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CHAPTER 1

INTRODUCTION

Developers of real-time systems face a difficult challenge in developing software.

For a real-time system to function correctly, the system must not only be logically

correct, but must also adhere to specified timing constraints expressed in terms of hard

and soft deadlines.Violation of these timing constraints can result in system

performance degradation or complete system failure. A significant amount of research

has been expended into various static scheduling algorithms such as Rate Monotonic

Analysis [1]. Much less effort has been spent in predicting execution times of individual

tasks. However, in order to apply these static scheduling algorithms, the worst-case

execution time (WCET) must be known for each scheduled task.Some scheduling

algorithms may require knowing the best-case execution time (BCET) as well.

Measurement of task execution times has been very difficult due to the possible

variance in execution times for each instruction, must less each task.A significant

source in the execution time variance is due to caching effects. Whetheror not an

instruction is in cache each time it is referenced depends upon the control-flow used to

reach the reference to that instruction.The difference between a cache hit or miss can

result in an order of magnitude difference in execution time of an instruction [2].

Current techniques for detecting timing constraint violations usually involve
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some type of dynamic measurement, such as direct measurement.The bounded

execution time results from dynamic measurements are questionable since it is quite

difficult to determine the input data for a real-time application of any significant

complexity that will cause the WCET to be executed. With instruction caching it is even

more difficult. To illustrate this concept consider the code in Figure 1. Assume that the

paths through statement 1 and statement 2 require approximately the same time when

they are located in the cache and both statement 1 and statement 2 are in different

memory lines, but map to the same cache line. The worst-case input data would require

that statement 1 and statement 2 be alternately executed. Thiswould not be obvious

from an examination of the source code. Since many inputs are time-dependent, it may

also be difficult to consistently generate an input at the required time to drive a specific

control-flow path. Thetechnique described in this thesis eliminates this problem by

automatically considering all possible control-flow paths.

for (i=0; i < 1 000; i++)
if (condition)

statement 1;
else

statement 2;

Figure 1: Example for Conflicting Cache Lines

Using direct measurements is also considered inadequate since it requires a

functional software system on an existing hardware platform. Hence, most testing for

timing constraint violations is done during the final phase of system testing.Resolving

timing constraint violations at such a late stage in the development life-cycle

significantly increases the effort to resolve the violation.

In order to reduce this variance, and its associated problems, a common solution
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is to disable all caching [3]. This extreme solution is successful in reducing the

execution time variance. However, it reintroduces the problem solved by caching, which

is a dramatic decline in performance.With the continual increase in cache sizes and the

ratio between main memory and cache access times, disabling caches results in

continually increasing sacrifice of system performance improvements. Recenthardware

development has shown a CPU performance increase versus memory access time

exceeding 10:1 per year [2].This implies that at some point caching will be needed to

provide the performance for the required system functionality. This research describes a

technique to statically determine the BCET/WCET during compilation.This technique

exploits a concept ofboundingthe execution times with the BCET/WCET rather than

seeking the average execution time, which significantly reduces the complexity. This

static approach does not require knowing the input data to drive the best/worst case

paths, negates the difficulties in testing a specific path, and identifies timing constraint

violations much earlier in the development process.This technique considers a non-

preemptive system containing only an instruction cache. Due to the additional

complexity, other architectural features were eliminated from consideration.

Figure 2 shows an overview of the timing analysis process. This technique is

implemented by using an optimizing compiler calledvpo [4], which produces control-

flow information as a side-effect of compiling one or moreC source code files.This

control-flow information is analyzed by the static cache simulator to produce a control-

flow graph consisting of the call graph and the control flow of each function. Using the

specified cache configuration, the control-flow graph is analyzed to produce a

categorization for each instruction’s potential caching behavior. Each instruction cache
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categorywill describe the caching behavior of the instruction at different loop levels of

the program execution. Detailsof the static cache simulator can be found elsewhere [5],

[6], [7], [8]. The timing analysis technique described in this thesis uses these instruction

caching categorizations along with the control-flow information from the compiler to

estimate the best and worst-case instruction caching performance for each loop and

function contained in the program. Once the timing analyzer has evaluated all functions

within the program, a user-interface [9], [10] is invoked to allow the user to request

timing bounds for specific code segments within the program.
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Figure 2: Overview of Bounding Instruction Cache Performance
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CHAPTER 2

RELATED WORK

Several tools to predict the execution time of programs have been designed for

real-time systems.The analysis has been performed at the level of source code [11],

intermediate code [12], and machine code [13].Only the last tool attempted to estimate

the effect of instruction caching and was only able to analyze code segments that

contained no function calls and fit entirely into cache.Thus, this tool was able to assume

that at most one miss will occur for each instruction reference.

Mueller [5] describes an approach calledstatic-cache simulationthat categorizes

the caching behavior of each instruction into one of four categories, thereby allowing

many instruction references to be treated as cache hits. The path analysis technique

described in this thesis uses the categories produced by the static simulation to bound the

best and worst-case execution times.

Lim et. al. [14] describe a method using a timing schema associated with each

source-level language program construct. By executing a single bottom-up pass, each

construct is analyzed in the context from which the construct is called.This approach

works best when timing the entire program segment. Sincethe final execution time of a

segment is not known until the surrounding context is considered, timing requests for a

particular segment must assume a pessimistic worst-case bound. Additional pessimism
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is introduced from this technique’s inability to analyze optimized code.Compiler

optimizations can significantly reduce execution times. Also, the authors never

demonstrated if their method is capable of recognizing spatial locality1.

