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CHAPTER 1

INTRODUCTION

Developers of real-time systemade a difficult challenge in deloping software.
For a real-time system to function correctlihe system must not only be logically
correct, but must also adhere to specified timing constraints expressed in terms of hard
and soft deadlines.Violation of these timing constraints can result in system
performance degradation or complete system failure. A significant amount of research
has been>gpended into various static scheduling algorithms such as Rate Monotonic
Analysis [1]. Much less &rt has been spent in predictingeeution times of indiidual
tasks. Hwever, in order to apply these static scheduling algorithms, tloestacase
execution time (WCET) must be known for each scheduled t&#me scheduling

algorithms may require knowing the best-casecetion time (BCET) as well.

Measurement of taskxecution times has been very difficult due to the possible
variance in g&ecution times for each instruction, must less each tasksignificant
source in the »ecution time variance is due to cachindeefs. Whetheror not an
instruction is in cache each time it is referenced depends upon the contratéd to
reach the reference to that instructiofhe difference between a cache hit or miss can

result in an order of magnitude difference xeaution time of an instruction [2].

Current techniques for detecting timing constraint violations usualglivie



some type of dynamic measurement, such as direct measureeat.oounded
execution time results from dynamic measurements are questionable since it is quite
difficult to determine the input data for a real-time application of agnificant
compleity that will cause the WCET to beeeuted. Wth instruction caching it isven

more dificult. To illustrate this concept consider the code in Figure 1. Assume that the
paths through statement 1 and statement 2 require approximately the same time when
they are located in the cache and both statement 1 and statement 2 arteriendif
memory lines, but map to the same cache line. The worst-case inputalddargquire

that statement 1 and statement 2 be alternatedgueed. Thiswould not be obious

from an examination of the source code. Sinceymaputs are time-dependent, it may
also be dificult to consistently generate an input at the required time ve dripecific
control-flov path. Thetechnique described in this thesis eliminates this problem by

automatically considering all possible controMflpaths.

for (i=0; i < 1000; i++)
if (condition)
statenent 1;
el se
st at enent 2;

Figure 1: Example for Conflicting Cache Lines
Using direct measurements is also considered inadequate since it requires a
functional softvare system on an existing hardware platform. Hence, most testing for
timing constraint violations is done during the final phase of system tefRiegplving
timing constraint violations at such a late stage in theeldement life-gcle

significantly increases the effort to ressliae violation.

In order to reduce this variance, and its associated problems, a common solution
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is to disable all caching [3]. This extreme solution is successful in reducing the
execution time variance. Heever, it reintroduces the problem seld by caching, which

is a dramatic decline in performanc@lith the continual increase in cache sizes and the
ratio between main memory and cache access times, disabling caches results in
continually increasing sacrifice of system performance ingmnents. Recerttardware
development has slwvan a CPU performance increase versus memory access time
exceeding 10:1 per year [2]This implies that at some point caching will be needed to
provide the performance for the required system functionalitys research describes a
technique to statically determine the BCET/WCET during compilatidms technique
exploits a concept oboundingthe eecution times with the BCET/WCET rather than
seeking the \&rage eecution time, which significantly reduces the comqple This

static approach does not require knowing the input data teedhie besthorst case
paths, ngaes the difficulties in testing a specific path, and identifies timing constraint
violations much earlier in the dgdopment process.This technique considers a non-
preemptve g/stem containing only an instruction cache. Due to the additional

complexity other architectural features were eliminated from consideration.

Figure 2 shows anverview of the timing analysis process. This technique is
implemented by using an optimizing compiler caligob [4], which produces control-
flow information as a sidefefct of compiling one or mor€ source code filesThis
control-flov information is analyzed by the static cache simulator to produce a control-
flow graph consisting of the call graph and the contral/ ftd each function. Using the
specified cache configuration, the controwflagraph is analyzed to produce a

categorization for each instructiom’ptential caching belvér. Eachinstruction cabe



categorywill describe the caching be¥iar of the instruction at different loopJes of

the program xecution. Detailof the static cache simulator can be found elsewhere [5],
[6], [7], [8]. The timing analysis technique described in this thesis uses these instruction
caching categorizations along with the controlflmformation from the compiler to
estimate the best andowst-case instruction caching performance for each loop and
function contained in the program. Once the timing analyzerVaisa¢ed all functions
within the program, a usanterface [9], [10] is inoked to dlow the user to request

timing bounds for specific code segments within the program.

[User Timing Requests

Timing | User
Analyzer: Interface

Timing
Predictions

C Control
Source Flow
Files Information

Static
Cache
Simulato

Cache
Configuratiol

Caching
Categorizations

Figure 2: Overvier of Bounding Instruction Cache Performance



CHAPTER 2

RELATED WORK

Several tools to predict thexecution time of programs ka been designed for
real-time systems.The analysis has been performed at thvel lef source code [11],
intermediate code [12], and machine code [13hly the last tool attempted to estimate
the efect of instruction caching and was only able to analyze code segments that
contained no function calls and fit entirely into caclus, this tool was able to assume

that at most one miss will occur for each instruction reference.

Mueller [5] describes an approach calkdtic-catie simulatiorthat catgorizes
the caching behavior of each instruction into one of four categories, theretwngllo
mary instruction references to be treated as cache hits. The path analysis technique
described in this thesis uses the categories produced by the static simulation to bound the

best and worst-caseesution times.

