Efficient and Effective Branc h Reordering Using Pr ofile
Data

MINGHUI YANG
Oracle Corporation
and

GANG-RYUNG UH
Boise State University
and

DAVID B. WHALLEY
Florida State University

The conditional branch has long been considereckpenasve geration. Theelative cst of conditional
branches has increased as recently designed machinesvarelying on deeper pipelines and higher mul-
tiple issue. Reducing the number of conditional branclkesuéed often results in a substantial perfor
mance benefit. This paper describes a code-immgaransformation to reorder sequences of conditional
branches that compare a common variable to constdhts goal is to obtain an ordering where thedst
avaage number of branches in the sequence willXseuted. First,sequences of branches that can be
reordered are detected in the controifloSecond, profiling information is collected to predict the proba-
bility that each branch will transfer control out of the sequefdetd, the cost of performing each condi-
tional branch is estimatedrourth, the most beneficial ordering of the branches based on the estimated
probability and cost is selecte@he most beneficial ordering often includes the insertion of additional con-
ditional branches that did not previously exist in the sequeRt®lly, the control flev is restructured to
reflect the ne ordering. Theresults of applying the transformation are eerage reductions of about 8%
fewer instructions xecuted and 13% branches performed, as well as about a 4% decreasafive time.

Cateyories and Subject Descriptors: D.3RF¢dgramming Language$ Processors compilers; optimiza-
tion
General Terms: Algorithms, Languages

Additional Key Words and Phrases: conditional branches, profiling, branch reordering

1. INTRODUCTION

Sequences of conditional branches occur frequently in programs, particularly in nonnumerical appli-
cations. Sometimahese branches may be reordered tectifely reduce the dynamic number of branches
encountered during programeeution. Onetype of reorderable sequence consists of branches comparing
the same variable or expression to constafitese sequences may occur whenudtiway statement, such

A preliminary version of this research was describe@iioceedings of the ACM SIGPLAN '98 Conference am Pr
gramming Languge Design and Implementatiamder the title "Improving Performance by Branch Reordering."
Authors’ addresses: M. Yang, 400 Orackri®vay Redwood Shores, CA 94065; e-mail: Minghuiyg@oracle.com;
phone: (650) 633-6958; G. Uh, Computer Science Departmentg€alfeEngineering, Boise State Meisity, 1910
University Avenue, Boise, ID 83725; e-mail: uh@cs.boisestate.edu; phone: (208) 426-3505; DyVTuatiputer Sci-
ence Department, Florida State \msity, Tallahassee, FL 32306-4530, U.S.A.; e-mail: whalley@cs.fsu.edu; phone:
(850) 644-3506

as a Gswitch statement, does notyeeioughcases to warrant the use of an indirect jump from a table.
Also, control statements may often compare the saam@ble more than onceWe find that such
sequences of branches occur quite frequently in non-numerical applications.

Consider the following code segment in Figure 1(a). Assume that there is typically more than one
blank read per line and EOF is only read onkkany astute programmers may realize that the order of the
statements may be changed to inwergerformance. Irfact, we find that the authors of most Unix utilities
are quite performance conscious and attempt to manually reorder such statéknmamgentional manual
reordering shown in Figure 1(b) immes performance by performing the three comparisons vrerse
order Howeve, the most commonly used characters (e.g. letters, digits, punctuation symhe&sinha
ASCII value that is greater than a blank (32), carriage return (10), or EOFHRigore 1(c) shows an
improved reordering of the statements that increases the static numibeistdtements and associated con-
ditional branches, Ui normally reduces the dynamic number of conditional branches encountered during
the execution.

while (1) {
while (1) { ¢ = getchar();
¢ = getchar(); if(c>"")
while ((c=getchar()) != EOF) ife=="1) goto def;
if (c == "\ Y elseif(c=="")
X; else if (c =="\n") Y;
s X; else if (c =="\n")
EISE\I(f; ©==") else if (c == EOF) X;
else break; else if (c == EOF)
z: else break;
Z; else
} def: Z;
}
(a) Original Code Segment (b) Gantional Reordering (c) Impreed Reordering

Figure 1: Example Sequence of Comparisons with the Same Variable

Manually reordering a sequence of comparisons of a siagiable to constants or insertingti if
statements to achie performance benefits, as shown in Figures 1(b) and 1(c), can lead to obscuré code.
general improving transformation to automatically reorder branches may obtain performanceinenits
and still help encourage the use of good software engineering principles by performance conscious pro-
grammers.

This paper describes a method for reordering code to reduce the number of braacthies e Fig-
ure 2 presents arverview of the compilation process for reordering branch&dirst compilation pass is
applied to a C source prograrithe compiler used was thgpo compiler [1], which is part of theephyr
system used in the National Compiler Infrastructure project. Al@dional optimizations are applied
except for filling delay slots.Sequences of reorderable branches comparing a single variable to constants
are detected in the control flo An executable file is produced that is instrumented to collect profiling
information about ha often each branch in a sequence will transfer control out of the sequEmisepro-
file data and an estimated cost foeiting each branch are used during a second compilation pass to
select the most beneficial branch sequence ordebatay slots are filled after branch reordering and the
final executable is producedThe transformation is frequently applied with reductions in instructions
executed andeecution time.

The remainder of this paper has the followinganization. Sectior2 mentions work related to
avading the &ecution or reducing the cost of conditional branch8sction 3 presents the method used for
detecting reorderable sequences of branch®sction 4 describes the techniques for transforming
sequences of branches that are not reorderable into reorderable sequences. Section 5 characterizes the type
of profile data that is produce®ection 6 shows hosequences of branches are reordered with respect to

f

C first training _ executable
. instrumented
source [~ VPO input - for
program compilation data profiling
I
N
N
r i
il second test executable
rofile ;
P L__ sl VPO input | _ _p| with
o branches
data compilation data reordered

Figure 2: Overvier of Compilation Process for Branch Reordering

the profile information and cost. Section 7 depicts other techniques toviengmdormance after a specific
ordering for the sequence of branches is selected. Section 8 illustratésech@ordering transformation is

applied. Sectio® analyzes the results of applying this code-improving transformation on a number of non-
numerical applications. Section 10 discusses other approaches that can be used to reduce the number of
executed branches. Finallwe gve the conclusions of the paper in Section 11.

2. RELATED WORK

There has been some research on other techniquesiding the &ecution of conditional branches.
Loop unrolling duplicates the body of the loop when the number of loop iterationswa ledahe point the
loop is entered. This has the effect wbiding executions of the conditional branch associated with a loop
termination condition [2], [3].Loop unswitching mees a onditional branch with a loop-ariant condi-
tion before the loop and duplicates the loop in each of thedéstinations of the branciThis transforma-
tion has the effect of moving conditional branches outside of a loopJdiditional branches kia dso
been aoided by code duplication [5]. This method determines if there are paths where the result of a con-
ditional branch will be known and duplicates codewuoicdhexecution of the branchThe method of woid-
ing conditional branches using code duplication has been extended using interprocedural anaysis [6].
ditional branches comparing the sanagiable to constants %@ dso been coalesced together into an indi-
rect jump from a jump table [7]. Thefettiveness of this approach depends on the weatist of an indi-
rect jump versus theverage number of branchexeeuted that the indirect jump replaceBinally,
sequences of conditional branches representinglydtilen or critical path hae bteen &oided by forming
a sngle bypass branch that checks if the sequence of conditions associated with these branchesgyviolate an
of the conditions for the critical path [8]. This approach required predicgigtess, which are often used
to support predicatedkecution on multiple issue machinebllone of these approaches attempted to reduce
the cost of a sequence of branches by changing the order in which the branchesuted.e

Different search methods based on static heuristics for the cases associatadukithiag selection
statement, such as asWitch or Pascalcase statement, hae been studied [9]. These methods include
using a linear search, a binary search, hashing, and an indirect jump from aTiabde methods all
assume that each case of a mudiivselection are equally Bky. This study is the most similar to the
approach we describe in this papétoweve, our approach is performed at aMdevd and can improe
sequences of branches that are produced from source statements other than multiway selection statements.
In addition, we were able to advantageously use profile data rather than relying on static heuristics.

There hae dso been studies about reordering or aligning basic blocks to minimize pipeline penalties
associated with conditional branches [10], [1Hpwever, this reordering or alignment of basic blocks does
not change the order or number of conditional branckesuted. Insteadit only changes whether the
branches will fall through or be tak. Thesapproaches use profile information to minimize the number of
taken branches and unconditional jump&oeited. Branchalignment can be valuable for architectures
where taken branches causes delays.

3. DETECTING A REORDERABLE SEQUENCE

The approach used for finding a sequence of reorderable branches that compares a eoiabh®n v
requires associating branch targets with ranges of values.

Definition 1. A branch variable is a scalar variable or aegster containing an intger value being tested
in a conditional branch.

Definition 2. Arangeis a set of contiguous irger values.

Definition 3. A range condition is a branch or a pair of consecutive lances that tests if a bnd vari-
able is within a rang.

