
Efficient and Effective Branc h Reordering Using Pr ofile
Data

MINGHUI YANG
Oracle Corporation
and
GANG-RYUNG UH
Boise State University
and
DAVID B. WHALLEY
Flor ida State University

The conditional branch has long been considered an expensive operation. Therelative cost of conditional
branches has increased as recently designed machines are now relying on deeper pipelines and higher mul-
tiple issue. Reducing the number of conditional branches executed often results in a substantial perfor-
mance benefit. This paper describes a code-improving transformation to reorder sequences of conditional
branches that compare a common variable to constants.The goal is to obtain an ordering where the fewest
av erage number of branches in the sequence will be executed. First,sequences of branches that can be
reordered are detected in the control flow. Second, profiling information is collected to predict the proba-
bility that each branch will transfer control out of the sequence.Third, the cost of performing each condi-
tional branch is estimated.Fourth, the most beneficial ordering of the branches based on the estimated
probability and cost is selected.The most beneficial ordering often includes the insertion of additional con-
ditional branches that did not previously exist in the sequence.Finally, the control flow is restructured to
reflect the new ordering. Theresults of applying the transformation are on average reductions of about 8%
fewer instructions executed and 13% branches performed, as well as about a 4% decrease in execution time.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors− compilers; optimiza-
tion

General Terms: Algorithms, Languages

Additional Key Words and Phrases: conditional branches, profiling, branch reordering

1. INTRODUCTION

Sequences of conditional branches occur frequently in programs, particularly in nonnumerical appli-
cations. Sometimesthese branches may be reordered to effectively reduce the dynamic number of branches
encountered during program execution. Onetype of reorderable sequence consists of branches comparing
the same variable or expression to constants.These sequences may occur when amultiwaystatement, such

A preliminary version of this research was described inProceedings of the ACM SIGPLAN ’98 Conference on Pro-
gramming Language Design and Implementationunder the title "Improving Performance by Branch Reordering."
Authors’ addresses: M. Yang, 400 Oracle Parkway, Redwood Shores, CA 94065; e-mail: Minghui.Yang@oracle.com;
phone: (650) 633-6958; G. Uh, Computer Science Department, College of Engineering, Boise State University, 1910
University Avenue, Boise, ID 83725; e-mail: uh@cs.boisestate.edu; phone: (208) 426-3505; D. Whalley, Computer Sci-
ence Department, Florida State University, Tallahassee, FL 32306-4530, U.S.A.; e-mail: whalley@cs.fsu.edu; phone:
(850) 644-3506

-1-

as a Cswitch statement, does not have enoughcases to warrant the use of an indirect jump from a table.
Also, control statements may often compare the same variable more than once.We find that such
sequences of branches occur quite frequently in non-numerical applications.

Consider the following code segment in Figure 1(a). Assume that there is typically more than one
blank read per line and EOF is only read once.Many astute programmers may realize that the order of the
statements may be changed to improve performance. Infact, we find that the authors of most Unix utilities
are quite performance conscious and attempt to manually reorder such statements.A conventional manual
reordering shown in Figure 1(b) improves performance by performing the three comparisons in reverse
order. Howev er, the most commonly used characters (e.g. letters, digits, punctuation symbols) have an
ASCII value that is greater than a blank (32), carriage return (10), or EOF (-1).Figure 1(c) shows an
improved reordering of the statements that increases the static number ofif statements and associated con-
ditional branches, but normally reduces the dynamic number of conditional branches encountered during
the execution.

else if (c == ’ ’)
Y;

else
Z;

while ((c=getchar()) != EOF)

while (1) {
c = getchar();

Y;

X;
else if (c == EOF)

break;
else

Z;

if (c == ’ ’)

else if (c == ’\n’)

}

c = getchar();
if (c > ’ ’)

else if (c == ’ ’)
Y;

else if (c == ’\n’)
X;

else if (c == EOF)
break;

else

}

goto def;

def: Z;

X;
if (c == ’\n’)

while (1) {

(a) Original Code Segment (b) Conventional Reordering (c) Improved Reordering

Figure 1: Example Sequence of Comparisons with the Same Variable

Manually reordering a sequence of comparisons of a single variable to constants or inserting extra if
statements to achieve performance benefits, as shown in Figures 1(b) and 1(c), can lead to obscure code.A
general improving transformation to automatically reorder branches may obtain performance improvements
and still help encourage the use of good software engineering principles by performance conscious pro-
grammers.