Lim et. al.[14] describe a method using a timing schema associated with each
source-lgel language program construct. Byeeuting a single bottom-up pass, each
construct is analyzed in the context from which the construct is calleis. approach
works best when timing the entire prograngsent. Sinceéhe final &ecution time of a
seggment is not known until the surrounding context is considered, timing requests for a

particular segment must assume a pessimististacase bound. Additional pessimism



is introduced from this technique’inability to analyze optimized codeCompiler
optimizations can significantly reducexeeution times. Also, the authors vee

demonstrated if their method is capable of recognizing spatial Id'cality

Li et. al. [15] uses an integer linear programming (ILP) technique to model
instruction cache bekir. The authors automatically dee mary constraints from a
programs wntrol-flov graph that can be solved using ILFhe user is required to
express constraints gerding data dependencies within the controlfland the number
of iterations for each loop in the program. Each basic block is analyzed to determine the
sets of instructions that mapped to the same cache line. Each set is referenioeet as a
block Three possible possible states are identified for each caché-lmst.if only one
line-block is mapped to it, then it will experience at most one miss pergdoond, if
two or nore non-conflicting line-blocks map to a cache line, then these line-blocks will
have & most one miss penalty among theidinally, if two or more conflicting line-
blocks map to it, then a cache conflict graph is constructed for this cache line. The edges
between the line-blocks in this graph represent a possible path betweenothe tw
conflicting line-blocks. Additional constraints are generated to represent the number of
times these edges arevieesed. Wheneer a line-block is reached from a conflicting
line-block, it is assumed that there is a miss penalty associated wittedtgien. A
drawvback of this approach is the exponential growth relationship between the program
size and the number of ILP equations to be eshlvResultfrom this research [15]

indicate a significant increase imeeution time required to perform a timing analysis

1 The principle of locality holds that all progranavér a portion of their address space ayanstant of time. Spatial locality
implies that if an item is referenced, nearby items will tend to be referenced soon [2].



ove the technique presented in this thesis.



CHAPTER 3

TIMING ANALYSIS

A timing analysis tree is constructed to simplify the process of determining the
execution bounds of a prograniThe result of this analysis will be a tree structure in
which each node of the tree represents a natural loop in the p?ogramnrder to
process loops and functions in a similar manegch function is considered a loop that

will iterate one time.

The creation of the timing tree requires the analysis of the programé in
order to determine informationgarding the loops within each function. The optimizing
compiler initiates this analysis by identifying for each loop: the nestive, lall the
blocks contained within the loop, akieblocks from the loop, the minimum number of
loop iterations, and the maximum number of loop iterations. The timing xbehds

this analysis by determining all possible paths through the loop.

As shown in Figure 3, gath is a sequence of unique blocks in the loop
connected by control-l@ transitions. Abasic blok is defined as a sequence of

consecutre instructions in which fl of control enters at the beginning andvesaat he

2 A natural loop is a loop with a single entry block. The timing analyzer is restricted to only analyzing natural loops since it
would be difficult to determine the set of possible blocks associated with a single iteration in an unnatulaistemgd be noted
that unnatural loops occur quite infrequently.



end without halt or possibility of branching except at the end [A6bop header bloc

is defined as the unique entry block into the loop. Blocks outside the loop that are
reached by control-fle transitions from blocks within the loop are definedap it

blocks Each path in the loop must start with the loop header block and terminate with a
block containing a transition to the header block (continue path) or to an exit btdck (e
path.) Thepath through a function is defined to start with the entry block in the function
and end with the block containing a return instructiira path within a loop contains a
nested loop, then the entire nested loop is represented in the path by only the header
block of the nested loopAssociated with each loop is the set of exit blocks for that

specific loop.

continue path: 2->3

ext path: 2->4

continue/exit path: 2->4->6

Figure 3: Example Introducing Loop Terminology

exit block ™

If the example gien in FHgure 3 is considered a function with one nested loop, the
algorithm to determine all possible paths, depicted in Figure 4, will first identify all
possible paths through the nested loop before determining all possible paths through the
function. Figurest and 5 depict the algorithms to identify all possible paths, including

nested loops, within a loop.

Figure 6 illustrates the path analysis algorithm in Figure 4 by depicting the

creation of paths on each iteration of the algorithm while analyzing the simple loop



(1) Seta pointer at the current loop node structure. This structure will be used to reference the list of
all possible paths through this loop.

(2) Move b the end of the list of blocks in the current path.
(3) Determineghe list of successor blocks to the current basic block.

(A) If the current block is not a loop header block then the list will contain all successor blocks to
the current block.

(B) If the current block is a loop header block toested loogthen the list will contain allt
blocks out of this nested loop.

(4) If the current block contains an outgoing transition that represents a back edge to the current loop:

(A) If multiple successor blocks exist with one block being a lodtpbéock and a second block
being the loop header block then the current path represents bothirguepath and arext
path. Ifthe successor list contains additional blocks then more branches exist.

(a) If additional branchesxest then cop the current path to a wepath, set the e path’s type
CONTINUE/EXITand mae te loop header block and loogiteblock from the successor
list to the nev path’s &it list. Insert the ne path into the list of all paths through this loop.

(b) If additional branches do natist then set the type this path@@NTINUE/EXITand mae
the loop header block and loop exit block from the successor list to this patHhist.

(B) If multiple successor blocks exist with the loop header block and no kitoplecks present
then the current path contains controlafloranches with one representingpak edge

(a) Copy the current path to the wepath and mee the loop header block from the successor list
to the nev path’s it list.

(b) Setthe type of the ne path toCONTINUE
(c) Insertthe naev path into the list of all possible paths through this loop.
(C) If only the loop header block exists in the successor list then the current path is complete.
(a) Move the loop header block to the exit list.
(b) Setthe type of the current path @ONTINUE
(c) Goto step #8.
(5) If the current block represents an exit out of the loop:

(A) If multiple successor blocks exist then the current path contains a branch at this pgitiheCop
current path to a mepath and mee the loop exit block to the exit list of the wagath.

(a) Setthe type of the ng path toEXIT.
(b) Insertthe nev path into the list of all possible paths through this loop.

(B) A successor list containing only one block which represents a loop exit block can only occur
for a path through a functiorNote that this occurs because the loop path through a function
does not contain lback edgepath. Sethe type of this path t&XIT.