Definition 4. A consecutive sequence of range conditions [R4,...,Rn] is a path, whex each node is a ange
condition and one outgoing eelgs a ontrol-flow transition to the next raegondition in the sequence.

Definition 5. A common variableis a single band variable whose value is tested in multiptsge condi-
tions.

Definition 6. A reorderable sequence of range conditions is a consecutive sequence ahge conditions
testing a common variahlevhere the range conditions may be intehanged in any permutation with no
effect on the semantics of thegam.

The possible types of ranges and the corresponding range conditions are shown in Table ., where
stands for the branchaxiable,c, c1, and c2 represent constants, aMIN andMAX stands for the mini-
mum and maximum integealues that can be represented on the machine. When a range is aaugle v
or a range is unbounded in one direction, a single conditional branch can be used to test if the variable is
within the range.Two conditional branches are needed when a range is bounded and spans more than a sin-
gle value, as depicted in Form 4 in Table 1.

Form Range Range Condition

1 c.C V==_cC
2 MIN..c V<=
3 c..MAX VvV >=¢C
4 cl..c2 cl<=v&&v<=c2

Table 1: Ranges and Corresponding Range Conditions

Figure 3(a) depicts a sequence ob range conditionsR1 andRz2 are range conditions that can con-
sist of one or tw branches that check to see if a variable is in a raRgs.a predecessor basic block of the
range condition.T1 andT2 are taget blocks of the range conditions and the corresponding rangduesv
for the range condition is ¢gn to the right of these blocksT3 is the default target block when neither
range condition is satisfied. Figure 3(b) showw liee sequence can be reordered.

not {[c1..c2],[c3..c4]} not {[c1..c2],[c3..c4]}
(a) Original Sequence (b) Reordered Sequence

Figure 3: Example of Reordering Range Conditions with No Intervening Side Effects

Definition 7. Two ranges aranonoverlapping if they do rot have any common values.

Definition 8. A side effect in a range condition is an instruction that updates a variable oregister and
the updated value can reaa use of that variable oragster after the rang condition.

Theorem 1. A ssquence of two consecutive@nge cnditions testing a common variable for neadap-
ping ranges can be aordeed with no semantic effect on theogram if (1) the sequence can only be
enteed through the firstange condition, (2) the twoange cmnditions eab contain only instructions that
cannot cause exceptioﬁand (3) eah range condition in the sequence has no side effédts.

Corollary 1. A consecutive sequence afhige cnditions testing a common variable for neadapping
ranges can beeordeed with no semantic fett on the pygram if (1) the sequence can only be eatkr
through the firstange condition, (2) the sequence contains only instructions that cannot cacsgtiens,
and (3) eab range aondition in the sequence has no side effects.

The detection of a sequence of reorderable range conditions is accomplished using the algorithm in
Figure 4. Instead of storing a sequence of branches, we store a sequence of Thagagorithm first
finds two range conditions testing novelapping ranges for the samariable. Aftervards, it repeatedly
detects an additional range condition until no more range conditions witlvenlapping ranges can be
found? Note that the algorithm does not address dealing with the elimination of side effects and that the
sequence is entered only through the first range condificansformations to maksquences reorderable
are described later in the paper.

Figure 5 shows arnxample of detecting a sequence of range conditions. Figures 5(a) and %{b) sho
a C mde segment and the corresponding contral #ssociated with this codegment. Figuré(c) shavs
the sequence of reorderable range conditions that are detected using the algorithm in Figbeeiat all
of the ranges are nomerlapping.

A more complete set of branches that compare a common variable to constants may be detected by
propagting value ranges through both successors of each branch (i.e. detech@gohtibanches instead
of a path of range conditions) [7[There were tw reasons wi reordering was limited to sequences of
range conditions. First, there were veryfeases that we examined where a sequence of range conditions

! Range conditions were implemented in this study on the SPARC by using comparison and conditional branch instructions,
which cannot cause exceptions.

2 Note that condition codes are a special-purpose register oparditectures. Acomparison instruction causes a sideaf
when the condition codes value it setsvs fter the branch and used in subsequent branches.

Sl proofs are g¥en in the Appendix.

4f multiple range conditions with nomerlapping ranges can follothe current range condition, then we choose a bounded
range condition before an unbounded range conditibthere are still multiple options, then we choose a fall through successor be-
fore a taken successor in the sequewe.felt this would in general result in the longest sequence of branches to reorder.

B is a kasic blod in the function.

Vis a\ariable in a brant being compared.

R1 and R2 a ranges of values.

N is the next basic bldcin the sequence.

C is the current basic bldcin the sequence.

Ranges is the set of ranges associated with the sequence.

o HHH R

Find reorderable sequences of rangpnditions.
FOR each basic block BDO

Find the first two rang conditions in the sequence.
IF (Bisnot marked AND
B has a branch that compares
avariable V to a constan}y THEN
IF (Find_First_Two_Conds(B, VR1, R2, N) THEN

Find the remaining rargyonditions in the sequence.

Ranges = {R1, R2};

C=N;

mark blocks associated with R1 and R2;

WHILE Find_Range_Cond(Ranges, YC, R, N) DO
Ranges +=R;
C=N;
mark block(s) associated with R;

Store info about Ranges for profiling;

Finds the first two rargoonditions in a reorderable sequence.
BOOL FUNCTIONFind_First_Two_Conds
(B, V, out R1, out R2, out N)
B is the blod containing the first rang condition.
Vs the variable compared in eacange condition.
R1is the rang associated with the first raegondition.
R2 is the rang associated with the second rangondition.
Nis the next blok in the sequence.

N1 is the blok in the sequence after the first rangpndition
N2 is the blok in the sequence after the second rugndition

* H#*

Ched if two range aonditions can be found starting at bloB.
IF (Find_Range_Cond({}, V B, R1, N1) AND
Find_Range_Cond({R1}, VN1, R2, N2) THEN
N =N2;
RETURN TRUE
ELSE

Ched if two range conditions can be found with ranges
that do not overlap with the gvous value of R1.
Rt =R1;
IF (Find_Range_Cond({Rt}, V B, R1, N1) AND
Find_Range_Cond({R1}, VN1, R2, N2) THEN
N =N2;
RETURN TRUE
RETURN FALSE

Determine if theg is a ;lange condition for a rang that does

not overlap with the existing set of ranges.

BOOL FUNCTIONFind_Range_Cond(Ranges, \B, out R, out N)
Ranges is the set of ranges already found.

Vs the variable compared in eacange condition.
B is the basic blok being tested to see if it contains a rengndition.
Ris he rang tested by the rargoondition.
Nis the next blok in the sequence after the ramgondition.
{
Cis the constant being compared to the variable V in the branch.
|is the rang when the brani exits the sequence by falling through.
Ched if an gopropriate brant and any side effects can be removed.
IF (B has a branch that compares V to a constant GAND
V is not affected in the block AND
the result of the comparison is not used in a later brangh T HEN
IF branch operator is "==" THEN
R=C..C;
N = B's fall-through succ;
RETURNNonoverlapping(R, Ranges);
ELSE IF branch operator is "I=" THEN
R=C..C;
N = B’s taken succ;
RETURNNonoverlapping(R, Ranges);
ELSE IF (B’s branch and the branch of a succ S of B
form a bounded range R AND
B and S havre a ®@mmon succ AND
Nonoverlapping(R, Ranges) THEN
N =the succ of S not associated with R;
RETURN TRUE
ELSE
SWITCH (branch operator)
CASE "<":R =MIN..C-1; I = C..MAX;
CASE "<=": R = MIN..C; | =C+1..MAX;
CASE ">=": R = C..MAX; I=MIN..C-1;
CASE ">":R = C+1..MAX; I=MIN..C;
IF (Nonoverlapping(R, Ranges) T HEN
N = B’s fall-through succ;
RETURN TRUE
ELSE
N = B’s taken succ;
RETURNNonoverlapping(R = I, Ranges);
RETURNFALSE;
}

Returns true if R is a distinct raegom the ones in Ranges.
BOOL FUNCTION Nonoverlapping(R, Ranges)

Ris amnge of \alues.

Ranges is a set of ranges.

IF (R does not @erlap with any of the ranges in Ranges T HEN
RETURN TRUE;

ELSE
RETURN FALSE;

}

Figure 4: Detecting a Reorderable Sequence of Range Conditions

ifc>="a’ && c<="7"||
c >="A&&c<="7)
T1;
elseif (c=="_)
T2;

elseif (c<=")
T3;

else
T4,

(a) C Code Segment

(b) Control Flow

Blocks | Char Range | Int Range | Target
1,2 [a.'z] [97..122] T1
3,4 [A.JZ] [65..90] T1
6 B [95..95] T2
8 [7+1..MAX] |[127..MAX]| T4

(c) Reorderable Range Conditions

Figure 5: Example of Detecting Range Conditions

-6-

did not capture the entire set of branches comparing a common variable to cor&taotsd, we shoin

this paper that it is possible to start with a sequence and obtain anvéthpeordered sequence with
respect to profile and cost estimates. The future work section discusses using profile information to
improve aher search methods.