Li et. al. [15] uses an integer linear programming (ILP) technique to model

instruction cache behavior. The authors automatically derive many constraints from a

program’s control-flow graph that can be solved using ILP. The user is required to

express constraints regarding data dependencies within the control-flow and the number

of iterations for each loop in the program. Each basic block is analyzed to determine the

sets of instructions that mapped to the same cache line. Each set is referenced as aline-

block. Three possible possible states are identified for each cache line.First, if only one

line-block is mapped to it, then it will experience at most one miss penalty. Second, if

two or more non-conflicting line-blocks map to a cache line, then these line-blocks will

have at most one miss penalty among them.Finally, if two or more conflicting line-

blocks map to it, then a cache conflict graph is constructed for this cache line. The edges

between the line-blocks in this graph represent a possible path between the two

conflicting line-blocks.Additional constraints are generated to represent the number of

times these edges are traversed. Whenever a line-block is reached from a conflicting

line-block, it is assumed that there is a miss penalty associated with its execution. A

drawback of this approach is the exponential growth relationship between the program

size and the number of ILP equations to be solved. Resultsfrom this research [15]

indicate a significant increase in execution time required to perform a timing analysis

1 The principle of locality holds that all programs favor a portion of their address space at any instant of time. Spatial locality
implies that if an item is referenced, nearby items will tend to be referenced soon [2].
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over the technique presented in this thesis.

7



CHAPTER 3

TIMING ANALYSIS

A timing analysis tree is constructed to simplify the process of determining the

execution bounds of a program.The result of this analysis will be a tree structure in

which each node of the tree represents a natural loop in the program2. In order to

process loops and functions in a similar manner, each function is considered a loop that

will iterate one time.

The creation of the timing tree requires the analysis of the program’s code in

order to determine information regarding the loops within each function. The optimizing

compiler initiates this analysis by identifying for each loop: the nesting level, all the

blocks contained within the loop, all exit blocks from the loop, the minimum number of

loop iterations, and the maximum number of loop iterations. The timing tool extends

this analysis by determining all possible paths through the loop.

As shown in Figure 3, apath is a sequence of unique blocks in the loop

connected by control-flow transitions. A basic block is defined as a sequence of

consecutive instructions in which flow of control enters at the beginning and leaves at the
2 A natural loop is a loop with a single entry block. The timing analyzer is restricted to only analyzing natural loops since it

would be difficult to determine the set of possible blocks associated with a single iteration in an unnatural loop.It should be noted
that unnatural loops occur quite infrequently.
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end without halt or possibility of branching except at the end [16].A loop header block

is defined as the unique entry block into the loop. Blocks outside the loop that are

reached by control-flow transitions from blocks within the loop are defined asloop exit

blocks. Each path in the loop must start with the loop header block and terminate with a

block containing a transition to the header block (continue path) or to an exit block (exit

path.) Thepath through a function is defined to start with the entry block in the function

and end with the block containing a return instruction.If a path within a loop contains a

nested loop, then the entire nested loop is represented in the path by only the header

block of the nested loop.Associated with each loop is the set of exit blocks for that

specific loop.

1

2

3 4

5 6

7

back edgeback edge

loop header

exit block

continue path: 2->3

exit path: 2->4

continue/exit path: 2->4->6

Figure 3: Example Introducing Loop Terminology

If the example given in Figure 3 is considered a function with one nested loop, the

algorithm to determine all possible paths, depicted in Figure 4, will first identify all

possible paths through the nested loop before determining all possible paths through the

function. Figures4 and 5 depict the algorithms to identify all possible paths, including

nested loops, within a loop.

Figure 6 illustrates the path analysis algorithm in Figure 4 by depicting the

creation of paths on each iteration of the algorithm while analyzing the simple loop
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(1) Seta pointer at the current loop node structure. This structure will be used to reference the list of
all possible paths through this loop.

(2) Move to the end of the list of blocks in the current path.
(3) Determinethe list of successor blocks to the current basic block.

(A) If the current block is not a loop header block then the list will contain all successor blocks to
the current block.

(B) If the current block is a loop header block to anested loopthen the list will contain all exit
blocks out of this nested loop.

(4) If the current block contains an outgoing transition that represents a back edge to the current loop:
(A) If multiple successor blocks exist with one block being a loop exit block and a second block

being the loop header block then the current path represents both acontinuepath and anexit
path. Ifthe successor list contains additional blocks then more branches exist.

(a) If additional branches exist then copy the current path to a new path, set the new path’s type
CONTINUE/EXITand move the loop header block and loop exit block from the successor
list to the new path’s exit list. Insert the new path into the list of all paths through this loop.

(b) If additional branches do not exist then set the type this path toCONTINUE/EXITand move
the loop header block and loop exit block from the successor list to this path’s exit list.

(B) If multiple successor blocks exist with the loop header block and no loop exit blocks present
then the current path contains control-flow branches with one representing aback edge.

(a) Copy the current path to the new path and move the loop header block from the successor list
to the new path’s exit list.

(b) Setthe type of the new path toCONTINUE.
(c) Insertthe new path into the list of all possible paths through this loop.

(C) If only the loop header block exists in the successor list then the current path is complete.
(a) Move the loop header block to the exit list.
(b) Setthe type of the current path toCONTINUE.
(c) Goto step #8.

(5) If the current block represents an exit out of the loop:
(A) If multiple successor blocks exist then the current path contains a branch at this point. Copy the

current path to a new path and move the loop exit block to the exit list of the new path.
(a) Setthe type of the new path toEXIT.
(b) Insertthe new path into the list of all possible paths through this loop.

(B) A successor list containing only one block which represents a loop exit block can only occur
for a path through a function.Note that this occurs because the loop path through a function
does not contain aback edgepath. Setthe type of this path toEXIT.

(6) Whilemultiple blocks exist in the successor list branches exist in the control-flow.
(A) Copy the current path to a new path.
(B) Appendthe successor block to the new path’s list of basic blocks through the loop.
(C) Insertthe new path into the list of all possible paths through this loop.

(7) If the successor list has a block in it then append this successor block to the end of the list of
blocks in this current path.