(6) Whilemultiple blocks exist in the successor list branches exist in the control-flo
(A) Copy the current path to a wepath.
(B) Appendthe successor block to thewnpath's list of basic blocks through the loop.
(C) Insertthe nav path into the list of all possible paths through this loop.

(7) If the successor list has a block in it then append this successor block to the end of the list of
blocks in this current path.

(8) Gothe next incomplete path in the list of all possible paths through this loop. If an incomplete
path is found then go back to step #2.

(9) If noincomplete paths are found then exit.
Figure 4: Algorithm to Determine All Paths Through a Loop
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()  Findthe maximum loop nestingud for the function being analyzed.

(I From the maximum nesting Vel down to O find each loop with a nestingvis
equal to the current nestingréé and do the following:

(1) Createa dructure (Loop Node) to hold general information about the loop
(number header block, nestingvel, min and max iterations) and a pointer
to all the possible paths through the loop.

(2) Making the assumption that at least one path mugtterough the loop,
create a structure (loop_path_node) that will list information about one spe-
cific path through the loop. This specific information will include:

(A) list of basic blocks to traerse through the loop
(B) list of exit blocks out of the loop
(3) Determineall Possible Paths Through the Loop

Figure 5: Algorithm to Find all Paths Through All Loops

given in Hgure 3. Step 1 in Figure 6 shows the identification of the first block in the
nested loop path. In analyzing the multiple transitions leaving block #2, the algorithm
recognizes the branch in control¥flo As sxown in step 2 the current path is duplicated
and block #3 appended to theangath. Instep 3 the algorithm is extending the current
path by appending block #4. Block #4 also hae transitions leaving it. The first
transition exits the loop to block #3.he second transition is to block #6 which is still in
the loop. In step 4 the algorithm will recognize the exit to block #5 so it will duplicate
the current path and append the logj kblock, block #5, to that loop path&it list. In

step 5 the algorithm is following the current path by appending block #6 onto the path.
Two transitions leae Hock #6, the first is anxd to block #7, the second is a back edge
transition to the loop headerThe algorithm, in step 6 recognizes this path as a
CONTINUE/EXITpath so it labels the path as such andemdhe loop header block and
loop exit block to the loop pathexit list. In step 7 the algorithm completes the

remaining incomplete path from block #2 to block #3ince block #3 has only a
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(1) Firstlteration Through Algorithm, Steps 1 and 2

2 <== Current Path

(2) Firstlteration Through Algorithm, Steps 3 and 6
2 <== Current Path
2->3 <==New Path

(3) Firstlteration Through Algorithm, Step 7
2->4 <==Current Path
2->3 <==New Path

(4) Secondteration Through Algorithm, Step 5
2->4 <==Current Path
2->4 <==Completed EXIT Path with Exit Block #5
2->3 <==Incomplete Path

(5) Secondteration Through Algorithm, Step 7
2->4->6 <==Current Path with Block #6 Appended
2->4 <==Completed EXIT Path with Exit Block #5
2->3 <==Incomplete Path

(6) ThirdIteration Through Algorithm, Step 4
2->4->6 <==Completed CONTINUE/EXIT Path with Exit Block #7
2->4 <==Completed EXIT Path with Exit Block #5
2->3 <==Incomplete Path

(7) Fourth Iteration Through Algorithm, Step 4
2->4->6 <==Completed CONTINUE/EXIT Path with Exit Block #7
2->4 <==Completed EXIT Path with Exit Block #5
2->3 <==Completed CONTINUE Path

Figure 6: Example of the Nested Loop Path Analysis Sequence
(Reference the Path Analysis Algorithm in Figure 4)

transition to the loop header block, this path is markedGOMNTINUEpath.

Now that all the paths through the nested loogehaen identified, the algorithm
begins identifying all paths through the function. Reference Figure 7 for the path
analysis sequencdn step 1 the algorithm has identified block #1 as the function start
block. Instep 2 the algorithm has recognized block #2 as the loop header block for the
nested loop and represents it by appending block #2 to the currentlpattep 3 the
algorithm has determined all loop exit blocks from the nested loop so it duplicates the
current path and appends block #5 to it. The current patktemnded by appending

block #7 to the end of it in step Zhe algorithm then recognizes recognizes block #7 as
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the «it block from the function so it labels the current path ag&AhT path in step 5.
The last step is to consider the last incomplete loop path. In step 6 this path is also

recognized as aBXIT path and labeled as such.

(1) Firstlteration Through Algorithm, Steps 1 and 2

1
(2) Firstlteration Through Algorithm, Steps 3 and 7
1->2 <==Current Path
(3) Secondteration Through Algorithm, Steps 3 and 6
1->2 <==Current Path
1->2->5 <==New Path
(4) Secondteration Through Algorithm, Step 7
1->2->7 <==Current Path Extended By Appending Block #7
1->2->5 <==Incomplete Path
(5) ThirdlIteration Through Algorithm, Step 5
1->2->7 <==Completed EXIT Path with Exit Block #7
1->2->5 <==Incomplete Path
(6) Fourth Iteration Through Algorithm, Step 5
1->2->7 <==Completed EXIT Path with Exit Block #7
1->2->5 <==Completed EXIT Path with Exit Block #5

Figure 7: Example of the Function Loop Path Analysis Sequence
(Reference the Path Analysis Algorithm in Figure 4)

Once the static analysis is complete, the timing tool must consider the caching
behaior for each instruction in each pathowever, the caching behavior is dependent
on the context from which the instruction is referenced. The static cache simulator
recognizes this dependgnand produces caching beher for each function instance.
A function instancés dependent upon the immediate call site within its caller as well as

the callers all site etc.