4. MAKING SEQUENCES REORDERABLE

It may appear that the restrictions in Theorem 1 would resulwirrderderable sequences of range
conditions being detectedn fact, most of the sequences could be altered to meet these restri€tons.
instance, we alays duplicate the sequence of range conditions to ensure that the sequemneyss al
entered at the head, which will be described in SectiohilBewise, if a basic block containing the first
range condition did he a peceding side effect, then it could be split into the portion with the sidet ef
and the portion without oneOnly the latter portion containing the range condition would be reordered.
Finally, there are typically no assignments ofisters or variables associated with a range condifidre
branch variable may be loaded into gister preceding the first range conditiolny subsequent loads of
the branch ariable in the sequence would be redundant and are usually eliminated by a confiter
each range condition can usually be accomplished with just comparison and branch instructions since the
value of the branch variable is typicallyailable in a register and the constants tested in the range condi-
tion are represented in the comparison instructions for most ranges of values.

Sometimes intervening side effects do exist between range condiiRatker than attempting to
reorder such sequences directiye instead determine if we can weothe side effects out of the sequence
by duplicating code. Figure 6(a) shows a sequence mfange conditions with an intervening sidéeef
S, which is actually in a block containiriRe. T1, T2, and T3 are target basic blocks of the range conditions.
P1, P2, and P3 are predecessor basic blocks of the initial range condition and the ta&trgets. Figure
6(b) portrays ha the side effect can be wel ater R2 by duplicatingS on both transitions from the range
condition. Notehat the transitions froR2 andP3 require that the sidefetct S be placed in separate basic
blocks. Theresulting sequence of range conditionsvnioas no intervening side effects and can be
reordered.

(a) Original Sequence (b) Transformed Sequence

Figure 6: Moving Side Effects from a SequencewbRange Conditions

Theorem 2. A dde effect between two consecutigage cnditions can be duplicated to follow the second
range acondition with no semantic effect on thegam if the side effect does not affect tharluh variable
and the sequence can only be entered through the firs¢ @nglition.

Corollary 2. A consecutive sequence a@nige conditions can be transformed to have no intervening side
effects and still have the same semantic effect on thgrgon if the side effects do not affect theafich
variable of the rang conditions and the sequence is only entered through the first @nglition.

Figure 7 shas a code segment from the unix utilite. The diferentif statements that compace
to constants are contiguous in the controlfexcept for firstif statement due to the side effect updating
charct .

for(;;) {
c = getc(fp);
if(c == EOF)
br eak;
charct++;
if(’ '<c & c<0177) {
i f(!token) {
wor dct ++;
t oken++;

}

conti nue;

}
if(c=="\n") {
l'i nect ++;

}

else if(cl= ' && c!'="\t")
conti nue;

token = 0;

}
Figure 7: Source Code Segment fram

Figure 8(a) shows the corresponding controlvflgraph for the code gnent in Figure 7. Since the
side efect charct++ must be recuted wheneer ¢ ! = EOF, the compiler duplicatesharct++ at
each target except for block 19, as shown in Figure 8(b). In general, feeratgiget the transformation
technique has to duplicate all side effects along the path from the head of the sequence to the target.

An unconditional jump instruction could be added to the end of each one of the copies containing a
duplicated side &fct as shown in Figure 8(b). But that could possibly increase the dynamic number of
instructions and also would makhe cost estimation more comypleln order to &oid these tw problems,

a dmple code duplication algorithm is usetihe transformation technique duplicates basic blocks starting
at the target by following theall-through transitions until we reach a block containing an unconditional
jump, return, or indirect jump instructionThus, an unconditional jump instruction need not be inserted
since we duplicated code until another unconditional transfer of control is encountereauldatheve
been gecuted agway in that path.A similar approach is used when transforming code to ingimanch
prediction [12].

5. PRODUCING THE PROFILE INFORMATION

The profiling code for reordering range conditions checks if the common variable is within ranges of
values. Thisprofile information had to be collected in a different manner fronvestdional profiling. One
may beliee that instrumentation code could simply be inserted at the basic block containing a branch in a
reorderable sequence or inserted either onaliehfrough or taken transitionHowever, this approach will
not be suicient since each branch in a sequence of range conditions may not be encoustgride the
sequence isxecuted. Lilewise, a range condition in an original sequence mayxbeuted without first
executing the head of the sequence when there are multiple entry points to the seguemtiler needs
to knowv how dften each range condition in the sequence wowe katansition out of the sequencevgi
it is executed when the head of the sequence is encountéhetdlinstrumentation code for obtaining profile
information about the sequence is entirely inserted at the head of the sequence tvecheakge condi-
tion in the sequence. Thisvilves duplicating the instructions associated with each branch as instrumenta-
tion code. However, additional ranges hee © be determined from the ones calculated by the algorithm in
Figure 4.

B19 B

=

9

charct++

charct++;

goto B23;

B23

charct++;

goto B26;

B26

charct++;

goto B27;

charct++;

goto B30;
B30
—
goto B15;
(a) Original CFG (b) CFG after Duplicating Side Effects

Figure 8: Control Flev Graph for Code Segment in Figure 7

Definition 9. Anexplicit rangeis a rang that is cheked by a rmange condition.
Definition 10. A default range is a range that is not cheked by a range condition.

Consider the original sequence of range conditions in Figure 9(a). There are additional ranges asso-
ciated in the default tgetTD since these ranges will spanyaremaining values not gered by the other
ranges. lis assumed in this figure theliN < c1, c2+1 < c3andc4 < MAX. Figure 9(b) shows an equi
alent sequence with these default ranges explicitly @tkecleigure9(c) shows a reordered sequence of
range conditions, where the range condition for the lastuttefange in Figure 9(b) is placed first in the
sequence. Once point is reached in the sequence where there is only a single target possible, then all
remaining range conditions need not be explicitly tested, as shown in FigureV@dglculated these
remaining ranges by sorting the explicit ranges and adding the minimum number of ranges theco
remaining values.

All of the ranges, both explicit and default, are cleetky inserting instrumentation code at the head
of the sequence of branches. Thus, the code associated with Figure 9(a) would require 5 ranges to be
checled and only 1 of 5 counters associated with this sequence would be incremented each time the head of
the sequence of branches is encountered. The instrumentation code that would be inserted in the assembly
file for the sequence in Figure 9(a) is illustrated at the source cgdllénl€igure 10.

[c1..c2] [c3..c4]
[MIN..c1-1]
[c3..c4]
[MIN..c1-1] [c2+1..c3-1]
[c2+1..c3-1]
[c4+1..MAX] [c4+1..MAX] [c2+1..c3-1]
(a) Original Sequence (b) Equivadent Original Sequence (c) Reordered Sequence (d) Equivalent Reordered Sequence

Figure 9: Example of Reordering Default Range Conditions

[* counters for sequence in Figure 9(&)
unsigned int count[5];

[* start of instrumentation code testing branch varialile v
if (v<cl)
count[0]++; /* [MIN..c1-1]*/
else if (c1l <=v && v <=c2)
count[1]++; /* [c1..c2]*/
else if (c2+1 <= v && v <= ¢3-1)
count[2]++; /* [c2+1..c3-1]*/
else if (3 <=v && v <=c4)
count[3]++; /* [c3..c4]*/
else
count[4]++; /* [c4..MAX] */
[* first branch in R1 of Figure 9(&)

Figure 10: Instrumentation Code for Obtaining Profile Information
for the Sequence of Branches in Figure 9(a)

6. SELECTING THE SEQUENCE ORDERING

The ordering for a reorderable sequence of range conditions is chosen by using the items specified in
the following definitions.

Definition 11. pi is the probability that rang conditionRi will exit the sequence of raagonditions.

Eachpi is calculated using the profile information indicatingvhaften the corresponding range condition

Ri would exit the sequence if it ixecuted. Notehat eaclpi is independent since the ranges are memno
lapping. Theaccurag of this probability depends on the correlation of the branch results between using the
training data set and the test data $ehas been found that conditional branch results can often be accu-
rately predicted using profile data [13].

Definition 12. ci is the cost of testing raegonditionRi.

Eachci is estimated by determining the number of instructions required for the corresponding range condi-
tion. Thiscost includes the conditional branch(es), associated comparison(s)yandteuctions that pro-

duce the values being compare® more accurate cost estimate could be obtained by estimating the
lateng and pipeline stalls associated with these instructions.) Saoter$ of the cost can vary depending
upon the ordering of range conditions selected. In these cases, a atwesestimation of the cost as

-10-

used.

Definition 13. TheExplicit_Cost([R1,...,Rn]) is the estimated cost of executing a sequence arfige I0N-
ditions when one of the n ramgonditions will be satisfied.