(8) Go the next incomplete path in the list of all possible paths through this loop. If an incomplete
path is found then go back to step #2.

(9) If no incomplete paths are found then exit.

Figure 4: Algorithm to Determine All Paths Through a Loop
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(I) Find the maximum loop nesting level for the function being analyzed.
(II) From the maximum nesting level down to 0 find each loop with a nesting level

equal to the current nesting level and do the following:
(1) Createa structure (Loop Node) to hold general information about the loop

(number, header block, nesting level, min and max iterations) and a pointer
to all the possible paths through the loop.

(2) Making the assumption that at least one path must exit through the loop,
create a structure (loop_path_node) that will list information about one spe-
cific path through the loop. This specific information will include:

(A) list of basic blocks to traverse through the loop
(B) list of exit blocks out of the loop

(3) Determineall Possible Paths Through the Loop

Figure 5: Algorithm to Find all Paths Through All Loops

given in Figure 3. Step 1 in Figure 6 shows the identification of the first block in the

nested loop path. In analyzing the multiple transitions leaving block #2, the algorithm

recognizes the branch in control-flow. As shown in step 2 the current path is duplicated

and block #3 appended to the new path. Instep 3 the algorithm is extending the current

path by appending block #4. Block #4 also has two transitions leaving it. The first

transition exits the loop to block #5.The second transition is to block #6 which is still in

the loop. In step 4 the algorithm will recognize the exit to block #5 so it will duplicate

the current path and append the loop exit block, block #5, to that loop path’s exit list. In

step 5 the algorithm is following the current path by appending block #6 onto the path.

Tw o transitions leave block #6, the first is an exit to block #7, the second is a back edge

transition to the loop header. The algorithm, in step 6 recognizes this path as a

CONTINUE/EXITpath so it labels the path as such and moves the loop header block and

loop exit block to the loop path’s exit list. In step 7 the algorithm completes the

remaining incomplete path from block #2 to block #3.Since block #3 has only a
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(1) FirstIteration Through Algorithm, Steps 1 and 2
2 <== Current Path

(2) FirstIteration Through Algorithm, Steps 3 and 6
2 <== Current Path
2->3 <==New Path

(3) FirstIteration Through Algorithm, Step 7
2->4 <==Current Path
2->3 <==New Path

(4) SecondIteration Through Algorithm, Step 5
2->4 <==Current Path
2->4 <==Completed EXIT Path with Exit Block #5
2->3 <==Incomplete Path

(5) SecondIteration Through Algorithm, Step 7
2->4->6 <==Current Path with Block #6 Appended
2->4 <==Completed EXIT Path with Exit Block #5
2->3 <==Incomplete Path

(6) Third Iteration Through Algorithm, Step 4
2->4->6 <==Completed CONTINUE/EXIT Path with Exit Block #7
2->4 <==Completed EXIT Path with Exit Block #5
2->3 <==Incomplete Path

(7) Fourth Iteration Through Algorithm, Step 4
2->4->6 <==Completed CONTINUE/EXIT Path with Exit Block #7
2->4 <==Completed EXIT Path with Exit Block #5
2->3 <==Completed CONTINUE Path

Figure 6: Example of the Nested Loop Path Analysis Sequence
(Reference the Path Analysis Algorithm in Figure 4)

transition to the loop header block, this path is marked as aCONTINUEpath.

Now that all the paths through the nested loop have been identified, the algorithm

begins identifying all paths through the function. Reference Figure 7 for the path

analysis sequence.In step 1 the algorithm has identified block #1 as the function start

block. Instep 2 the algorithm has recognized block #2 as the loop header block for the

nested loop and represents it by appending block #2 to the current path.In step 3 the

algorithm has determined all loop exit blocks from the nested loop so it duplicates the

current path and appends block #5 to it. The current path is extended by appending

block #7 to the end of it in step 4.The algorithm then recognizes recognizes block #7 as
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the exit block from the function so it labels the current path as anEXIT path in step 5.

The last step is to consider the last incomplete loop path. In step 6 this path is also

recognized as anEXITpath and labeled as such.

(1) FirstIteration Through Algorithm, Steps 1 and 2
1

(2) FirstIteration Through Algorithm, Steps 3 and 7
1->2 <==Current Path

(3) SecondIteration Through Algorithm, Steps 3 and 6
1->2 <==Current Path
1->2->5 <==New Path

(4) SecondIteration Through Algorithm, Step 7
1->2->7 <==Current Path Extended By Appending Block #7
1->2->5 <==Incomplete Path

(5) Third Iteration Through Algorithm, Step 5
1->2->7 <==Completed EXIT Path with Exit Block #7
1->2->5 <==Incomplete Path

(6) Fourth Iteration Through Algorithm, Step 5
1->2->7 <==Completed EXIT Path with Exit Block #7
1->2->5 <==Completed EXIT Path with Exit Block #5

Figure 7: Example of the Function Loop Path Analysis Sequence
(Reference the Path Analysis Algorithm in Figure 4)

Once the static analysis is complete, the timing tool must consider the caching

behavior for each instruction in each path.However, the caching behavior is dependent

on the context from which the instruction is referenced. The static cache simulator

recognizes this dependency and produces caching behavior for each function instance.

A function instanceis dependent upon the immediate call site within its caller as well as

the caller’s call site etc.

Figure 8 illustrates that the static cache simulator categorizes the worst-case

instruction caching behavior into one of four categories for every instruction within

ev ery function instance. This example assumes the cache consists of four lines, each

containing four instructions.For the worst-case an instruction is classified as analways
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miss if the instruction is not guaranteed to be in the cache when referenced.An

instruction is classified as analways hitif the instruction is guaranteed to always be in

the cache when referenced. Instructions categorized asfirst miss are not guaranteed to

be in the cache on the first reference to the instruction, but are guaranteed to be in cache

for all remaining iterations of the loop. Instructions categorized asfirst hit indicate the

opposite. Inother words, for all references to the instruction during execution of the

current loop, the instruction can be guaranteed to be in cache for the first reference but

can not be guaranteed to be in cache for all subsequent references.