Figure 8 illustrates that the static cache simulatorgcaizes the wrst-case
instruction caching behavior into one of four categories faryeinstruction within
evay function instance. This example assumes the cache consists of four lines, each

containing four instructionsFor the worst-case an instruction is classified aalamays
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miss if the instruction is not guaranteed to be in the cache when refereraged.
instruction is classified as aways hitif the instruction is guaranteed tonays be in

the cache when referenced. Instructions categorizdusasniss are not guaranteed to

be in the cache on the first reference to the instructisnade guaranteed to be in cache
for all remaining iterations of the loop. Instructions gatgzed adirst hitindicate the
opposite. Inother words, for all references to the instruction durirgcetion of the
current loop, the instruction can be guaranteed to be in cache for the first refarence b

can not be guaranteed to be in cache for all subsequent references.

The definition for each instruction caching category differs for the best-case analysis.
An instruction is classified as atways missf the instruction is guaranteed to not be in
cache when referenced. An instruction is classified aahaays hitif the instruction

may be in cache when referenced. Instructions categorizésmissare guaranteed

to not be in the cache on the first iteration of the loop but may be in the cache on all
remaining iterations of the loop. Instructions cmezed adirst hitmay be in cache on

the first iteration of the loop but is guaranteed to not be in the cache on all remaining
iterations. Sinceonsideration for nested loops affects whether or not an instruction is in
the cache, the static cache simulator generates a classification for eachvébop le

which the instruction is contained.

14



% extern char m n, a[ 10] ; source lines 7-8 save %p, - 96, %sp Block1 | m h=always hit
3 mai ﬂ( ) set hi %i (_mn), %0 h m=aWways miss
4 program line 0 | dsb [%00+% o(_min)], % 2 h fm=first miss
5 int i hi gh' nov %0, % 1 h fh=first hit
L s
6 nov %2 %0 m
7 hi gh = n; )
8 f or ( | —_0; 1 < 10; i ++ source lines 9-9 cal | _value, 1 Block 2
18 if E‘hl ﬁh Vla| U(E( I) ) program line1 | mov % 1, %0
| = val ue(l);
3 } return high; _source lines -9 cnp____ %0,%0_____Block3 |
bge,a L16
13
- - 0 0
14 i nt val ue(index) , add %1191
15 int index; program line 2
16 { source lines 10-1pcal | _value, 1 Block 4
17 return a[index]; nmov % 1, %0
18 Yoo
source lines 10-1Q nov %0, % 2 Block 5
add %1,1,%1
program line 3
source lines 8-8 cnp %1, 10 Block 6
,,,,,,,,,,,,,, bla L8 |
nov W2, %0
source lines 11-11 v
ret Block7 | h
program line 4 restore % 2, %90, %00 h
value() @ ®
source fines 17-17 sethi____%hi (_a), %1 Block8 | fm/fm/mh___
’ add %1, % o(_a), %1 m m
program line 5
| dsb [ %0+%01] , %01 h h
retl h h
nov %1, %00 h h

Figure 8: Simple Program Instructions with Categorizations

The timing tool will use the results from the static analysis and the caching
categorization to hild the timing tree. The algorithm to build this timing tree is depicted
in Figure 9. The timing tree for the simple program used earlier in this paper is shown in
Figure 10. In step 1 the algorithm is parsing the information from the static cache
simulator to create nodes in the timing tree for each function instance. Stored in this
node are all releant information to uniquely identify the function instance, the list of

instructions contained in the function, and the caching behavior for each instruction.

The process of creating nodes in the structure is completed in step 2 by using the
loop information from the static analysis to insert a node for each loofem feinction

instance. Eaclof these loop nodes will be used in the timing analysis to generate
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execution times. Therefore, the instructions referenced in the nested loop must be
moved from the function node to the loop nasl@istruction list. This is accomplished

in step 2B of the algorithm. The final tree structure is then created in step 2C by parsing
the instruction list at each node to identify calling sequences and creating links between

parentandchild loops.

() Readin the static cache simulation results.
(1) For each function instance
(A) Createa mode in the linked list, indicating the node represents a function aimdyghe func-
tion name, instance, and parent node name.

(B) Readin each instruction, séng the instruction numbgethe loop to which the instruction be-
longs, the imoked function and instance if the instructiovakes a unction, and the caching
behavior for the instruction.

(1) Build the timing tree.
(1) Parse the linked list and locate the main function.
(2) For each function node in the list, and referring the static analysis for that specific function:

(A) If the function contains nested loops, then for each loop in the function create a node in the
list, indicating the node represents a loop. Set the corresponding pointers for the parent node
to reference the child nod&et the corresponding pointer in the newly created node te refer
ence the static analysis information.

(B) Parse the linked list of nodes, and for each "function node’enigstructions from its in-
struction list to the node for the loop which contains the instruction.

(C) For each node in the tree parse the instruction list and for each funot@mration, set a
pointer from the current node to the correct instance of thoiéd function.

Figure 9: Algorithm to Create the Timing Tree

{worst case: 44 misses, 183 hits}
[1]si2 7]

{worst case: 42 misses, 178 hits}

in main

80) | K
(2> 5@ | 6]

{worst case: 2 misses, 3 hit {worst case: 1 miss, 4 ‘ (b)

Figure 10: Timing Analysis Tree for the Simple Program
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CHAPTER 4

LOOP ANALYSIS

The loops in the timing analysis tree are processed in a bottom-up madheer
execution time for a loop is not calculated until the times for all of its immediate child
loops are knan. Notethat the timing analysis does not support regergrograms.
There will be a wrst-case and best-case time calculated that corresponds toxégach e
block. Thus,when the timing analyzer is calculating th@ret-case time for a path
containing a child loop, it uses the child loop times associated with the exit block of the
child loop that is the n& block along the pathFor instance, the time associated with
the nested loop in Figure 3 exiting to block duld be less than the time exiting to block
7 9nce block 6 would not bexecuted on the last iteration.