The explicit cost of a sequence of range conditions is calculated as a sum of pr@hetsctor is the
probability that a range condition will be reached and will exit the sequence, which is equal to the probabil-
ity that the range condition will be satisfied since the range conditions are associated withlammiog

ranges. Thether factor is the cost of performing the instructions in that range condition and all preceding
range conditions in the sequence. Equation 1 represents the explicit cestuting a sequence afrange
conditions, wherewery range associated with the sequence is explicitly checked.

Explicit_Cos{([Ry, ...,Rn]) = p1Cy + pa(Cy +C) +- -+ pp(Cy+Co + -+ -+ Cp) 1)
This explicit cost can be alternately expressed using summations.

Explicit Cost{([Ry,...,Ry]) = i(pi IZ C)
a7 &

Theorem 3. A reordelble sequence of two consecutive explariige conditions can be optimally dered
with respect to the probability and cost estimatesRasR2] whenpi/c1 = p2/c2.

Corollary 3. A reorderble sequence of explic&amge conditions can be optimallyeordeed as R1, R2, ...,
Rn], whenpi/c1 = p2/c2 = ... pn/cn with respect to the probability and cost estimates.

Intuitively, this means that it is desirable to firgeeute the range conditions thatkaa ligh probability of
exiting the sequence along with ad@ost.

However, there is also a dafilt cost, which occurs when no range condition is satisfied and the con-
trol transfers to the default get. Thedefault cost is sheon in Equation 2 and Equation 3 shows the com-
plete cost of a sequence, where only theflirstnges are explicit.

Default Cos([Ry,...,Rn]) = (1 —(py+---+pn))(CL+---+Cpn))

Cosi([Ry, ...,R,]) = Explicit_ Cos{([Ry,...,R,]) + Default Cos{([Ry,...,R,]) 3)

Once only a single tget remains, then the range conditions associated with that target need not be
tested. Consideagain the example in Figure 9(a). The three targets of the range conditiohs @peand
Tp. Each of these targets could be potentially used as the defaeit #and its associated range conditions
would not hae © be ested. Tha D tamget has three associated ranges. {f @frthese ranges arexmic-
itly checked, then Theorem 3 should be used to establish its best positiore rieldiie other gplicitly
checled range conditions to achiethe lowest cost for the sequendé.TD is used as the default ¢gst,
then at least one of the three range conditions should not be explicitly checked.

Definition 14. mindefault(Ti) is the minimum cost of any ordering ofamge condition sequencevhereTi
is used as the default tzt.

For each potential default target Viag m associated ranges, there afépdssible combinations of
these range conditions that do novd# be explicitly checled. We wsed the orderingl/c1 > ... = pm/cm
between then ranges of a tget to consider onlyt+1 possible combinations of default range conditions,
{3, { Rm}, {Rm-1,Rm}, ..., {R1,...Rm}}. We =lected the lowest cost combination of default ranges by cal-
culating the minimum cost of the sequence excluding the range conditions associated with each of these
sets. Assuméhatt is the number of unique targets out of the sequeweten calculate the minimum of
{mindefault(T 1), mindefault(T 2), ..., mindefault(Tt)}. Note that only the cost ofi+1 sequences tia ©
be considered, whereis the total number of ranges in the sequence.

-11-

Our approach is not guaranteed to be optintdbwever, we dso implemented anxbaustie
approach to find the lowest cost sequendé dscovered that our approachvedys selected the optimal
sequence forwery reorderable sequence imeey test program for the training data sefhus, selecting
among then combinations of default range conditions serves as an excellent heuristic.

Equation 4 represents the cost géauting a sequence okl explicitly checked range conditions,
where only range conditiaris a default range.

Cost[Ry,...,Ri-1 Risp. .. Ry]) = piCi+ -+ -+ pia(Cy + -+ -+ Ciq)
+ Pipa(Cr -+ Gy FCyg) ¥
+Pp(Cr+- -+ G+ Cug -+ Cp)
+pi(Cr+ -+ Cig +Cug +-- -+ Cp) (4)

However, Equation 4 can be veitten as Equation 5, where the cost of a sequence of range conditions with
a default range can be calculated by subtracting the difference from Equation 1.

Cost([Ry, ..., Ri-1 Ri+1,. .., Rn]) = Explict Cost([Ry,...,Ry]) + pi(Cisr +---+Cp) —Ci(p +---+ Pn) (5)

The ordering of a sequence of range conditions is selected using the algorithm in Figiifee 11.
algorithm first uses Equation 1 to calculate the cost of the optimal sequence when all of the range condi-
tions are explicitly chead. Itthen uses Equation 5 tead calculating the complete cost of thédifferent
sequences. Theomplexity of the algorithm i©(n), wheren is the number of ranges in the sequence.

/¥ Assume the range conditions are sorted in descending order of Pi/Ci.
Calculate the cost with all range conditions explicitly check#d.
Explicit_Cost = 0.0;
cost=0;
FORi=1tonDO
cost += C[i];
Explicit_Cost += P[i]*cost;

/* tcost[i] = Ci+1 + ... + Cn and tprob[i] = Pi + Pi+1 + ... + PH.
tcost[n] = 0;
tprob[n] = P[n];
FOR i = n-1 downto 1 DO
tcost[i] = C[i+1] + tcost[i+1];
tprobl[i] = P[i] + tprob[i+1];

/* Now find the sequence with the lowest co$t.
Lowest_Cost = Explicit_Cost;
FOR each unique target T DO
Cost = Explicit_Cost;
Elim_Cost = 0;
FOR each range condition Ri in T from lowest
to highest P[iJ/CJ[i] DO
Cost += P[i]*(tcost[i] - Elim_Cost) - C[i]*tprobli];
IF Cost < Lowest_Cost THEN
Lowest_Cost = Cost;
Best_Sequence = current sequence;
Elim_Cost += CJ[i];

Figure 11: Sequence Ordering Selection Algorithm

7. IMPROVING THE SELECTED SEQUENCE

Other imprawements are obtained after the ordering decisias wade.A compiler can determine
the best ordering of the twbranches within a single range conditiBnthat is of type Form 4 [c1..c2]
shawvn in Table 1. The transformation technique assumed that both branches woxdduiecein estimat-
ing the cost for selecting the range condition orderiighe result of the first branch indicates that the
range condition is not satisfied, then the second branch need nxachéed. Assuméhat such a range

-12-

condition,Ri, is theith range condition in the sequence and is associated with the[cAng2] The prob-

ability that the value of the common variable is betw above the ranggcl..c2]at the point that the range
condition is performed can be determined as ¥adlo We know that the range conditions associated with

the sequencfR1,R2,... Ri-1] have dready been tested and the value of the common variable cannot be in
these ranges Ri is reached.Given that there ar@ total range conditions, we examined the probability for

each of the remaining rang¢Ri+1,Ri+2,... Rn], to determine the probability that< c1 versus that > c2.
Remember that these probabilities are obtained from the data obtained during the profile run, as stated in
the description of Definition 11. Based on these probabilities, the branch is placed first that iselyost lik

to determine if the range condition is not satisfied. In effect, we attempt to short circuit the second branch
in a bounded range condition.

Another improvement we perform after the range conditionsehkeen ordered is to eliminate redun-
dant comparisonsFor instance, consider Figure 12(a). There are tansecutie range conditions that
test if the common variable is in the rangesnst+1..max] and [const..const] Figure 12(b) shows a
semantically equelent comparison and branch for the first range conditibne comparison instruction
within the second range condition becomes redundant and it is eliminated.

first comparison: IC =reg ? const+1; IC =reg ? const;
first branch: PC = IC>=0 then labell; PC = I1C>0 then label1;
second comparison: IC =reg ? const;
second branch: PC = 1C==0 then label2; PC = IC==0 then label2;
(a) Before (b) After

Figure 12: Eliminating Redundant Comparisons Example

8. APPLYING THE TRANSFORMATION

Once a branch ordering has been selected, the reordering transformation is applied. Figure 13(a)
shavs a control-flav segment containing a sequence of three explicit range conditRin&Re, and R3) and
two intervening side effectst and S2). Figure 13(b) shows the control flowith the duplicated range
conditions R1’, R2', and R3') inserted. Thepredecessors of the first original range conditiow have
transitions to the first duplicated range conditiéfle dways duplicated the sequence of range conditions
before reordering since the duplicated sequence has only a single entry point at the first range condition
through which the sequence can be enteMate that the tgetTD in Figure 13(a) has a fall-through pre-
decessor Code starting at the target blo@lo is duplicated until an unconditional jump, return, or indirect
jump was found.This approachwids increasing the number of unconditional jumpecated from the
reordered sequence and also simplified the estimation of the cost of a reordered sefusnutar
approach is used when transforming code to imptwanch prediction [12]. Figure 13(c) shows the con-
trol flow with the two sde effects duplicated to allothe sequence of range conditions to be reordefed.
is also duplicated tovaid an extra unconditional jump. Figure 13(d) shows the contrel &fter reorder
ing the range conditionR4 was e of the original default range conditions and i egplicit and first in
the duplicated sequenc®1’ andR2' have dso been reersed. Figurel3(e) shows the code after applying
dead code elimination. The original range conditi®isand R2 are deleted, while range conditiéts
remains since it is still reachable from another pa&dther optimizations, such as code repositioning and
branch chaining to minimize unconditional jumps, are alswokéd to improve the code.