The definition for each instruction caching category differs for the best-case analysis.

An instruction is classified as analways missif the instruction is guaranteed to not be in

cache when referenced. An instruction is classified as analways hit if the instruction

may be in cache when referenced. Instructions categorized asfirst missare guaranteed

to not be in the cache on the first iteration of the loop but may be in the cache on all

remaining iterations of the loop. Instructions categorized asfirst hit may be in cache on

the first iteration of the loop but is guaranteed to not be in the cache on all remaining

iterations. Sinceconsideration for nested loops affects whether or not an instruction is in

the cache, the static cache simulator generates a classification for each loop level in

which the instruction is contained.
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mov %l1,%o0

call _value,1 Block 4source lines 10-10

program line 2

h

h

mov %l2,%l0

cmp %l1,10

bl,a L18

Block 6

h

h

fm / fm

save %sp,-96,%sp

sethi %hi(_min),%o0

ldsb [%o0+%lo(_min)],%l2

mov %l2,%l0

mov %g0,%l1

Block 1

m

h

h

h

m

m=always miss

h=always hit

fm=first miss

fh=first hit

source lines 7-8

program line 0

mov %l1,%o0

call _value,1 Block 2source lines 9-9

program line 1 h

fh / fh

add %l1,1,%l1

cmp %l0,%o0

bge,a L16

Block 3

fm / fm

h

msource lines 9-9

source lines 8-8

program line 3
add %l1,1,%l1

mov %o0,%l2 Block 5source lines 10-10

h

fm / fm

restore %l2,%g0,%o0

ret Block 7

source lines 11-11

program line 4 h

h

h

h

h

m

h

(b)

h

h

h

m

fm / fm / m

(a)

retl

mov %o1,%o0

add %o1,%lo(_a),%o1

sethi %hi(_a),%o1

ldsb [%o0+%o1],%o1

Block 8source lines 17-17

program line 5

value()

main()

2

6

13

1 extern char min, a[10];

3 main()
4 {

12 }

14 int value(index)
15 int index;
16 {

18 }

5 int i, high;

7 high = min;
8 for (i=0; i < 10; i++)
9 if (high < value(i))

10 high = value(i);
11 return high;

17 return a[index];

Figure 8: Simple Program Instructions with Categorizations

The timing tool will use the results from the static analysis and the caching

categorization to build the timing tree. The algorithm to build this timing tree is depicted

in Figure 9. The timing tree for the simple program used earlier in this paper is shown in

Figure 10. In step 1 the algorithm is parsing the information from the static cache

simulator to create nodes in the timing tree for each function instance. Stored in this

node are all relevant information to uniquely identify the function instance, the list of

instructions contained in the function, and the caching behavior for each instruction.

The process of creating nodes in the structure is completed in step 2 by using the

loop information from the static analysis to insert a node for each loop in every function

instance. Eachof these loop nodes will be used in the timing analysis to generate
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execution times. Therefore, the instructions referenced in the nested loop must be

moved from the function node to the loop node’s instruction list. This is accomplished

in step 2B of the algorithm. The final tree structure is then created in step 2C by parsing

the instruction list at each node to identify calling sequences and creating links between

parentandchild loops.

(I) Readin the static cache simulation results.
(1) For each function instance

(A) Createa node in the linked list, indicating the node represents a function and saving the func-
tion name, instance, and parent node name.

(B) Readin each instruction, saving the instruction number, the loop to which the instruction be-
longs, the invoked function and instance if the instruction invokes a function, and the caching
behavior for the instruction.

(II) Build the timing tree.
(1) Parse the linked list and locate the main function.
(2) For each function node in the list, and referring the static analysis for that specific function:

(A) If the function contains nested loops, then for each loop in the function create a node in the
list, indicating the node represents a loop. Set the corresponding pointers for the parent node
to reference the child node.Set the corresponding pointer in the newly created node to refer-
ence the static analysis information.

(B) Parse the linked list of nodes, and for each "function node" move instructions from its in-
struction list to the node for the loop which contains the instruction.

(C) For each node in the tree parse the instruction list and for each function invocation, set a
pointer from the current node to the correct instance of the invoked function.

Figure 9: Algorithm to Create the Timing Tree

8(b) 5 6

1 2 7
main

(a)
value
(b)

{worst case: 44 misses, 183 hits}

{worst case: 42 misses, 178 hits}

2 3 68(a)

2 8(a) 3 4

{worst case: 2 misses, 3 hits} 8(a) {worst case: 1 miss, 4 hits} 8(b)

[max:1]

[max:1] [max:1]

loop 1
in main

[max:10]

value

Figure 10: Timing Analysis Tree for the Simple Program
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CHAPTER 4

LOOP ANALYSIS

The loops in the timing analysis tree are processed in a bottom-up manner. The

execution time for a loop is not calculated until the times for all of its immediate child

loops are known. Note that the timing analysis does not support recursive programs.

There will be a worst-case and best-case time calculated that corresponds to each exit

block. Thus,when the timing analyzer is calculating the worst-case time for a path

containing a child loop, it uses the child loop times associated with the exit block of the

child loop that is the next block along the path.For instance, the time associated with

the nested loop in Figure 3 exiting to block 5 would be less than the time exiting to block

7 since block 6 would not be executed on the last iteration.