The worst-case loop algorithm depicted in Figure 11 terminates when the number
of calculated iterations reaches- 1. The algorithm can terminate earlier if the
maximum time required toxecute ay continue path is equal to the maximum time
required to gecute a continue path where all first misses are treated as hits. In fact, the
upper bound on the number of times that step 3 has to be processel isherem is
the number of paths in the loogach path will hee its first misses treated as misses at
most once. After all first misses are eliminated, tha neaximum path found would be

eqgual to the value calculated in step 1.
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Let n be the maximum number of iterations associated with a loop. The algorithm for
estimating the worst-case time for the loop is as follows:

(1) Calculatehe maximum time required txecute ay continue path assuming that all first misses are
counted as hits and first hits are counted as misses. This step calculates a base time that is used when
first misses and first hits Y dready been encountered. Set the number of calculated iterations to 0.

(2) Goto step 6 if the number of calculated iterations 4.

(3) Calculatehe maximum time required txecute aly continue path in the current iteration, where each
instruction classified as a first miss and not yet encountered is counted as a miss and all first hits are
counted as misses.

(4) Goto step 6 if the time calculated in step 3 is equal to the time calculated in step 1.

(5) Addthe maximum time calculated in step 3 to the totalstvcase time for the loop. If this is the first
iteration, subtract the difference between a miss and a hit from the tottlemse time for each first
hit in the loop. Denote which first misses will mobe @unted as hits on subsequent referenéekd
one to the number of calculated iterations. Go to step 2.

(6) Add(n- 1 - number of calculated iterations) * (time from step 1) to the total worst-case time for the
loop.

(7) Calculatethe times for all exit paths within the loop for the last iteratibor each set of exit paths
that hae a tansition to a unique exit block, add the longest time within that set to the time calculated
in step 6 to produce a total worst-case time associated with that exit block for the loop.

Figure 11: Algorithm to Determine Worst-case Path Through a Loop

The algorithm selects the longest path on each iteration of the Inagder to
demonstrate the correctness of the algorithm, one mustthlab no other other path for
a gven iteration of the loop will produce a longeokgt-case time than that calculated by
the algorithm. The calculation of a worst-case time associated with a path simply
requires summing the times associated with each of the instructions in theTpath.
time used for each instruction depends on whether it is assumed to be a hit or miss,
which depends on its cagferization. Thecache hit time is oneycle on most machines.
The cache miss time is the cache hit time plus the miss pewndligh is the time
required to access main memowll categorizations are treated identically on repeated
references, except for first misses and first hits. Assuming that the instructiens ha

been categorized correctly for each loop, it remains to be shown that first misses and first
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hits are interpreted appropriately for aei iteration of the loop.

A first hit implies that the instruction will be a hit on its first reference after the
loop is entered and all subsequent references to the instruction duringedhdom of
the loop will be misses. The definition the authors used for a first hit requires that the
instruction be within eery path of the loop.Thus, the first path chosen for step 3 will
encounter eery first hit in the loop. After the first iteration, first hits are treated as
misses.

A first miss implies that the instruction will be a miss on its first reference after
the loop is entered and all subsequent references will be $tép 3 indicates that an
instruction classified as a first miss will be counted as a miss only the first time it is
encountered.

Once the maximum time of the current iteration is equal to the time calculated in
step 1 (where all first misses are treated as hits), #hie Vs replicated for all remaining
iterations, except for the last one. Once there are no more first misses encountered for
the first time (and the first iteration has encountered all first hits), thendist-ease
cache performance for a path will not change since the instructions within a path will
always be treated the sam&he last iteration is treated separately in step 7. The longest
exit path for a loop may be shorter than the longest continue ggtlexamining theat
paths separatelya tighter estimate can be obtained. Thus, the algorithm estimates a
bound that is at least as great as the actual worst-case bound.

The algorithm for estimating the best-case time for a loop is somewhat simpler

Let n be the minimum number of iterations associated with a |dde best-case loop

19



estimation algorithm is as follows:
(1) Ifnis equal to 1, then set the total best-case time of the loop to 0 and go to step 5.

(2) Calculateghe minimum time required tocecute aly continue path assuming that all first misses are
counted as misses and all first hits are counted as hits.

(3) Calculatehe minimum time required tokecute aly continue path assuming that all first misses are
counted as hits and all first hits are counted as misses.

(4) Multiply the value calculated in step 3 by2) and add it to the value calculated in step 2. Set the
total best-case time of the loop to this value.

(5) Calculatethe times for all exit paths for the last iteratiofior each set of exit paths thatJeaa
transition to a uniquexd block, add the total best-case time for the loop to the shortest time within
that set to produce the total best-case time associated with that exit block of the loop.

Figure 12: Algorithm to Determine Best-case Path Through a Loop
The best-case algorithm selects the shortest path on each iteration of thialooger
to demonstrate the correctness of the algorithm, one musttehbno other path for a
given iteration will produce a shorter best-case time than that calculated by the
algorithm. Thetime for the first iteration is typically calculated in step 2 (i.e. when the
loop iterates more than once)he first time program lines are referenced in a loop, first
misses will be misses and first hits will be hits. Thus, step 2 will calculate the shortest
path for the first iterationStep 3 calculates the shortest continue patbnghat first
misses will be hits and first hits will be missesl the first hits within the loop will be
encountered on the first iteration according to the definition of first hits #satged by
the authors. Thus, thecan be safely treated as misses on subsequent iterafidinst
miss will be a hit if it has been encounteredvpmesly. Even if a first miss had not been
encountered in the first iteration, treating the reference as a hit in the second iteration
will only cause a slight underestimation. Step 4 adds the time for the first iteration to
the time calculated for the xien-2 iterations. Step 5 examines the last iteration
separately since paths associated with the exit blocks may be shorter than the shortest

continue path.
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The timing of a non-leaf loop is accomplished using this algorithm and the times

from its immediate child loops.

Wheneer a path in a non-leaf loop contains a child loop, then lase time
associated with that child loop will be used in the calculation of the path fims.
base time is determined from the longesdceation time for the loop path in which first
misses are considered hits and first hits are considered miaseadjust valueis
calculated as the sum of the differences between eacls paid’and the base time for

each positie dfference.