Figure 14 sha's the point at which reordering of branches is performed in the compilation tagdhe
compiler We decided to perform branch reordering late in the compilation process after most optimiza-
tions are performedThe same point is used during the first compilation pass to obtain the profile data.
Performing this optimization late in the compilation processsgthe compiler more opportunities to
exploit the transformation and better estimates on the cost for each branch. The other optimizations that are
reinvoked after branch reordering are also depicted in italics in the figure.

-13-

(d) After Reordering Range Conditions (e) After Dead Code Elimination

Figure 13: Applying the Reordering Transformation

9. EXPERIMENTAL RESULTS

Table 2 shows the three different sets of heuristics used when transiafic statements. The
front end uses Heuristic Set |, which are the same heuristics usedpicctinent end [14], when compiling
for a SPARC IPC and a SPARC 20he authors used the dual loop method [15] and found that indirect
jumps on the SPARC Ultra Il were about four times mogqgeasve tan indirect jumps on the SPARC IPC
or SPARC 20’ This was due to the SPARC Ultra II using branch prediction to reduce the cost of branches,
while the SPARC IPC and SPARC 20 did not use branch predichibnhree machines provided no sup-
port for indirect jump predictionTherefore, Heuristic Set Il used for the Ultra only generates an indirect
jump whenn = 16. Finally Heuristic Set Il avays generates a linear search, which aasi¢he maximum
benefit from reordering.

5 The dual loop method is used to estimate the time required for a short sequence of instructions, whdciit i® dibtain di-
rectly using system calls. This methoddlves executing a loop for a large number of iteratiori@r our experiments three digrent
loops were produced. The first loop only has the instructiongdoute the loop. The second loop includes a linear sequence of
branches comparing a commoariable. Thethird loop has an indirect jump within the loop. One may determine the i@pead
by timing the first loop.This loop werhead is then subtracted from the time requiredxtmge the second and third loopShese
times are then divided by the number of loop iterations to estimate the time for the sequence of branches and the indireasjump.
we were able to determine the relatost of executing branches versus indirect jumps on each of these three machines.

-14-

Branch Chaining

Useless Jump Elimination

Dead Code Elimination

Eliminating Unconditional Jumps by Code Positioning
Instruction Selection

Evaluation Order Determination

Global Instruction Selection

Register Assignment

Jump Minimization by Reersing Branches
Instruction Selection

DO {

Register Allocation
Instruction Selection
Common Subexpression Elimination
Dead Variable Elimination
Loop Optimizations Performed Innermost First
Code Motion
Recurrence Elimination
Loop Strength Reduction
Induction Variable Elimination
Useless Jump Elimination
Strength Reduction
Instruction Selection

} WHILE (change)

Branch Reordering

Dead Code Elimination

Eliminating Unconditional Jumps by Code Positioning
Branch Chaining

Useless Jump Elimination

Setup Entry and Exit

Filling Delay Slots

Figure 14: Ordering of Optimizations

Term Definition
n Number of cases insgwitch statement.
m Number of possible values between the first and last case.
Heggtstlc Indirect Jump Binary Search Linear Search
| n=4§&& lindirect_jump lindirect_jum@&&
m< 3n && n=8 Ibinary_search
Il n=16 && lindirect_jump lindirect_jum@&&
m< 3n && n=8 Ibinary_search
11 never neve aways

Table 2: Heuristics Used for TranslatisgitchStatements

Measurements were collected on the code generated for the SPARC architecturepoyctmapiler
[1] using theeaseervironment [17]. Table 3 shows the test programs used for this sty chose these
non-numerical applications since yhiend to hae mmplex control flov and a higher density of condi-
tional branches.For each program we used realistic training and test data that were often similar to the
examples found in the man pages describing these applicatioesch case the training data was smaller
than the test data, resulting in fewer instructioreeeted in the training run than in the test runs reported in
this section.Table 4 shows the dynamic frequgnmeasurements that were obtainékhe Original Insts

-15-

Program Description

awk Pattern Scanning and Processing Language
cb A Simple C Program Beautifier

cpp CCompiler Preprocessor

ctags Generatékag Fle for vi

derof Removes nroff Constructs

grep Searches Fle for a String or Regular Expressi
hyphen ListsHyphenated Words in a File

join RelationalDatabase Operator

lex Lexical Analysis Program Generator

nroff Text Formatter

pr Preparegile(s) for Printing

ptx Generatea Rermuted Index

sdiff Displays Files Side-by-Side

sed Streankditor

sort Sortsand Collates Lines

wC DisplaysCount of Lines, Words, and Character
yacc Rrsing Program Generator

Table 3: Test Programs

column contains the number of instructioxeauted with all ofvpds corventional optimizations applied.

We present in the rest of the table the percentage change in the number of instructions and branches
executed after reordering sequences of range conditions. The reordering transformation has significant ben-
efits both in reducing the total number of instructions and conditional branches. One may notice that the

transformation has a slight g@ive impact onhyphen which occurred for a couple of reasorisrst, dif-

ferent test input data is used as compared to the training input data for the results presented in the table.

When we use the same test input data as the training input data, the number of braschesreased.
Second, the reordering transformation is applied after all optimizatiwoespe for filling delay slots.

141%

73%

2%

12%
73%

.96%
28%
03%
)
.38%
.26%

Switch
Translation Set | Set Il Set llI
Heuristics
Original After Reordering Original After Reordering Original
Program
Insts Insts Branches Insts Insts Branches Insts
awnk 13,611,150 -2.02% -4.19% || 13,552,831 -2.97% -6.15%]|| 13,651,335 -3.63%
cb 17,100,927| -7.65% | -15.46%| 17,100,927 -7.65% -15.46% 19,662,207
cpp 18,883,104 -0.13% -0.19%]| 18,880,116 -0.13% -0.19% || 30,477,974 -28.379
ctags 71,889,513 -9.10% | -14.72%|| 71,824,093 -9.02% -14.64% 72,222,399
derof 15,460,307 -1.53%| -2.63% || 15,451,383 -1.39% -2.38%]|| 15,491,185
grep 9,256,749, -3.60% -8.31% 9,938,414 -10.53% | -22.04%|| 11,810,072
hyphen 18,059,010 +3.42% +3.40%|| 18,059,010 +3.42% +3.40% || 18,059,010 +3.42%
join 3,552,801 -1.68% -2.12% 3,552,801 -1.68% -2.12% 3,552,801
lex 10,005,018 -4.56%) -10.39% || 10,003,391 -4.57% -10.40% 10,028,151
nroff 25,307,809 -2.48% -6.35% || 25,313,527 -2.50% -6.39%]|| 25,339,678
pr 73,051,342| -16.25% | -29.96%| 73,051,352 -16.25%6 -29.96P0 73,051,352
ptx 20,059,901| -9.18% | -13.28%| 20,059,901 -0.18% -13.28% 20,059,901
sdiff 14,558,535| -16.09% -37.03% || 14,558,530 -16.09% -37.03% 14,558,330
sed 14,229,310 -1.16% -2.03%|| 14,243,263 -1.28% -2.32% || 15,368,724 -10.079
sort 23,146,400 -47.20% | -57.38%| 23,146,400 -47.20% -57.38% 23,146,434
wc 25,818,199| -15.05% | -26.26%| 25,818,199 -15.05% -26.2606 25,818,199
yacc 25,127,817 -0.25% -0.44%]|| 25,127,817 -0.25% -0.44% || 25,168,370 -0.47%
aveaage 23,477,465 -7.91% | -13.37%| 23,510,571 -8.37% -14.30% 24,556,842

.75%

Table 4: Dynamic Frequegdveasurements

-16-

Sometimes delay slots are filled from the other successor and daesateca useful instructionOne

should note that inconsistent filling of delay slots sometimes resulted in increased performance benefits.
The transformation may alsoevey significant benefits when a programxeeutes most of its instruc-

tions in a reorderable sequence, such asom Thus, the benefits depend omhoften sequences of

branches could be profitably reordered and what percent of the total instructemsted did such
sequences comprise.

We found that the original default target in a sequence is almeayskelected as the defaultgat
for the reordered sequencklowever, the profile data also indicates that one of the originauefanges
was frequently satisfied and was explicitly checked in the reordered sequilsoe.comparison instruc-
tions became redundant and were eliminated much more often when an original default range became an
explicit range in the reordered sequence.

The differences between using thefeliént sets of heuristics indicates that thieaieness of
branch reordering increases as indirect jumps become mpeasve. It is dso interesting to note that the
total number of instructionsxecuted after reordering often decreases as fewer indirect jumps were gener
ated. Infact, the aerage number of instructions for the test programs that weaited after reordering is
actually the smallest fdBet IIl. This shows that profile information should be used to decide if an indirect
jump should be generated or branch reordering should instead be applied.