The worst-case loop algorithm depicted in Figure 11 terminates when the number

of calculated iterations reachesn - 1. The algorithm can terminate earlier if the

maximum time required to execute any continue path is equal to the maximum time

required to execute a continue path where all first misses are treated as hits. In fact, the

upper bound on the number of times that step 3 has to be processed ism+1, wherem is

the number of paths in the loop.Each path will have its first misses treated as misses at

most once. After all first misses are eliminated, the next maximum path found would be

equal to the value calculated in step 1.
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Let n be the maximum number of iterations associated with a loop. The algorithm for
estimating the worst-case time for the loop is as follows:
(1) Calculatethe maximum time required to execute any continue path assuming that all first misses are

counted as hits and first hits are counted as misses. This step calculates a base time that is used when
first misses and first hits have already been encountered. Set the number of calculated iterations to 0.

(2) Goto step 6 if the number of calculated iterations isn - 1.
(3) Calculatethe maximum time required to execute any continue path in the current iteration, where each

instruction classified as a first miss and not yet encountered is counted as a miss and all first hits are
counted as misses.

(4) Goto step 6 if the time calculated in step 3 is equal to the time calculated in step 1.
(5) Addthe maximum time calculated in step 3 to the total worst-case time for the loop. If this is the first

iteration, subtract the difference between a miss and a hit from the total worst-case time for each first
hit in the loop.Denote which first misses will now be counted as hits on subsequent references.Add
one to the number of calculated iterations. Go to step 2.

(6) Add (n - 1 - number of calculated iterations) * (time from step 1) to the total worst-case time for the
loop.

(7) Calculatethe times for all exit paths within the loop for the last iteration.For each set of exit paths
that have a transition to a unique exit block, add the longest time within that set to the time calculated
in step 6 to produce a total worst-case time associated with that exit block for the loop.

Figure 11: Algorithm to Determine Worst-case Path Through a Loop

The algorithm selects the longest path on each iteration of the loop.In order to

demonstrate the correctness of the algorithm, one must show that no other other path for

a giv en iteration of the loop will produce a longer worst-case time than that calculated by

the algorithm. The calculation of a worst-case time associated with a path simply

requires summing the times associated with each of the instructions in the path.The

time used for each instruction depends on whether it is assumed to be a hit or miss,

which depends on its categorization. Thecache hit time is one cycle on most machines.

The cache miss time is the cache hit time plus the miss penalty, which is the time

required to access main memory. All categorizations are treated identically on repeated

references, except for first misses and first hits. Assuming that the instructions have

been categorized correctly for each loop, it remains to be shown that first misses and first
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hits are interpreted appropriately for a given iteration of the loop.

A first hit implies that the instruction will be a hit on its first reference after the

loop is entered and all subsequent references to the instruction during the execution of

the loop will be misses. The definition the authors used for a first hit requires that the

instruction be within every path of the loop.Thus, the first path chosen for step 3 will

encounter every first hit in the loop. After the first iteration, first hits are treated as

misses.

A first miss implies that the instruction will be a miss on its first reference after

the loop is entered and all subsequent references will be hits.Step 3 indicates that an

instruction classified as a first miss will be counted as a miss only the first time it is

encountered.

Once the maximum time of the current iteration is equal to the time calculated in

step 1 (where all first misses are treated as hits), this value is replicated for all remaining

iterations, except for the last one. Once there are no more first misses encountered for

the first time (and the first iteration has encountered all first hits), then the worst-case

cache performance for a path will not change since the instructions within a path will

always be treated the same.The last iteration is treated separately in step 7. The longest

exit path for a loop may be shorter than the longest continue path.By examining the exit

paths separately, a tighter estimate can be obtained. Thus, the algorithm estimates a

bound that is at least as great as the actual worst-case bound.

The algorithm for estimating the best-case time for a loop is somewhat simpler.

Let n be the minimum number of iterations associated with a loop.The best-case loop
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estimation algorithm is as follows:

(1) If n is equal to 1, then set the total best-case time of the loop to 0 and go to step 5.
(2) Calculatethe minimum time required to execute any continue path assuming that all first misses are

counted as misses and all first hits are counted as hits.
(3) Calculatethe minimum time required to execute any continue path assuming that all first misses are

counted as hits and all first hits are counted as misses.
(4) Multiply the value calculated in step 3 by (n-2) and add it to the value calculated in step 2. Set the

total best-case time of the loop to this value.
(5) Calculatethe times for all exit paths for the last iteration.For each set of exit paths that have a

transition to a unique exit block, add the total best-case time for the loop to the shortest time within
that set to produce the total best-case time associated with that exit block of the loop.

Figure 12: Algorithm to Determine Best-case Path Through a Loop

The best-case algorithm selects the shortest path on each iteration of the loop.In order

to demonstrate the correctness of the algorithm, one must show that no other path for a

given iteration will produce a shorter best-case time than that calculated by the

algorithm. Thetime for the first iteration is typically calculated in step 2 (i.e. when the

loop iterates more than once).The first time program lines are referenced in a loop, first

misses will be misses and first hits will be hits. Thus, step 2 will calculate the shortest

path for the first iteration.Step 3 calculates the shortest continue path given that first

misses will be hits and first hits will be misses.All the first hits within the loop will be

encountered on the first iteration according to the definition of first hits that was used by

the authors. Thus, they can be safely treated as misses on subsequent iterations.A first

miss will be a hit if it has been encountered previously. Even if a first miss had not been

encountered in the first iteration, treating the reference as a hit in the second iteration

will only cause a slight underestimation. Step 4 adds the time for the first iteration to

the time calculated for the next n-2 iterations. Step 5 examines the last iteration

separately since paths associated with the exit blocks may be shorter than the shortest

continue path.
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The timing of a non-leaf loop is accomplished using this algorithm and the times

from its immediate child loops.

Whenever a path in a non-leaf loop contains a child loop, then thebase time

associated with that child loop will be used in the calculation of the path time.This

base time is determined from the longest execution time for the loop path in which first

misses are considered hits and first hits are considered misses.An adjust valueis

calculated as the sum of the differences between each path’s time and the base time for

each positive difference.