The transition of a categorization from the child loogeleéo the current loop heel
will be used to determine if gradjustment to the the child loop time is requirdthese
transitions between cajerizations and appropriate adjustments axegin Table 1.

The fm=>fm adjustment is necessary since there should be only one miss associated

Child => Rarent | Actionto Adjust Child Loop Time

fm =>fm Use the child loop time for th
first iteration. For al remaining
iterations subtract the

miss penalty from the child loop

D

time.
fm=>m Use the child loop time directly.
fh =>fh Use the child loop time directly.
m => fth For the first iteration subtract th

miss penalty from the child loo
time. For all remaining iterations
use the child loop time directly.

S

m=>m Use the child loop time directly.

Table 1: Use of Child Loop Times
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with the instruction and a miss should only occur the first time the child loop is entered.
The m=>th adjustment is necessary since the first reference will be a hit at the outer

loop level.

The bottom-up approach used to time the loops creates the potential to
underestimate the WCETn calculating the child loog’ base time the assumption is
made thathe child loop will encounter all the first misses used in this base phth.
assumption fails for child loops containing a greater number of loop paths than the
maximum number of iterations. This failure generates the potential to underestimate
the WCET which is unacceptableThe adjust valuas added to théase timeonly for
the first iteration of the child noddliming values for subsequent iterations of the child

node use only the base time.

To illustrate this situation consider the code segment in Figurd 8.functionfun
contains 3 possible paths as shown in Table 2. The instruction cache is structured to
contain 32 cache lines with each cache line containing 4 bytes. This results in the entire
function fitting into cache and with each instruction gatezed as a first missThe
actual eecution time for the functiofun iterated 5 times is 132ycles. Thisvalue is
derived from summing the time for each iteration, 50+43+25+7+7.

In analyzing this function the timing tool will identify path 1 as the worst-case path
with a WCET of 70 gcles. Rith 2 contains tw instructions not encountered in path 1
and categorized as first misses. This results in a WCET of 25 cycles for paith 3
contains 2 instructions not encountered in path 1 or path 2 and also categorized as first
misses so its WCET is calculated to be ¥8les. Intiming the function from the

contet of the outer loop the timing tool will calculate the WCET for the first iteration
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mai n()

{
i nt count, sunmeO;
for (count=0; count < 5; count++)
sum += fun(count)
}
C Sour ce Code I nst Assenbl y Code
int fun (i) 0 cnp %00, %90
int i; 1 bne,a L22
2 cnp %00, 1
if (i ==0) 3 retl
return 1; 4 nov 1, %00
else if (i == 1) 5 L22: bne L23
return 2; 6 nop
el se 7 retl
return 3; 8 nov 2, %0
} 9 L23: retl
10 nov 3, %00

Figure 13: Example for Loop Adjust Values
as 70 gcles. TheWCET for the base path is calculated to bey@les since it is
assumed that all first missesvaaeen encounteredwithout the use of adjustiues
the total WCET for the function will be calculated as the first iteration WCET + (base
path X 4 remaining iterations) for a total of 9§clkes. This results in an

underestimation for the WCET.

Path List of WCET if newly WCET if newly
Number Instructions encountered fm = miss | encountered fm = hit
1 0,1,2,5,6,9,10 70 7
2 0,1,2,5,6,7,8 25 7
3 0,1,2,3,4 23 5

Table 2: Path Information Pertaining to Functiomn() in Fig. 13
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The use of an adjustalue &oided this underestimation. The adjust value is
calculated as the difference between the base time and initial path times, e.g. (70 - 7) +
(25 - 7) + (23 - 7) resulting in 9%cles. Théfirst iteration WCET is calculated as the
base time (7 cycles) + the adjustive (97 cycles) for a total of 104ates. for each
subsequent iteration only the base value is u3éek resulting WCET for the loop is
now 132 cycles; which is anxact prediction for this ample. Thisadjust \alue
technique results in a slight@estimation if the number of loop iterations is fewer than

the number of paths. Howaer, this overestimation is preferable to an underestimation.

To illustrate the use of theasst-case algorithm, the calculation of therst-case
instruction cache performance for theample shown in Figure 8 will be described.
The worst-case performance results for each loop in the timing analysis treevane sho
in Figure 10. Since a loop cannot be timed until its immediate child loops are
processed, the twfunction instances ofal ue will be processed first, followed by
loop 1 inmai n, and finally the functionmai n. For loops with just a single iteration,
only step 7 in Figure 11 for in the worst-case algorithm contributes to the calculated
performance of that loop.

The worst-case performance for themple is calculated in the following manner
The leaf loops of the timing analysis tree are the itvétances of the functional ue
and are processed first. The worst-case instruction cache performanadsuef( a)
andval ue(b) are {2 misses, 3 hits} and {1 miss, 4 hits}, respesyi. For loop 1 in
mai n, gep 1 of the algorithm calculates a cache performance of {4 misses, 18 hits}
given that all first misses are treated as hits and first hits are treated as niik&es.

result was obtained from {2 misses, 10 hits} from instructions directly in loop 1 and {1
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miss, 4 hits} from both of the woked function instances ofal ue. Note that the time
obtained from the first function instanceva#l ue was aljusted as described in Table 1
(fm => fm). The result found for the first iteration in step 3 is {6 misses, 16 hits},
which was obtained by adding {3 misses, 9 hits} from instructions directly in loop 1, {2
misses, 3 hits} fromval ue(a), and {1 miss, 4 hits} fromval ue(b). The neat
result calculated in step 3 is equal to the result from stepylapplying step 6, 8*{4
misses, 18 hits} will be used to represent the performance of the next 8 iter&inos.
both paths through the loop araitepaths, the worst-case time for the exit paths
calculated in step 7 is the same as the result in step 1. Thus, the dosalcase
performance for loop 1 imai n is {42 misses, 178 hits} ({6+9*4 misses, 16+9*18
hits}). The loop representing the entire functiorai n only iterates once and is
calculated in step 7.The worst-case instruction cache performance for the entire
program is {44 misses, 183 hits}. This resulisvobtained by {2 misses, 5 hits} from
instructions directly in the outende of mai n and {42 misses, 178 hits} from loop 1 in
mai n. The worst-case performance result of loop 1 did ngehabe aljusted in the
calculation of the performance of the functiomi n since the functionmai n only
iterates once.The implementation of the algorithm calculates the examfstacase
instruction cache performance for thisaeple. Thisanalysis requires a complexity of
O(p*l), wherep is the number of paths in each loop &mslthe number of loops in the

