:RS2;

PC=RS2;

(c) With Conditional Return

Figure 3.8: Example of Return Address Hoisting with Conditional Return

Exploiting conditional calls between a branch and its successor requires not changing the be-

havior or adversely affecting the performance when the branch has a different outcome. We found

that we can exploit conditional calls more frequently when a call precedes a conditional branch.

The requirements are that a call precedes a branch and the effects between the call and the branch

can be moved before the call. Figure 3.9 depicts an example of exploiting a conditional call. Fig-

ure 3.9(a) shows the source code of a loop and assume i and n are local variables that are not

affected by the call to f. A loop branch often just controls the number of times the loop iterates

and is independent of a preceding call. Figure 3.9(b) shows the corresponding SP instructions. The

call precedes the branch, and the address of f and the return address L3 assignment have been

hoisted out of the loop. Figure 3.9(c) shows the SP instructions after performing the optimization.

The effects after the call have been moved before the call, the address of the branch target L2 has

been stored in r[31] in the preheader, the target of the branch is now the address of the called

function, and the original call is moved after the branch. The called function from the loop will

directly return to the original branch target L2. The call after the loop is needed since the call in

the last original loop iteration still has to occur when the branch is not taken.
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for (i=0; i<n; i++) {

...

f();

}

(a) Call at End of a Loop at the
Source Code Level

SE=LO:f;

SE=SE|HI:f;

r[17]=SE; # r17=f

SE=offset(L3);

ADDR=PC+SE;

r[31]=ADDR; # r31=L3

SEQ=PC+1; # SEQ=L2

L2 # Beginning of loop

...

RS2=r[17]; # call to

PTB=u:RS2; # f

PC=RS2(f);

L3 ...

PTB=c:SEQ;

PC=OPER1!=CP2,SEQ(L2);

(b) Without a Conditional Call

SE=LO:f;

SE=SE|HI:f;

r[17]=SE; # r17=f

r[31]=PC+1; # r31=L2

L2 # Beginning of loop

...

L3 ...

RS2=r[17]; # cond call

PTB=c:RS2; # to f

PC=OPER1!=CP2,RS2(f);

PTB=u:RS2; # call to f

PC=RS2(f);r[31]=PC+1;

(c) With a Conditional Call

Figure 3.9: Example of Return Address Hoisting with a Conditional Call
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CHAPTER 4

EVALUATION

In this section we describe the experimental environment and results from applying SP ToC opti-

mizations.

4.1 Experimental Setup

We run the same 17 benchmarks from the MiBench benchmark suite [7] as all previous static

pipeline publications, shown in Table 4.1, which is representative of embedded applications. To

compile our baseline, we ran the VPO MIPS port with all optimizations enabled. We compiled

benchmarks for the Static Pipeline processor using the process covered in Section 2.3. For each

architecture we run a GNU assembler and linker to generate a MIPS executable. We used a

simulator based on the SimpleScalar in-order MIPS simulator [8] to simulate the benchmarks.

We didn’t compile the standard library; library calls were simulated in MIPS for both bench-

marks. For the SP simulations, more than 90% of the dynamic instruction count consisted of Static

Pipeline instructions; the others were in standard library routines. All cycles and structure accesses

we reference for power are always counted toward the results regardless of whether they come from

the MIPS libraries or our compiled SP code.

Table 4.1: Benchmarks Used

Category Benchmarks

automotive bitcount, qsort, susan
consumer jpeg, tiff
network dijkstra, patricia
office ispell, stringsearch
security blowfish, rijndael, pgp, sha
telecom adpcm, CRC32, FFT, GSM

The simulator we used has been extended to include a bimodal branch predictor with 256 two-

bit saturating counters, and a 256 entry branch target buffer (BTB) used when simulating MIPS
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instructions. The simulator has also been extended to include level one data and instruction caches;

each of these caches has 256 direct-mapped 32-byte lines of data.

Each of the graphs in the following sections represent the ratio between SP code to MIPS code.

A ratio less than 1.0 means that the SP has reduced the value, while a ratio over 1.0 means that

the SP has increased the value. When a given benchmark had more than one simulation associated

with it (e.g., jpeg has both encode and decode), we averaged all of its simulations to avoid weighing

benchmarks with multiple runs more heavily.

To estimate the energy savings, we counted events such as register file accesses, branch predic-

tions, cache accesses, and ALU operations. Get a useful energy estimate out of this data requires

an estimate of how much power each of these events cosumes relative to one another. We used

estimates that were generated by using CACTI [9] to model the SRAMS within the pipeline, and by

synthesizing other components for a 65nm processor. The components were simulated at the netlist

level to determine the average case activation power, which was then normalized to the power of

a 32-entry dual-ported register file read. The ratios between component power are dependent on

processor technology, but the difference should not large enough to have a big impact on the final

estimated ratios. The total energy estimate for a simulation is given by the weighted sum of the

component accesses, where the weight is equal to the relative access power for each component,

which is given in Table 4.2.