The transition of a categorization from the child loop level to the current loop level

will be used to determine if any adjustment to the the child loop time is required.These

transitions between categorizations and appropriate adjustments are given in Table 1.

The fm=>fm adjustment is necessary since there should be only one miss associated

Child => Parent Actionto Adjust Child Loop Time

fm => fm Use the child loop time for the
first iteration. For all remaining
iterations subtract the
miss penalty from the child loop
time.

fm => m Use the child loop time directly.

fh => fh Use the child loop time directly.

m => fh For the first iteration subtract the
miss penalty from the child loop
time. For all remaining iterations
use the child loop time directly.

m => m Use the child loop time directly.

Table 1: Use of Child Loop Times
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with the instruction and a miss should only occur the first time the child loop is entered.

The m=>fh adjustment is necessary since the first reference will be a hit at the outer

loop level.

The bottom-up approach used to time the loops creates the potential to

underestimate the WCET. In calculating the child loop’s base time the assumption is

made thatthe child loop will encounter all the first misses used in this base path.This

assumption fails for child loops containing a greater number of loop paths than the

maximum number of iterations. This failure generates the potential to underestimate

the WCET, which is unacceptable.Theadjust valueis added to thebase timeonly for

the first iteration of the child node.Timing values for subsequent iterations of the child

node use only the base time.

To illustrate this situation consider the code segment in Figure 13.The functionfun

contains 3 possible paths as shown in Table 2. The instruction cache is structured to

contain 32 cache lines with each cache line containing 4 bytes. This results in the entire

function fitting into cache and with each instruction categorized as a first miss.The

actual execution time for the functionfun iterated 5 times is 132 cycles. Thisvalue is

derived from summing the time for each iteration, 50+43+25+7+7.

In analyzing this function the timing tool will identify path 1 as the worst-case path

with a WCET of 70 cycles. Path 2 contains two instructions not encountered in path 1

and categorized as first misses. This results in a WCET of 25 cycles for path 2.Path 3

contains 2 instructions not encountered in path 1 or path 2 and also categorized as first

misses so its WCET is calculated to be 23 cycles. In timing the function from the

context of the outer loop the timing tool will calculate the WCET for the first iteration
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main()
{

int count, sum=0;

for (count=0; count < 5; count++)
sum += fun(count)

}

C Source Code Inst Assembly Code
------------------------- ---- -------------------------
int fun (i) 0 cmp %o0,%g0
int i; 1 bne,a L22
{ 2 cmp %o0,1
if (i == 0) 3 retl
return 1; 4 mov 1,%o0

else if (i == 1) 5 L22: bne L23
return 2; 6 nop

else 7 retl
return 3; 8 mov 2,%o0

} 9 L23: retl
10 mov 3,%o0

Figure 13: Example for Loop Adjust Values

as 70 cycles. TheWCET for the base path is calculated to be 7 cycles since it is

assumed that all first misses have been encountered.Without the use of adjust values

the total WCET for the function will be calculated as the first iteration WCET + (base

path X 4 remaining iterations) for a total of 98 cycles. This results in an

underestimation for the WCET.

Path List of WCET if newly WCET if newly

Number Instructions encountered fm = miss encountered fm = hit

1 0,1,2,5,6,9,10 70 7
2 0,1,2,5,6,7,8 25 7
3 0,1,2,3,4 23 5

Table 2: Path Information Pertaining to Functionfun() in Fig. 13
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The use of an adjust value avoided this underestimation. The adjust value is

calculated as the difference between the base time and initial path times, e.g. (70 - 7) +

(25 - 7) + (23 - 7) resulting in 97 cycles. Thefirst iteration WCET is calculated as the

base time (7 cycles) + the adjust value (97 cycles) for a total of 104 cycles. For each

subsequent iteration only the base value is used.The resulting WCET for the loop is

now 132 cycles; which is an exact prediction for this example. Thisadjust value

technique results in a slight overestimation if the number of loop iterations is fewer than

the number of paths. However, this overestimation is preferable to an underestimation.

To illustrate the use of the worst-case algorithm, the calculation of the worst-case

instruction cache performance for the example shown in Figure 8 will be described.

The worst-case performance results for each loop in the timing analysis tree are shown

in Figure 10. Since a loop cannot be timed until its immediate child loops are

processed, the two function instances ofvalue will be processed first, followed by

loop 1 inmain, and finally the functionmain. For loops with just a single iteration,

only step 7 in Figure 11 for in the worst-case algorithm contributes to the calculated

performance of that loop.

The worst-case performance for the example is calculated in the following manner.

The leaf loops of the timing analysis tree are the two instances of the functionvalue

and are processed first. The worst-case instruction cache performances ofvalue(a)

andvalue(b) are {2 misses, 3 hits} and {1 miss, 4 hits}, respectively. For loop 1 in

main, step 1 of the algorithm calculates a cache performance of {4 misses, 18 hits}

given that all first misses are treated as hits and first hits are treated as misses.This

result was obtained from {2 misses, 10 hits} from instructions directly in loop 1 and {1

24



miss, 4 hits} from both of the invoked function instances ofvalue. Note that the time

obtained from the first function instance ofvalue was adjusted as described in Table 1