timing tree.
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CHAPTER 5

RESULTS

To assess the fdctiveness of the timing analyzesx simple programs were
selected. Adescription of these programs isvgi in Table 3. For each program a
direct-mapped cache configuration containing 8 lines of 16 bytes was used. Thus, the
cache contains 128 bytesA very small cache size was chosen because the test
programs were relately small themselgs. Thenstruction cache performance of each
entire program was predicted. The sizes of these test programs may be comparable to
the size of typical code gments containing timing constraints in real-time applications.

In addition, the codexecuted between tav scheduling points (cont switches) in a
non-preemptie g/stem may often be smaller than the code of a typical progtssimg
a gnall cache also provided a more realistic simulation of a typical ratio of program to

cache size. The programs were 4 to 17 timegelathan the cache as shown in column

Num Num Description or Emphasis
Name
Bytes | Funcs
Des 2,240 5 Encrypts and Decrypts 64 Bits
Matcnt 800 8 Counts and Sums Values in a 100x100 Matrix
Matmul 788 7 Multiplies 2 50x50 Matrices
Matsum 632 7 Sums Nonngdive Values in a 100x100 Matrix
Sort 572 5 Bubblesort of 500 Numbers in Ascending Order
Stats 1,488 8 Calcs Sum, Mean, Var., Stdi2e& L inear Corr Coeff.

Table 3: Test Programs

26



2 of Table 3. The analysis of test cases with smaller ratios, where test programs fit into
the instruction cache, could be accomplished quite easily and would not represent a
significant challenge. Using a smaller cache demonstrates the ability of the timing
analyzer to predict tight bounds under a more difficult setti@glumn 3 shows that

each program was highly modularized to illustrate the handling of timing predictions
across functions.

A distribution of the verst and best-case instruction categorizations is shown in
Table 4. These numbers indicate the static percentage of each type of instruction
cateorization in the function instance tree. Each instruction within the trag w
weighted equally If an instruction recefes dfferent categorizations for each loop
nesting leel, then the ratio of the number of instances for a categorization to the
number of loop nesting Vels for the instruction will be used to calculate the
percentage. & example, gien that an instruction is classified as "fm/m/m/m/en4
loop nesting leels, then 0.25 of the instruction is considered a first miss and 0.75 of the

instruction is considered annadys miss.

Always Always First First
Name Hit Miss Miss Hit
Worst Best Worst Best | Worst Best Worst Best
Des 70.00%)| 70.61% | 27.28%| 17.509 1.939 426% 0.79% 0.18%

q (]
Matcnt 70.64%| 71.81% | 25.48%| 22.48% 2.65% 1.87% 1.22% 0.21%
Matmul || 71.15% | 71.75% | 24.51%| 20.00% 3.57% 2.650 0.77% 0.17%
Matsum || 69.89%| 69.89% | 26.24%| 23.30% 3.87% 2.281{0 0.00%  0.00%
Sort 67.70%| 68.12% || 28.42%| 23.60% 3.26% 4.40% 0.62% 0.21%
Stats 71.76%| 72.03% || 24.30% 22.16% 3.55% 2.16% 0.39% 0.13%

Average || 70.19%| 70.709% 26.04% 21516 3.14% 2.94% 0.63% 0.15%

Table 4: Static Categorization Distribution for the Test Programs
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Table 5 shavs the dynamic results associated with these test progr&amsy
Matmul consistently had a very high hit ratio due to spending most of its cycles in 3
tightly nested loops containing no calls to perform the actual matrix multiplicafioa.
Observed Cycleshaws the cycles spent for ameeution with worst-case and best-case
input data. The number ofycles was measured using a traditional cache simulator
[17], where a hit required ong/@e and a miss required ten cycles (a miss penalty of
nine gicles). TheEstimated Cyclesepresents the number of cycles estimated by the
timing analyzer The Estim. Ratiodepicts the ratio of the predicted instruction cache
performance using the timing analyzé&s{imated Cyclgsto the observed wrst-case
performance Qbserved Cyclgs TheNaive Ratioshavs a similar ratio assuming there
was no @che analysis. This worst-case veaipediction simply determines the
maximum number of instructions that could beeceited and assumes that each
instruction reference requires a memory fetch of tgrles (miss time).Likewise, the
best-case ne¢ prediction determines the minimum number of instructions that could be

executed and assumes that each instruction reference requires one cycle (hit time).

Worst Case Best Case

Name Hit Obsened Estimated | Estim. | Nave Hit Obsened | Estimated| Estim. | Nave
Ratio Cycles Cycles Ratio | Ratio Ratio Cycles Cycles | Ratio Ratio

Des 81.41% 142,956 163,159 1.14 3.86 || 86.38% 59,998 19,399 0.32 0.21
Matcnt 85.32%| 959,064 1,049,064 1.09 4.31 || 88.49% 719,082 719,082 1.00 0.49
Matmul || 99.05%| 2,917,887 2,917,887 1.00 9.21 || 99.05% | 2,917,887 2,917,887 1.00 0.92
Matsum || 87.09%, 677,210 677,210 1.00 4.63 || 86.21% 657,210 657,210 1.00 0.45

Sort 83.99%| 7,640,132 15,222,440 1.99 8.16 || 99.63% 10,951 4,466 041 | 0.38
Stats 88.59% 357,432 357,4320 1.00 4.93 || 88.59% 357,432 357,432 1.00 0.49

Table 5: Dynamic Results for the Test Programs

The example programs were used to illustraeous points.The Matmuland Stats

28



programs hee o conditional statements except to exit loops. The only conditional
control statement besides loops in Matsumprogram was anf - t hen statement to
check if an array element was nogdéve. For such programs, predictions foorst
and best-case performance as compared to aab@erformance can be estimateayw
tightly. In fact, the timing analyzer is able to calculatact predictions of instruction
cache performance when there is no conditional contreV fither than iterating
through loops.