Branch prediction measurements were simulated by modifyingabeervironment [17] associated
with the vpo compiler [1]. Table 5 shavs the branch prediction measurements that were obtained for the
SFARC Ultra Il. The SPARC Ultra Il uses branch prediction (for branches and not indirect jumps) and the
SFARC IPC and SPARC 20 do naé branch predictor is often described using the notatigmy, where
the predictor will use the behavior of the lasbranches encountered to choose frdthpedictors and
each predictor will use bits [18]. The SPARC Ultra Il supports branch prediction with a (0,2) predictor
with 2048 entries. The authors anticipated that the number of branch misprediatigidsdecrease since
the number of total branchegeeuted was substantially reducelBlever mispredictions had been obssiv
when branches were coalesced into indirect jumps [Hgjwever, the misprediction results for branch

Original Mispredictions Ratio of Decreased

Program Number of after Instructiongo

Mispredictions Reordering Increasktispredictions
awk 243,027 -0.46% N/A
cb 440,712 +5.77% 51.41
cpp 389,566 -1.75% N/A
ctags 569,753 +225.50% 5.04
derof 62,819 -2.87% N/A
grep 115,007 -4.30% N/A
hyphen 266,177 +84.12% -2.76
join 50,440 -5.62% N/A
lex 66,534 +1.93% 355.47
nroff 141,167 -0.93% N/A
pr 750,570 +0.33% 4,793.65
ptx 215,218 +37.58% 22.78
sdiff 156,440 -5.35% N/A
sed 83,579 -1.84% N/A
sort 171,619 -10.41% N/A
wc 481,767 +0.18% 4,519.65
yacc 373,825 +0.55% 30.28
aveage 269,307 +18.97% 1,221.94

Table 5: Branch Prediction Measurements Using a (0,2) Predictor with 2048 Entries

-17-

reordering were mixd. Nineof the test programs had fewer mispredictions after reordering and the
remaining eight had more. Overall, theesage number of mispredictions increased.

After examining a fe/ of the sequences that e leen reordered, we realized that our branch
reordering transformationvaids the @ecution of the predictablyxecuted branches. Consider the source
code in Figures 1(b) and 1(c), whictowid be translated into a loop containing branches compartoga
blank, newline, and an end-of-file charact@issume that most of the characters read in are letters, digits,
or punctuation symbols and there are rarely conseclitanks or nalines. Whenc > ' ', dl three
branches in Figure 1(b) and the branch checkirng # ° ’ in Figure 1(c) are all likely to be predicted
correctly Whenc <= ' ', the branches in Figure 1(b) will Y& zro to three branches mispredicted.
However, the branches in Figure 1(c) will Y& e to four mispredictions. Thus, it appears that branch
reordering can increase the number of branch mispredictions.

One may question thealue of branch reordering since it sometimes increases the number of branch
mispredictions. InTable 5 we she that the g@erage ratio of decreased instructioneeaited to the
increased number of branch mispredictions was 1221.94 to 1 for the eight programs that exhibited an
increased number of mispredictionghus, the increase in mispredictions was werage far outweighed
by the benefit of reducing the number of instructioraceted. Comparableesults were obtained using
other branch predictors as st in Table 6. Again the benefit of reducing the number of instructions
executed was far more significant than the increase in the number of branch mispredictions.

(0,1) Predictor (0,2) Predictor (2,2) Predictor
] Mispredic- Decreased Mispredic- Decrease Mispredic- Decreased
Entries || tions after Instructions tq tions afte Instructions|to tions after Instructions to
Branch Increased Branch Increased Branch Increased
Reordering| Mispredictiong Reordering Mispredictions Reordefing Mispredigtions
32 +16.65% 681.20 +17.37% 1313.47 +17.05% 805.78
64 +21.96% 720.73 +21.15% 1082.02 +20.77% 640.08
128 +21.91% 8583.19 +20.60% 1091.28 +19.40% 661.92
256 +21.91% 972.87 +20.21% 953.70 +19.03% 569.88
512 +19.67% 5852.38 +18.09% 1200.25 +17.34% 681.98
1024 +20.45% 13331.71 +18.88% 1217.61 +18.44% 664.03
2048 +20.59% 13311.73 +18.97% 1221.94 +37.65% 653.02
aveaage +21.43% +19.32% +21.38%

Table 6: Branch Prediction Measurements for a Variety of Predictor Configurations

The execution time measurements shown in Table 7 were obtained fronvéheggea reportediser
times of ten recutions of each program using the C run-time library functiowes()on the SPARC IPC
and SPARC 20 and th@imeutility on the SPARC Ultra Il. One should note that in Table 4 the measure-
ments from the code compiled by our compiler did not include the C run-time library code, which did con-
tribute to the ®ecution times. Also, the benefits for the Ultra Il were probably not as significant due to the
impact of issuing multiple instructions simultaneously and some additional branch misprediGiens.
SPARC Ultra Il had a superscalar implementation and the SPARC IPC and SPARC 20 did not.

Machine HeuristiSet | Average Execution Time
SPARC IPC | -4.94%
SPARC 20 | -5.57%
SPARC Ultra ll I -3.65%

Table 7: Average Effect from Reordering on Execution Times

Table 8 shows static measurements for the same set of progfdra=e is only about a 5% increase
in the number of instructions generatethe Total Seqscolumn represents the total number of reorderable
sequences detected in each prograrhe Percent Reodered column indicates the percentage of these

-18-

Switch Reordere&equences
Trans- Pro- Total
lation gram || Instructions Percent Ag Seq Len
Heuris- Seqgs
tics Reordered Orig | After
awnk +1.91% 48 16.67% 2.88| 3.75
cb +8.32% 12 83.33% 2.50 2.80
cpp +1.57% 15 33.33% 2.20 3.20
ctags +9.48% 28 39.29% | 2.64 3.36
derof +1.58% 38 23.68% 2.67| 2.89
grep +3.51% 7 28.57% 3.50| 4.50
hyphen +8.70% 3 100.00% 2.67| 3.33
join +7.61% 8 37.50% 3.33| 3.67
lex +8.55% 95 58.95% 255 295
Setl nroff +1.62% 87 | 21.84% | 295 353
pr +2.40% 10 50.00% 3.00 4.20
ptx +1.47% 4 75.00% 3.00| 4.33
sdiff +3.48% 8 37.50% 2.67| 3.33
sed +4.22% 34 47.06% 2.88 3.50
sort +3.68% 16 56.25% 2.33 2.78
wc +10.20% 3 33.33% 5.00| 5.00
yacc +6.42% 35 77.14% 3.70 4.48
avwg +4.98% 26 48.20% 2.97| 3.62
awnk +2.05% 56 19.64% 3.91| 455
cb +8.32% 12 83.33% 2.50 2.80
cpp +1.57% 16 31.25% 2.20 3.20
ctags +9.47% 29 37.93% | 2.64 3.36
derof +1.76% 41 24.39% 3.00f 3.20
grep +4.11% 19 36.84% | 2.57| 2.86
hyphen +8.70% 3 100.00% 2.67| 3.33
join +7.61% 8 37.50% 3.33| 3.67
lex +8.98% 103 58.25% 2.68| 3.07
Set i nroff +1.73% 93| 25.81% | 2.83| 3.33
pr +2.62% 11 54.55% 3.67 4.67
ptx +1.47% 5 60.00% 3.00| 4.33
sdiff +3.49% 10 40.00% 3.00] 3.50
sed +4.32% 41 51.22% 2.81 3.29
sort +3.68% 16 56.25% 2.33 2.78
wc +10.20% 3 33.33% 5.00| 5.00
yacc +6.42% 35 77.14% 3.70 4.48
avwg +5.09% 29 48.67% 3.05| 3.61
awnk +1.97% 42 30.95% 18.15| 18.69
cb +11.17% 6 66.67% 5,50 7.75
cpp +2.47% 16 37.50% | 14.33 | 16.50
ctags +6.50% 21 38.10% 3.50 4.50
derof +1.23% 34 20.59% 5.29| 5.57
grep +3.29% 9 44.44% 8.00| 8.50
hyphen +8.70% 3 100.00% 2.67| 3.33
join +7.61% 8 37.50% 3.33| 3.67
lex +6.25% 54 59.26% 6.16| 7.00
Setlll | nroff +1.71% 46 | 32.61% | 6.00| 6.87
pr +2.62% 11 54.55% 3.67 4.67
ptx +1.47% 5 60.00% 3.00| 4.33
sdiff +3.49% 10 40.00% 3.00] 3.50
sed +5.32% 25 48.00% | 7.75 8.58
sort +3.76% 11 63.64% 3.57 4.29
wc +10.20% 3 33.33% 5.00| 5.00
yacc +6.64% 29 79.31% 4,52 5.65
avwg +4.96% 19 49.79% 6.08| 6.96

Table 8: Static Measurements

sequences that were actually reordered. The single most common factor vieategie@ sequence from
being reordered as that profile data indicated that the sequence was eecuted. Usingnultiple sets

-19-

of profile data to praide better caerage of the branches in a program would increase this percerfbhge.