This paper describes a method for reordering code to reduce the number of branches executed. Fig-
ure 2 presents an overview of the compilation process for reordering branches.A first compilation pass is
applied to a C source program.The compiler used was thevpo compiler [1], which is part of thezephyr
system used in the National Compiler Infrastructure project. All conventional optimizations are applied
except for filling delay slots.Sequences of reorderable branches comparing a single variable to constants
are detected in the control flow. An executable file is produced that is instrumented to collect profiling
information about how often each branch in a sequence will transfer control out of the sequence.This pro-
file data and an estimated cost for executing each branch are used during a second compilation pass to
select the most beneficial branch sequence ordering.Delay slots are filled after branch reordering and the
final executable is produced.The transformation is frequently applied with reductions in instructions
executed and execution time.

The remainder of this paper has the following organization. Section2 mentions work related to
avoiding the execution or reducing the cost of conditional branches.Section 3 presents the method used for
detecting reorderable sequences of branches.Section 4 describes the techniques for transforming
sequences of branches that are not reorderable into reorderable sequences. Section 5 characterizes the type
of profile data that is produced.Section 6 shows how sequences of branches are reordered with respect to

-2-

for
instrumented

executable

profiling

training

data

input

C

source

program

executable

compilationdata

with
branches
reordered

test

input

data

profile
second

first

compilation

VPO

VPO

Figure 2: Overview of Compilation Process for Branch Reordering

the profile information and cost. Section 7 depicts other techniques to improve performance after a specific
ordering for the sequence of branches is selected. Section 8 illustrates how the reordering transformation is
applied. Section9 analyzes the results of applying this code-improving transformation on a number of non-
numerical applications. Section 10 discusses other approaches that can be used to reduce the number of
executed branches. Finally, we giv e the conclusions of the paper in Section 11.

2. RELATED WORK

There has been some research on other techniques for avoiding the execution of conditional branches.
Loop unrolling duplicates the body of the loop when the number of loop iterations is known at the point the
loop is entered. This has the effect of avoiding executions of the conditional branch associated with a loop
termination condition [2], [3].Loop unswitching moves a conditional branch with a loop-invariant condi-
tion before the loop and duplicates the loop in each of the two destinations of the branch.This transforma-
tion has the effect of moving conditional branches outside of a loop [4].Conditional branches have also
been avoided by code duplication [5]. This method determines if there are paths where the result of a con-
ditional branch will be known and duplicates code to avoid execution of the branch.The method of avoid-
ing conditional branches using code duplication has been extended using interprocedural analysis [6].Con-
ditional branches comparing the same variable to constants have also been coalesced together into an indi-
rect jump from a jump table [7]. The effectiveness of this approach depends on the relative cost of an indi-
rect jump versus the average number of branches executed that the indirect jump replaces.Finally,
sequences of conditional branches representing a likely-taken or critical path have been avoided by forming
a single bypass branch that checks if the sequence of conditions associated with these branches violate any
of the conditions for the critical path [8]. This approach required predicate registers, which are often used
to support predicated execution on multiple issue machines.None of these approaches attempted to reduce
the cost of a sequence of branches by changing the order in which the branches are executed.

Different search methods based on static heuristics for the cases associated with amultiwayselection
statement, such as a Cswitch or Pascalcase statement, have been studied [9]. These methods include
using a linear search, a binary search, hashing, and an indirect jump from a table.These methods all
assume that each case of a multiway selection are equally likely. This study is the most similar to the
approach we describe in this paper. Howev er, our approach is performed at a low lev el and can improve
sequences of branches that are produced from source statements other than multiway selection statements.
In addition, we were able to advantageously use profile data rather than relying on static heuristics.