The Matcntprogram not only determines the sum of the ngaimee dements (lile
the Matsum program), but also determines the number of ngane and nedive
elements in the matrix. Thus, there wad &at hen- el se construct used in the code
to either add a nongeive value to a sum and increment a counter for the number of
nonngdive dements or just increment a counter for thgaiege dements. Thedding
of the nonngaive value to a sum was accomplished in a separate funciibis
function was intentionally placed in a location thabwid conflictwith the program line
containing the code to increment a counter for thganhee dements. Multiple
executions of thet hen path, which includes the call to the function to perform the
addition, still required moreycles than alternating between theotypaths. et, the
algorithm for estimating the ovst-case performance assumed that the first reference to
a program line within a path wouldwaéys be a miss if there were accesses toatmer
conflicting program lines within the same loodhis assumption simplified the
algorithm since the effect of all combinations of paths does na babe @lculated
and an exponential time compiy was aoided. Thus,one reference was counted
repeatedly as a miss instead of a Hihis path was »ecuted 10,000 times and this

accounted for a 90,000 cycle [10,000*miss penalty] or S¥estimation. Notdhat
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the eecution of this single path accounted for 43.56% of the total instructions
referenced during thexecution of the program. The best-case estimati@s wot
affected since the best-case algorithm assumed the shorter path wayklz¢ taken.

The analysis of the final wprograms,Desand Sort, depicts problems faced by all
timing analyzers.The timing analyzer did not accurately determine the worst-case and
best-case paths in a function witldes primarily due to data dependencies.longer
or shorter path could not be taken in a function due t@rables value in an if
statement. TheSort program contains an inner loop whose number of iterations
depends on the counter of an outer looft this point the timing tool either
automatically receies the maximum and minimum loop iterations from the control-
flow information produced by the compiler or requests a maximum and minimum
number of iterations from the uselet, the tool would need a sequence alues
representing the number of iterations for easclogation of the inner loop. The number
of iterations performed as werrepresented for the worst-case estimationvanage by
a factor of two for this specific loop. The inner loop contributed much less to the total
executed instructions for best-case since the outer loap aborted after the first
iteration when it was found that the array was sortédwever, the number of iterations
performed for the singlexecution of this inner loop for the best-case estimati@s w
still underrepresented by a factor Nfl, whereN is the number of elements in the
array This inaccurag accounted for the error in both the estimated andenaitios
since much of the cycles for the program were produced within this loop. Note that
both of these problems are encountered by other timing tools and are not related to

cache predictability.
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CHAPTER 6

FURTHER WORK

This research has beextended significantly in three different areas after the
programming was completed by this auth®he first extension as the inclusion of a
graphical user inteaice [9], [10] to allav the user to request timing results on specific
sections of the programThrough the presentation of the source code, assembly code,
and all possible subpaths, the user is able to quickly identify a particular program
sgment for which timing predictions can be requestétlis was possible since the
timing tool can accept requests to analyze individual loop subp@thsng requests
for program source code segments was possible by tracking the source codenimes do

to the basic block {el.

The second extension includes consideration of pipelining issues for the
MicroSFARC 1. The technique described in this thesis did not consider pipelining
issues. Thecode structure for the timing analysis toohsvdesigned to allo the

pipelining extension at a later date [19], [20].

Research is ongoing that addresses data caching[2®# to the possibility for data
addresses to change during a progsagécution, determining bounds for theovst-
case and best-case data cache performance is much more xorkjoeever,

reasonable bounds can be calculated after determining the range of addresseyg for man
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data references.

Another area of work recently gen is directed to resadvhe possibility for
exponential gravth in the number of possible paths through a loop. If a loop comains
consecutie IF gatements, the total number of paths through this loog'is ®ork is
proceeding for partitioning a loop or function into sections to reduce the number of

paths at a gen levd in the program.
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CHAPTER 7

CONCLUSION

Predicting the xecution time of a program on a processor that uses cache memory
has long been considered an intractable problem [3], [22], [ZB]s research has
developed a technique for predicting a bounds on the worst-case and best-case
instruction cache performanc@®&y statically analyzing the program structure and using
caching behavior classifications from the static cache simuthtertiming analyzer is
able to &actly predict instruction cache performance when there is no conditional
control-flov other than iterating through loopgight predictions can be obtained for

mary programs with conditional control-flows, as demonstrated in this thesis.

This research demonstrates that instruction cache vieehas suficiently
predicatable for real-time applications. Thus, instruction caches should be enabled,
generating a significant speedup for the predicted performance as compared to disabled
caches (depending upon the hit ratio and miss penalty)processor speeds continue
to increase faster than the speed of accessing metheryperformance benefits for
using cache memory in real-time systems will only incredseis, methods to predict

caching behavior will become an essential part of timing analysis techniques.
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ABSTRACT

The use of cache poses a difficult tradi€of real-time system daelopers. Whilecaches
provide significant performance aahtages, thehave also been considered inherently
unpredictable since the behavior of a cache reference depends upon woeispre
references accessing the same cache Tihe. use of caches can only be suitable for real-
time systems when caching behavior can be reliably predicted. This thesis describes an
approach for bounding the instruction cache performance for large coderss. A

timing analyzer was deloped that uses caching behavior information generated from a
static cache simulator to estimate therst-case and best-case instruction cache

performance for each loop and function in a program.
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