Table 4.2: Pipeline Component Relative Power

Component Relative Access Power

Level 1 Caches (8kB) 5.10
Branch Prediction Buffer 0.65
Branch Target Buffer 2.86
Register File Access 1.00
Arithmetic Logic Unit 4.11
Floating Point Unit 12.60
Internal Register Writes 0.10

4.2 Results

There were more PC-relative calculations in the SP code than the MIPS code before our opti-

mizations, because calculations are sometimes speculatively performed due to cross block schedul-
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ing, unconditional jumps on the MIPS were performed using absolute addresses, and SP uncondi-

tional jumps used PC-relative target addresses. The number of PC-relative target address calcula-

tions improved from a ratio of 1.04 to a ratio of 0.44, as shown in Figure 4.1. This improvement

primarily came from utilization of the SEQ register and use of integer registers to hoist target address

calculations out of loops.
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Figure 4.1: PC-Relative Target Address Calculation Ratio

The number of absolute target address calculations improved from a ratio of 1.00 to a ratio

of 0.83, as shown in Figure 4.2. This improvement came from performing fewer target address

calculations of calls inside loops. This improvement is less than the improvement for PC-relative

address calculations, because direct calls are not always in loops, but every loop in the benchmarks

is expected to have at least one conditional branch. Also, the presence of a call in a loop means

that only the callee-save registers are available for hoisting target address calculations. Sometimes

the number of absolute target address calculations increases after hoisting the calculation of out a

loop when the direct call is rarely executed in the loop due to conditional control flow.
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Figure 4.2: Absolute Target Address Calculation Ratio

On average, we were able to reduce the number of return address assignments to a ratio of 0.83,

as shown in Figure 4.3. Occasionally some benchmarks increased the number of return address

assignments, which can occur if we hoist a return address assignment for a loop that does not

execute. The graph shows that about 17% of the calls are in loops with one call or multiple calls

with a common return address when a register is available to hoist the return address assignment.

The SP ToC optimizations improved the execution cycle ratio, depicted in Figure 4.4, from an

average of 0.99 to 0.94. Most of the benchmarks improved, though the performance fft and ispell

was slightly degraded.

Figure 4.5 shows that our ToC optimizations resulted in a small increase in code size from

0.913 without ToC optimizations to 0.922 with ToC optimizations. Note some ToC optimizations

decreased code size while others increased it.

Figure 4.6 shows the results of our simulations on estimated energy usage. On average, the SP

reduces energy usage by 20.0%. These savings comes primarily from the reduction in register file

accesses, branch prediction table accesses, and the fact that we do not need a branch target buffer.
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Figure 4.3: Return Address Assignment Ratio

Of course these results are also affected by the relative running time of the benchmark as that has

a direct effect on instruction cache usage and static power consumption. While these estimates

take into account the number of accesses to the larger structures of the two pipelines the difference

in control logic and interconnect routing is not taken into account. Applying ToC optimizations

decreases energy usage by an additional 3.4%.

Figures 4.7 and 4.8 show the impact of each ToC optimization on execution time and energy

usage, respectively, where a ToC optimization is added to the previous set applied. The execution

cycle ratio is largely affected by using the SEQ register to hoist the target address calculation of the

top-most block in an innermost loop. There are many applications where most of the execution

cycles are spent in innermost loops that do not have any other conditional control flow. Hoisting

other target address calculations out of loops provided an additional 0.4% reduction. The execution

time benefits for this optimization were also limited by only eliminating one effect for each ToC

rather than eliminating two effects for each ToC when using the SEQ register. Call-jump/jump-call

chaining provided only a small benefit, which was primarily due to the infrequency of unconditional
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Figure 4.4: Execution Cycle Ratio

jumps that limited the opportunities for this optimization to be applied. Hoisting return address as-

signments provided a 0.2% benefit. Most of the 0.4% benefit for exploiting conditional calls/returns

was due to merging calls before branches, as depicted in Figure 3.9. Call-jump/jump-call chaining,

hoisting return address assignments, and exploiting conditional calls all require the invocation of

a function and thus their benefits are limited due to the relative execution time of the invoked

function. Conditional returns were also infrequently applied. The impact of ToC optimizations on

energy usage is highly correlated to the improvements for execution time. Note that much of the

20% reduction with no ToC optimizations is achieved by the way that ToCs are performed, which

eliminates the need for a BTB and RAS and significantly decreases BPB accesses.
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Figure 4.5: Code Size Ratio
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CHAPTER 5

CONCLUSIONS

Processors perform a significant number of ToCs and often use auxiliary hardware structures (BTB,

RAS, and BPB) to quickly perform ToCs. In micro-effect based architectures, it makes sense to

reconsider the way branches are handled. ToC operations on the SP architecture are separated into

multiple effects that eliminate the need for a BTB or RAS, significantly decrease the number of

BPB accesses, and provide opportunities for the compiler to perform additional ToC optimizations.

Many of the target address calculations performed are redundant as direct targets do not change

when they are repeatedly calculated. For the SP architecture, these target address calculations can

be hoisted out of loops or eliminated when the target address is already available. Likewise, branch

chaining can be performed between calls and jumps, return address assignments can be hoisted out

of loops, and conditional calls and returns can be exploited. We have shown in this paper that

the low-level SP representation enables a compiler to more effectively optimize ToCs and provides

improvements in both performance and energy usage.
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