-3-

There have also been studies about reordering or aligning basic blocks to minimize pipeline penalties
associated with conditional branches [10], [11].However, this reordering or alignment of basic blocks does
not change the order or number of conditional branches executed. Instead,it only changes whether the
branches will fall through or be taken. Theseapproaches use profile information to minimize the number of
taken branches and unconditional jumps executed. Branchalignment can be valuable for architectures
where taken branches causes delays.

3. DETECTING A REORDERABLE SEQUENCE

The approach used for finding a sequence of reorderable branches that compares a common variable
requires associating branch targets with ranges of values.

Definition 1. A branch variable is a scalar variable or a register containing an integer value being tested
in a conditional branch.

Definition 2. A range is a set of contiguous integer values.

Definition 3. A range condition is a branch or a pair of consecutive branches that tests if a branch vari-
able is within a range.

Definition 4. A consecutive sequence of range conditions [R1,...,Rn] is a path, where each node is a range
condition and one outgoing edge is a control-flow transition to the next range condition in the sequence.

Definition 5. A common variable is a single branch variable whose value is tested in multiple range condi-
tions.

Definition 6. A reorderable sequence of range conditions is a consecutive sequence of range conditions
testing a common variable, where the range conditions may be interchanged in any permutation with no
effect on the semantics of the program.

The possible types of ranges and the corresponding range conditions are shown in Table 1, wherev
stands for the branch variable,c, c1, and c2 represent constants, andMIN andMAX stands for the mini-
mum and maximum integer values that can be represented on the machine. When a range is a single value
or a range is unbounded in one direction, a single conditional branch can be used to test if the variable is
within the range.Tw o conditional branches are needed when a range is bounded and spans more than a sin-
gle value, as depicted in Form 4 in Table 1.

Form Range Range Condition

1 c..c v== c
2 MIN..c v <= c
3 c..MAX v >= c
4 c1..c2 c1<= v && v <= c2

Table 1: Ranges and Corresponding Range Conditions

Figure 3(a) depicts a sequence of two range conditions.R1 andR2 are range conditions that can con-
sist of one or two branches that check to see if a variable is in a range.P is a predecessor basic block of the
range condition.T1 andT2 are target blocks of the range conditions and the corresponding range of values
for the range condition is given to the right of these blocks.T3 is the default target block when neither
range condition is satisfied. Figure 3(b) shows how the sequence can be reordered.

-4-

T1

P

R1

R2 T2

T3

T1

T2
T

T
F

F

T

T
F

F

T3

P

R2

R1

[c1..c2]

[c3..c4] [c1..c2]

[c3..c4]

not {[c1..c2],[c3..c4]} not {[c1..c2],[c3..c4]}

(a) Original Sequence (b) Reordered Sequence

Figure 3: Example of Reordering Range Conditions with No Intervening Side Effects

Definition 7. Two ranges arenonoverlapping if they do not have any common values.

Definition 8. A side effect in a range condition is an instruction that updates a variable or a register and
the updated value can reach a use of that variable or register after the range condition.

Theorem 1. A sequence of two consecutive range conditions testing a common variable for nonoverlap-
ping ranges can be reordered with no semantic effect on the program if (1) the sequence can only be
entered through the first range condition, (2) the two range conditions each contain only instructions that
cannot cause exceptions,1 and (3) each range condition in the sequence has no side effects.2,3

Corollary 1. A consecutive sequence of range conditions testing a common variable for nonoverlapping
ranges can be reordered with no semantic effect on the program if (1) the sequence can only be entered
through the first range condition, (2) the sequence contains only instructions that cannot cause exceptions,
and (3) each range condition in the sequence has no side effects.