(fm => fm). The result found for the first iteration in step 3 is {6 misses, 16 hits},

which was obtained by adding {3 misses, 9 hits} from instructions directly in loop 1, {2

misses, 3 hits} fromvalue(a), and {1 miss, 4 hits} fromvalue(b). The next

result calculated in step 3 is equal to the result from step 1.By applying step 6, 8*{4

misses, 18 hits} will be used to represent the performance of the next 8 iterations.Since

both paths through the loop are exit paths, the worst-case time for the exit paths

calculated in step 7 is the same as the result in step 1. Thus, the total worst-case

performance for loop 1 inmain is {42 misses, 178 hits} ({6+9*4 misses, 16+9*18

hits}). The loop representing the entire functionmain only iterates once and is

calculated in step 7.The worst-case instruction cache performance for the entire

program is {44 misses, 183 hits}. This result was obtained by {2 misses, 5 hits} from

instructions directly in the outer level of main and {42 misses, 178 hits} from loop 1 in

main. The worst-case performance result of loop 1 did not have to be adjusted in the

calculation of the performance of the functionmain since the functionmain only

iterates once.The implementation of the algorithm calculates the exact worst-case

instruction cache performance for this example. Thisanalysis requires a complexity of

O(p*l), wherep is the number of paths in each loop andl is the number of loops in the

timing tree.
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CHAPTER 5

RESULTS

To assess the effectiveness of the timing analyzer, six simple programs were

selected. Adescription of these programs is given in Table 3. For each program a

direct-mapped cache configuration containing 8 lines of 16 bytes was used. Thus, the

cache contains 128 bytes.A very small cache size was chosen because the test

programs were relatively small themselves. Theinstruction cache performance of each

entire program was predicted. The sizes of these test programs may be comparable to

the size of typical code segments containing timing constraints in real-time applications.

In addition, the code executed between two scheduling points (context switches) in a

non-preemptive system may often be smaller than the code of a typical program.Using

a small cache also provided a more realistic simulation of a typical ratio of program to

cache size. The programs were 4 to 17 times larger than the cache as shown in column

Num Num Description or Emphasis

Bytes Funcs
Name

Des 2,240 5 Encrypts and Decrypts 64 Bits
Matcnt 800 8 Counts and Sums Values in a 100x100 Matrix
Matmul 788 7 Multiplies 2 50x50 Matrices
Matsum 632 7 Sums Nonnegative Values in a 100x100 Matrix
Sort 572 5 Bubblesort of 500 Numbers in Ascending Order
Stats 1,488 8 Calcs Sum, Mean, Var., StdDev., & L inear Corr. Coeff.

Table 3: Test Programs

26



2 of Table 3. The analysis of test cases with smaller ratios, where test programs fit into

the instruction cache, could be accomplished quite easily and would not represent a

significant challenge. Using a smaller cache demonstrates the ability of the timing

analyzer to predict tight bounds under a more difficult setting.Column 3 shows that

each program was highly modularized to illustrate the handling of timing predictions

across functions.

A distribution of the worst and best-case instruction categorizations is shown in

Table 4. These numbers indicate the static percentage of each type of instruction

categorization in the function instance tree. Each instruction within the tree was

weighted equally. If an instruction receives different categorizations for each loop

nesting level, then the ratio of the number of instances for a categorization to the

number of loop nesting levels for the instruction will be used to calculate the

percentage. For example, given that an instruction is classified as "fm/m/m/m" over 4

loop nesting levels, then 0.25 of the instruction is considered a first miss and 0.75 of the

instruction is considered an always miss.

Always Always First First

Hit Miss Miss Hit

Worst Best Worst Best Worst Best Worst Best

Name

Des 70.00% 70.61% 27.28% 17.50% 1.93% 4.26% 0.79% 0.18%
Matcnt 70.64% 71.81% 25.48% 22.48% 2.65% 1.87% 1.22% 0.21%
Matmul 71.15% 71.75% 24.51% 20.00% 3.57% 2.65% 0.77% 0.17%
Matsum 69.89% 69.89% 26.24% 23.30% 3.87% 2.28% 0.00% 0.00%
Sort 67.70% 68.12% 28.42% 23.60% 3.26% 4.40% 0.62% 0.21%
Stats 71.76% 72.03% 24.30% 22.16% 3.55% 2.16% 0.39% 0.13%

Av erage 70.19% 70.70% 26.04% 21.51% 3.14% 2.94% 0.63% 0.15%

Table 4: Static Categorization Distribution for the Test Programs
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Table 5 shows the dynamic results associated with these test programs.Only

Matmul consistently had a very high hit ratio due to spending most of its cycles in 3

tightly nested loops containing no calls to perform the actual matrix multiplication.The

Observed Cyclesshows the cycles spent for an execution with worst-case and best-case

input data. The number of cycles was measured using a traditional cache simulator

[17], where a hit required one cycle and a miss required ten cycles (a miss penalty of

nine cycles). TheEstimated Cyclesrepresents the number of cycles estimated by the

timing analyzer. The Estim. Ratiodepicts the ratio of the predicted instruction cache

performance using the timing analyzer (Estimated Cycles) to the observed worst-case

performance (Observed Cycles). TheNaive Ratioshows a similar ratio assuming there

was no cache analysis. This worst-case naive prediction simply determines the

maximum number of instructions that could be executed and assumes that each

instruction reference requires a memory fetch of ten cycles (miss time).Likewise, the

best-case naive prediction determines the minimum number of instructions that could be

executed and assumes that each instruction reference requires one cycle (hit time).

Worst Case Best Case

Hit Observed Estimated Estim. Naive Hit Observed Estimated Estim. Naive

Ratio Cycles Cycles Ratio Ratio Ratio Cycles Cycles Ratio Ratio

Name

Des 81.41% 142,956 163,159 1.14 3.86 86.38% 59,998 19,399 0.32 0.21

Matcnt 85.32% 959,064 1,049,064 1.09 4.31 88.49% 719,082 719,082 1.00 0.49

Matmul 99.05% 2,917,887 2,917,887 1.00 9.21 99.05% 2,917,887 2,917,887 1.00 0.92

Matsum 87.09% 677,210 677,210 1.00 4.63 86.21% 657,210 657,210 1.00 0.45

Sort 83.99% 7,640,132 15,222,440 1.99 8.16 99.63% 10,951 4,466 0.41 0.38

Stats 88.59% 357,432 357,432 1.00 4.93 88.59% 357,432 357,432 1.00 0.49

Table 5: Dynamic Results for the Test Programs

The example programs were used to illustrate various points.TheMatmulandStats
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programs have no conditional statements except to exit loops. The only conditional

control statement besides loops in theMatsumprogram was anif-then statement to

check if an array element was nonnegative. For such programs, predictions for worst

and best-case performance as compared to observed performance can be estimated very

tightly. In fact, the timing analyzer is able to calculate exact predictions of instruction

cache performance when there is no conditional control flow other than iterating

through loops.