Avg Sq Lenshavs the aerage number of branches in each reordered sequence before and after reordering.
The length of each reordered sequence typically increased since often one or mudtealeges became
explicit after reordering.Heuristic Set Ill resulted in fewer sequences since no binary searches were gener
ated when translatingwitch statements. Eadbinary search generated for Heuristic Sets | and Il resulted

in several reorderable sequences being detected.

We dso found that sometimes sequences dighatenening side décts. W found that 1.554% of
the sequences that were reordered initially had intervening deldsefsuch as the one shown ¥er in
Figures 7 and 8. Note that this does not include sigetsfin the first range condition. In this case we just
split the initial basic block of the first range condition int@ tlocks, one containing the side effects and
one containing the comparison and branch instructions.

Figures 15, 16, and 17 slkidhe distribution of the number of branches in reordered sequences for
each of the three heuristic sets. Note that most of the original sequences containedo amythiee
branches. Thishavs that much of the benefit for reordering comes from short sequences of branches that
would never be ranslated into indirect jumps.

100
80 A
60 1
40
201

100
80
60
40
20

Average: 2.97 Average: 3.62

o

0
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
Original Sequence Length Reordered Sequence Length

Figure 15: Sequence Length for Heuristic Set |

100
80 A
60 1
40
201

100
80
60
40
20

Average: 3.05 Average: 3.61

o

0
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
Original Sequence Length Reordered Sequence Length

Figure 16: Sequence Length for Heuristic Set Il

60
50
40
30
20
10

Average: 6.08

‘%

nl
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105
Original Sequence Length

60
50
40
30
20
10

Average: 6.96

-

—n
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105
Reordered Sequence Length

Figure 17: Sequence Length for Heuristic Set Ill

-20-

Table 9 shows that theverhead of performing this optimization is reladi low. We dbtained the
compilation times for each of the test programs with and without applying branch reordering. The compila-
tion time when performing the reordering code-inying transformation is only 1.044 times slower on
avaage than the normal compilation tim&his includes not only the time for performing the code-inapro
ing transformation, but also the time required tovelke a umber of additional transformations, aswho
in Figure 14.Note that this werhead does not include the first compilation pass. Xeeutdion time when
obtaining profile information is 2.545 times slower agrage than normalxecution time. The profiling
overhead can vary depending upon the freqyénavhich reorderable sequences of branches are encoun-
tered relatie o the total number of instructionxeeuted. Hevever, smilar profile information could be
used to support a variety of other code-improving transformations.

Program | Compilatiolfime | ProfilingTime
ank 1.035 1.514
cb 1.076 1.909
cpp 1.017 1.118
ctags 1.061 3.286
derof 1.024 2.200
grep 1.030 1.800
hyphen 1.073 2.750
join 1.062 4.000
lex 1.072 2.429
nroff 1.052 2.105
pr 1.035 2.467
ptx 1.013 1.300
sdiff 1.026 2.231
sed 1.041 1.300
sort 1.037 7.714
wc 1.067 3.833
yacc 1.033 1.316
avaage 1.044 2.545

Table 9: Compilation and Profiling Time Overhead

10. CONCLUSIONSAND FUTURE WORK

This paper describes an approach for using profile information to decrease the number of conditional
branches xecuted by reordering branch sequencés. algorithm for detecting a reorderable sequence of
branches testing a common variable was presenieéel.dso described techniques for transforming a
sequence of branches to makreorderable. Profilingvas performed to estimate the probability that each
branch will transfer control out of the sequendéde most beneficial orderings for these sequences with
respect to profiling and cost estimates were obtaifiée. results showed significant reductions in the num-
ber of branches and instructionseeuted, as well as decreasesxeaaition time.

There are seral adwantages of using the approach described in this paper for reordering branches.
First, the approach is simple to understand and implement. Secondyevehban that opportunities for
reordering sequences of branches to reduce the numbreanited branches occur frequently in applica-
tions. Third,branches arexpensve and the relatie mst of eecuting branches compared tgeeuting
other instructions is liégly to increase as the complexity of pipelining and multiple issue architectures
grows. Finally our approach may be a good fit for run-time optimization systems since the analysis
required for our transformation is relaly inexpensie.

There are sgral areas in which reordering branches couldXiereled. Asequence of range condi-
tions is one of seeral approaches that could be used to determinegattassociated with the value of an
expression. Essentialla £quence of range conditions is a linear search. Some of these other approaches
include performing a binary search, using a jump table, and hashing [9]. Profile data could be used to more
effectively apply these other approaches as a semi-static search method and to decide when each method or

-21-

a combination of methods is most benefici&lor instance, a sequence of 100 branches comparing a com-

mon variable to a compact number of cases may not guarantee that an indirect jump from a table is the best
approach. I few d these cases dominate and the cost of an indirect jump is rpEBs®Ee than a condi-

tional branch, then the compiler could instead generate a sequence of branches for these cases and coalesce
the remaining cases into a jump table.

A different type of sequence of branches that can be reordered using profileodltacensist of
consecutie lranches with a common successbigure 18(a) shas a C source code segment containing
relational and logical expressions and Figure 18(bwshthe corresponding control-flograph. The
sequence of branches in blocks 1, 2, andve himck 4 as a common successbikewise, the sequence of
branches in blocks 4 and 5veadock 7 as a common successéigure 18(c) shows these twgequences
of branches after reordering. Note that a reorderable sequence of branches with common successors cannot
contain intervening side fetcts. Whileside effects could be mied out of such a sequence, the resulting
sequence would not contain a common successor blotérprocedural analysis could be used to deter
mine if invoked functions do not cause a siddeef. Avoiding the &ecution of a function call, such as

if@==0&&f()==1&&b==2||c==3&& d==4)
T1;
else

T2;
(a) C Source Code Segment

(b) Before Reordering Branches

s BN
:3 b==2 \\\
T

(d) Before Reordering Sequences (e) After Reordering Sequences

Figure 18: Reordering Branches with Common Successors

-22-

depicted in block 2, could ke dgnificant performance benefit&zigure 18(d) depicts that a sequence of
branches with a common successor can be viewed as a single block containing a branch since such a
sequence would kra anly two possible successord.he first sequence (blocks 3, 1, and 2) hasdveces-

sors (blocks 5 and 6)Likewise, the second sequence (blocks 5 and 4) also lmasubeessors (blocks 6

and 7). Figure 18(e) shows that these sequences can be reordered when there are no side effects between
the sequences.

Obtaining profile data for a sequence of branches with a common successorfavilirdrh obtain-
ing profile data for a sequence of neaapping range conditions testing a commamiable. Whileat
most one range condition will be satisfied for\aegiexecution of a sequence of norelapping range con-
ditions testing the same branch variable, more than one branch in a sequence of branches with a common
successor could branch to the common succedsuars, all combinations of branch results woulgehi
be obtained using an array of profile counters. This approach may be reasonable for a small sequence
length (e.gn< 7), which seem to handle most branch sequences with a common successor [19].

APPENDIX

Proof of Theorem :1Consider the original and reordered sequences of range conditions in Figline 3.
two sequences are semantically egleént given that (1) the state of the program is eglént in both
sequences when blocHg, T2, and T3 are reached, (2) blockEL, T2, and T3 are alays reached in both
sequences under the same conditions, and (3)mermer exceptions are raised.

Condition 1 is satisfied since the range conditiBngndR2 have o sde efects. Conditior? is satisfied

since the ranges associated vilith T2, and T3 are nonwerlapping, there are no assignments in either range
condition that can affect the othend the only predecessor of the second range condition is the first range
condition. Conditior8 can be satisfied by considering the fallng two facts. Firstho nev error excep-

tions can be introduced aftexiéng the reordered sequence due to conditions 1 and 2. Secondwno ne
error exceptions can be introducedRnor R2 since the instructions in a range condition cannot raise error
exceptionsO

Proof of Corollary 1 Suppose for sequences with length of 2, 3n,.Corollary 1 is true. N we reed to
prove for a sequence with length Bf1, [R1, R2, ..., Rn+1], is semantically equélent to aly sequence that
is an arbitrary permutation of these range conditions.

(i) Supposehe first range condition of the permutatiorRis Then the rest of the permutation is a-per
mutation of R2, R3, ..., Rn, Rn+1], which is a sequence of lengthand by induction ypothesis it is
equivalent to R2, R3, ..., Rn, Rn+1]. In this case, the whole permutation is emlgint to [R1, R2, R3,

..., Rn, Rn+1]. We know this sequence is valid since this is the original order of the sequence.