The detection of a sequence of reorderable range conditions is accomplished using the algorithm in
Figure 4. Instead of storing a sequence of branches, we store a sequence of ranges.The algorithm first
finds two range conditions testing nonoverlapping ranges for the same variable. Afterwards, it repeatedly
detects an additional range condition until no more range conditions with nonoverlapping ranges can be
found.4 Note that the algorithm does not address dealing with the elimination of side effects and that the
sequence is entered only through the first range condition.Transformations to make sequences reorderable
are described later in the paper.

Figure 5 shows an example of detecting a sequence of range conditions. Figures 5(a) and 5(b) show
a C code segment and the corresponding control flow associated with this code segment. Figure5(c) shows
the sequence of reorderable range conditions that are detected using the algorithm in Figure 4.Note that all
of the ranges are nonoverlapping.

A more complete set of branches that compare a common variable to constants may be detected by
propagating value ranges through both successors of each branch (i.e. detecting a DAG of branches instead
of a path of range conditions) [7].There were two reasons why reordering was limited to sequences of
range conditions. First, there were very few cases that we examined where a sequence of range conditions

1 Range conditions were implemented in this study on the SPARC by using comparison and conditional branch instructions,
which cannot cause exceptions.

2 Note that condition codes are a special-purpose register on many architectures. Acomparison instruction causes a side effect
when the condition codes value it sets is live after the branch and used in subsequent branches.

3 All proofs are given in the Appendix.
4 If multiple range conditions with nonoverlapping ranges can follow the current range condition, then we choose a bounded

range condition before an unbounded range condition.If there are still multiple options, then we choose a fall through successor be-
fore a taken successor in the sequence.We felt this would in general result in the longest sequence of branches to reorder.

-5-

B is a basic block in the function.
V is a variable in a branch being compared.
R1 and R2 are ranges of values.
N is the next basic block in the sequence.
C is the current basic block in the sequence.
Ranges is the set of ranges associated with the sequence.

Find reorderable sequences of range conditions.
FOR each basic block BDO

Find the first two range conditions in the sequence.
IF (B is not marked AND

B has a branch that compares
a variable V to a constant) T HEN

IF (Find_First_Two_Conds(B, V, R1, R2, N)) T HEN

Find the remaining range conditions in the sequence.
Ranges = {R1, R2};
C = N;
mark blocks associated with R1 and R2;
WHILE Find_Range_Cond(Ranges, V, C, R, N) DO

Ranges += R;
C = N;
mark block(s) associated with R;

Store info about Ranges for profiling;

Finds the first two range conditions in a reorderable sequence.
BOOL FUNCTIONFind_First_Two_Conds
(B, V, out R1, out R2, out N)

B is the block containing the first range condition.
V is the variable compared in each range condition.
R1 is the range associated with the first range condition.
R2 is the range associated with the second range condition.
N is the next block in the sequence.

{
N1 is the block in the sequence after the first range condition
N2 is the block in the sequence after the second range condition

Check if two range conditions can be found starting at block B.
IF (Find_Range_Cond({}, V, B, R1, N1) AND

Find_Range_Cond({R1}, V, N1, R2, N2)) T HEN
N = N2;
RETURN TRUE;

ELSE

Check if two range conditions can be found with ranges
that do not overlap with the previous value of R1.
Rt = R1;
IF (Find_Range_Cond({Rt}, V, B, R1, N1) AND

Find_Range_Cond({R1}, V, N1, R2, N2)) T HEN
N = N2;
RETURN TRUE;

RETURN FALSE;
}

Determine if there is a range condition for a range that does
not overlap with the existing set of ranges.
BOOL FUNCTIONFind_Range_Cond(Ranges, V, B, out R, out N)

Ranges is the set of ranges already found.
V is the variable compared in each range condition.
B is the basic block being tested to see if it contains a range condition.
R is the range tested by the range condition.
N is the next block in the sequence after the range condition.

{
C is the constant being compared to the variable V in the branch.
I is the range when the branch exits the sequence by falling through.