TheMatcntprogram not only determines the sum of the nonnegative elements (like

the Matsumprogram), but also determines the number of nonnegative and negative

elements in the matrix. Thus, there was anif-then-else construct used in the code

to either add a nonnegative value to a sum and increment a counter for the number of

nonnegative elements or just increment a counter for the negative elements. Theadding

of the nonnegative value to a sum was accomplished in a separate function.This

function was intentionally placed in a location that would conflictwith the program line

containing the code to increment a counter for the negative elements. Multiple

executions of thethen path, which includes the call to the function to perform the

addition, still required more cycles than alternating between the two paths. Yet, the

algorithm for estimating the worst-case performance assumed that the first reference to

a program line within a path would always be a miss if there were accesses to any other

conflicting program lines within the same loop.This assumption simplified the

algorithm since the effect of all combinations of paths does not have to be calculated

and an exponential time complexity was avoided. Thus,one reference was counted

repeatedly as a miss instead of a hit.This path was executed 10,000 times and this

accounted for a 90,000 cycle [10,000*miss penalty] or 9% overestimation. Notethat
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the execution of this single path accounted for 43.56% of the total instructions

referenced during the execution of the program. The best-case estimation was not

affected since the best-case algorithm assumed the shorter path would always be taken.

The analysis of the final two programs,DesandSort, depicts problems faced by all

timing analyzers.The timing analyzer did not accurately determine the worst-case and

best-case paths in a function withinDesprimarily due to data dependencies.A longer

or shorter path could not be taken in a function due to a variable’s value in an if

statement. TheSort program contains an inner loop whose number of iterations

depends on the counter of an outer loop.At this point the timing tool either

automatically receives the maximum and minimum loop iterations from the control-

flow information produced by the compiler or requests a maximum and minimum

number of iterations from the user. Yet, the tool would need a sequence of values

representing the number of iterations for each invocation of the inner loop. The number

of iterations performed was overrepresented for the worst-case estimation on average by

a factor of two for this specific loop. The inner loop contributed much less to the total

executed instructions for best-case since the outer loop was aborted after the first

iteration when it was found that the array was sorted.However, the number of iterations

performed for the single execution of this inner loop for the best-case estimation was

still underrepresented by a factor ofN-1, where N is the number of elements in the

array. This inaccuracy accounted for the error in both the estimated and naive ratios

since much of the cycles for the program were produced within this loop. Note that

both of these problems are encountered by other timing tools and are not related to

cache predictability.
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CHAPTER 6

FURTHER WORK

This research has been extended significantly in three different areas after the

programming was completed by this author. The first extension was the inclusion of a

graphical user interface [9], [10] to allow the user to request timing results on specific

sections of the program.Through the presentation of the source code, assembly code,

and all possible subpaths, the user is able to quickly identify a particular program

segment for which timing predictions can be requested.This was possible since the

timing tool can accept requests to analyze individual loop subpaths.Timing requests

for program source code segments was possible by tracking the source code lines down

to the basic block level.

The second extension includes consideration of pipelining issues for the

MicroSPARC 1. The technique described in this thesis did not consider pipelining

issues. Thecode structure for the timing analysis tool was designed to allow the

pipelining extension at a later date [19], [20].

Research is ongoing that addresses data caching [21].Due to the possibility for data

addresses to change during a program’s execution, determining bounds for the worst-

case and best-case data cache performance is much more complex. However,

reasonable bounds can be calculated after determining the range of addresses for many
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data references.

Another area of work recently begun is directed to resolve the possibility for

exponential growth in the number of possible paths through a loop. If a loop containsn

consecutive IF statements, the total number of paths through this loop is 2n . Work is

proceeding for partitioning a loop or function into sections to reduce the number of

paths at a given lev el in the program.

32



CHAPTER 7

CONCLUSION

Predicting the execution time of a program on a processor that uses cache memory

has long been considered an intractable problem [3], [22], [23].This research has

developed a technique for predicting a bounds on the worst-case and best-case

instruction cache performance.By statically analyzing the program structure and using

caching behavior classifications from the static cache simulator, this timing analyzer is

able to exactly predict instruction cache performance when there is no conditional

control-flow other than iterating through loops.Tight predictions can be obtained for

many programs with conditional control-flows, as demonstrated in this thesis.

This research demonstrates that instruction cache behavior is sufficiently

predicatable for real-time applications. Thus, instruction caches should be enabled,

generating a significant speedup for the predicted performance as compared to disabled

caches (depending upon the hit ratio and miss penalty).As processor speeds continue

to increase faster than the speed of accessing memory, the performance benefits for

using cache memory in real-time systems will only increase.Thus, methods to predict

caching behavior will become an essential part of timing analysis techniques.
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ABSTRACT

The use of cache poses a difficult tradeoff for real-time system developers. Whilecaches

provide significant performance advantages, they hav e also been considered inherently

unpredictable since the behavior of a cache reference depends upon the previous

references accessing the same cache line.The use of caches can only be suitable for real-

time systems when caching behavior can be reliably predicted. This thesis describes an

approach for bounding the instruction cache performance for large code segments. A

timing analyzer was developed that uses caching behavior information generated from a

static cache simulator to estimate the worst-case and best-case instruction cache

performance for each loop and function in a program.
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