(i) Supposehe first range condition of the permutatiorRig(i # 1). Thenthe rest of the permutation is
a permutation of R1, R2, ..., Ri-1, Ri+1, ..., Rn, Rn+1] (exceptRi), which is a sequence of lengitand
it is equvalent to R1, Rz, ..., Ri-1, Ri+1, ..., Rn, Rn+1] (a £quence of length without Ri). Sothe
whole permutation is equalent to [Ri, R1, R2, ..., Ri-1, Ri+1, ..., Rn, Rn+1]. Sincethe sequencerj,
R1] has a length of 2 and thus is egiént to [R1, Ri], so the whole sequence is eglgnt to R1, Ri,
R2, ..., Ri-1, Ri+1, ..., Rn, Rn+1]

Now R1 is the first range condition, by (i) we kmdhat the whole permutation is egdent to [R1,
R2, R3, ...,Rn, Rn+1]. O

Proof of Theorem :2ZConsider the original and transformed sequences of range conditions in Figtine 6.
two sequences are semantically agent gven that (1) state of the program is eeplént in both
sequences when blocks andT3 are reached, (2) block and T3 are alvays reached in both sequences
under the same conditions, and (3) na egor exceptions are raised.

Condition 1 is satisfied since the range conditkarin the transformed sequence has no sifects,S is
executed in both sequences whEnor T3 is reached afterxecutingR2, and Sis not executed if T2 or T3 is
reached without>ecuting R2. Condition 2 is satisfied sincg does not déct the branch variable dt2.

-23-

Condition 3 can be satisfied by noting that ne sigle effects are introduced in the transformed sequence.
O

Proof of Corollary 2 Suppose for sequences with lengthCorollary 2 is true. Nov we reed to pree for a
sequence with length oft1, [R1, R2, ..., Rn+1], as shown in Figure 19(a), it can be transformed V@ ima
intervening side effects and stillveathe same semantic effect on the program.

Consider the sequencBi, R2, ..., Rn], which is of lengthn. By induction hypothesis we knothat this
sequence can be transformed tweheo intervening side effects and still b the same semantic effect on
the program, as shown in Figure 19(b). Since the only predecessor of range cdhditicnrange condi-
tion Rn, so he duplicated side fefctsS1, S2, ..., Sn-1 can be inserted directly infn+1 rather than creating
a rew Hock containingSi, S2, ..., Sn-1. Now oonsider the sequencBr, Rn+1]. It satisfies the condition of
theorem 2 and as a result the sideafS1, S2, ..., Sh can be meed out of the sequence as shown in Figure
19(c). Combining the alve ransformations togethewe haveproved the corollary O

P1

R1 T1

Sn-1

T
Rn Tn
F
sn P2
T
P3 n+ Tn+l
F
D
(a) Original Sequence (b) Intermediate Sequence (c) Final Transformed Sequence

Figure 19: Moving Side Effects from a Sequence+df Range Conditions

Proof of Theorem :3An optimal ordering of tw consecutie ronoverlapping range conditions can be
achieved when the explicit cost of the selected ordering is less than or equal to the explicit cost of the other
ordering.

Explicit Cost[R;, Ry]) < Explicit_Cos{[R,, R;])
P1C1+ Po(Cy +Cp) < PaCy+ P1(Co+Cy)
P1Cy + P2Cy + P2C2 < P2Cy + P1C2 + PiCy
P21 = PG
polc; < palcy
pifcy = polc,

a

Proof of Corollary 3 Suppose for a sequence of lengthCorollary 3 is true. In order to pve [R1, R2, ...,
Rn+1] is the optimal order for a+1 length sequence, we need toverdhat an arbitrary permutatiomRi,
Riz, ..., Rin+1] will have an explicit cost that is at least as greattaglicit_Cos{[R1, R2, ..., Rn+1]).

-24-

(i) Assumethe first condition iR1. If we only consider a subsequence formed By, [R3, ..., Rn+1],
then it is a sequence of length By induction, R2, R3, ..., Rn+1] should hae te lowest eplicit
cost. TheExplicit_Cosf[Riz, Ris, ..., Rin+1]) is greater than or equal to tEplicit_Cos{[R2, R3, ...,
Rn+1]). This proves that the sequencé], R2, ..., Rn+1] has a cost that is less than or equal to the
cost of the sequencR{, Riz, ..., Rin+1].

(i) Assumethe first condition isRi, wherei # 1. By applying the induction ypothesis and the result
given in (i), we hae:

Explicit_Cost([R;,R;,,...,R;]

> Explicit Cost[Ri, Ry, ... ,Rul) (sortRiz, ..., Rin+1 by p/c)
> Explicit Cost[R;, R, ... ,Ruyul) (swapR1 andRi)
> Explicit._Cost{[Ry, Ry, ..., Ry1l) (sortRi, ..., Rn+1 by p/c)
O
ACKNOWLEDGEMENTS

The authors thank Jack Davidson for aflog vpo to be used for this research. Michael Sjodin,
Chris Healy Richard Whalg, and the anoymous r&iewers provided sesral helpful suggestions that
improved the quality of the paperThis research as supported in part by the National Sciencerfélation
grants EIA-9806525, CCR-9904943, and EIA-0072043.

REFERENCES

1. M. E. Benitez and J. WDavidson, ‘A Portable Global Optimizer and Liek” Proceedings of the
SIGPLAN ’'88 Symposium on dgramming Languge Design and Implementatipnpp. 329-338
(June 1988).

2. J.Dongarra and A. Hinds, “Unrolling Loops in FORAN,” Softwae Practice & Experience® pp.
219-226 (1979).

3. J.W. Davidson and S. JinturkalfAggressie Loop Unrolling in a Retargetable, Optimizing Com-
piler,” Proceedings of Compiler Construction Conferenpe. 59-73 (April 1996).

4, F Allen and J. Cocke A’ Catalogue of Optimizing fRnsformation$,pp. 1-30 inDesign and Opti-
mization of Compilersed. R. Rustin,Prentice-Hall, Engieod Cliffs, NJ (1971).

5. F Mueller and D. B. Whalle “Avoiding Conditional Branches by Code ReplicatidProceedings of
the SIGPLAN '95 Conference ondgramming Languge Design and Implementatipnpp. 56-66
(June 1995).

6. R.Bodik, R. Gupta, and M. S “Interprocedural Conditional Branch EliminatibiRroceedings of
the SIGPLAN '97 Conference ondgramming Languge Design and Implementatiorpp. 146-158
(June 1997).

7. G.R. Uh and D. B. Whalig “Coalescing Conditional Branches into Efficient Indirect Juhips-
ceedings of the International Static Analysis Sympagsjgpn315-329 (September 1997).

8. M. SchlanskerS. Mahlke, and R. Johnson, “Control CPR: A Branch Height Reduction Optimization
for EPIC Architecture8,Proceedings of the SIGPLAN '99 Symposium armgfamming Languge
Design and Implementatiorpp. 155-168 (May 1999).

9. D. A. Spuler “Compiler Code Generation for Multiway Branch Statements as a Static Search Prob-
lem; Technical Report 94/03, James Cook\édrsity, Townsville, Australia (January 1994).

10. B.Calder and D. Grunwald, “Reducing Branch Costs via Branch AligninBraceedings of the
Sixth International Conference ondhitectural Support for Pogramming Languges and Opeating
Systemspp. 242-251 (October 1994).

11. C.Young, D. S. Johnson, D. R. K@r, and M. D. Smith, “Near-optimal Intraprocedural Branch
Alignment,” Proceedings of the SIGPLAN '97 Conference oogRimming Languge Design and
Implementation pp. 183-193 (June 1997).

12. C.Young and M. D. Smith, “Impndng the Accurag of Static Branch Prediction Using Branch Cor
relation,” Proceedings of the Sixth International Conference orchifectural Support for

-25-

13.

14,

15.

16.

17.

18.

19.

Programming Languges and Operating System$p. 232-241 (October 1994).

J.A. Fisher and S. M. Freudenlger, “Predicting Conditional Branch Directions from Previous Runs
of a Prograni, Proceedings of theifth International Conference on éhitectural Support for Po-
gramming Languges and Operating System$p. 85-95 (October 1992).

S.C. Johnson,A Tour Through the Portable C Compitednix Programmers Manual, 7th Edition
2B p. Section 33 (January 1979).

R.M. Clapp, L. Duchesneau, R. A. Volz, Nl. Mudge, and TSchultze, “owad Real-Time Perfor
mance Benchmarks for Ad&Communications of the ACMX8) pp. 760-778 (August 1986).

G.Uh, Effectively Exploiting Indirectumps,PhD Dissertation, Florida State Waisity, Tallahassee,
FL (December 1997).

J.W. Davidson and D. B. Whalig “A Design Environment for Addressing Architecture and Com-
piler Interactions,Microprocessas and Microsystem&5(9) pp. 459-472 (Neember 1991).
J.Hennessy and D.d®&erson,Computer Achitecture: A Quantitative Apmrach, Second Edition,
Morgan Kaufmann, San Francisco, CA (1996).

M. Yang, Improving Performance by Binch Reordering,Masters Thesis, Florida State Werisity,
Talahassee, FL (1998).

-26-