Check if an appropriate branch and any side effects can be removed.
IF (B has a branch that compares V to a constant CAND

V is not affected in the block AND
the result of the comparison is not used in a later branch) T HEN

IF branch operator is "==" THEN
R = C..C;
N = B’s fall-through succ;
RETURNNonoverlapping(R, Ranges);

ELSE IF branch operator is "!=" THEN
R = C..C;
N = B’s taken succ;
RETURNNonoverlapping(R, Ranges);

ELSE IF (B’s branch and the branch of a succ S of B
form a bounded range R AND

B and S have a common succ AND
Nonoverlapping(R, Ranges)) T HEN

N = the succ of S not associated with R;
RETURN TRUE;

ELSE
SWITCH (branch operator)

CASE "<": R = MIN..C-1; I = C..MAX;
CASE "<=": R = MIN..C; I = C+1..MAX;
CASE ">=": R = C..MAX; I = M IN..C-1;
CASE ">": R = C+1..MAX; I = M IN..C;

IF (Nonoverlapping(R, Ranges)) T HEN
N = B’s fall-through succ;
RETURN TRUE;

ELSE
N = B’s taken succ;
RETURNNonoverlapping(R = I, Ranges);

RETURNFALSE;
}

Returns true if R is a distinct range from the ones in Ranges.
BOOL FUNCTION Nonoverlapping(R, Ranges)

R is a range of values.
Ranges is a set of ranges.

{
IF (R does not overlap with any of the ranges in Ranges) T HEN

RETURN TRUE;
ELSE

RETURN FALSE;
}

Figure 4: Detecting a Reorderable Sequence of Range Conditions

(b) Control Flow

2

c < ’a’

c <= ’z’

c < ’A’

c > ’Z’

T1

3

5

F

1

F T

T

c != ’_’

T2

T3

T4

6

7

8

94

F

F

T

T

c > ’˜’

(a) C Code Segment

if (c >= ’a’ && c <= ’z’ ||

c >= ’ A’ && c <= ’Z’)

T1;

else if (c == ’_’)

T2;

T3;

else

T4;

else if (c <= ’˜’)

F

F

10

(c) Reorderable Range Conditions

Target

T1

T1

T2

T4

[65..90]

[95..95]

[127..MAX]

Int Range

T

T

[97..122][’a’..’z’]

[’A’..’Z’]

[’_’..’_’]

Blocks

1,2

3,4

6

8

Char Range

[’˜’+1..MAX]

Figure 5: Example of Detecting Range Conditions

-6-

did not capture the entire set of branches comparing a common variable to constants.Second, we show in
this paper that it is possible to start with a sequence and obtain an improved reordered sequence with
respect to profile and cost estimates. The future work section discusses using profile information to
improve other search methods.

4. MAKING SEQUENCES REORDERABLE

It may appear that the restrictions in Theorem 1 would result in few reorderable sequences of range
conditions being detected.In fact, most of the sequences could be altered to meet these restrictions.For
instance, we always duplicate the sequence of range conditions to ensure that the sequence is always
entered at the head, which will be described in Section 8.Likewise, if a basic block containing the first
range condition did have a preceding side effect, then it could be split into the portion with the side effect
and the portion without one.Only the latter portion containing the range condition would be reordered.
Finally, there are typically no assignments of registers or variables associated with a range condition.The
branch variable may be loaded into a register preceding the first range condition.Any subsequent loads of
the branch variable in the sequence would be redundant and are usually eliminated by a compiler. Thus,
each range condition can usually be accomplished with just comparison and branch instructions since the
value of the branch variable is typically available in a register and the constants tested in the range condi-
tion are represented in the comparison instructions for most ranges of values.

Sometimes intervening side effects do exist between range conditions.Rather than attempting to
reorder such sequences directly, we instead determine if we can move the side effects out of the sequence
by duplicating code. Figure 6(a) shows a sequence of two range conditions with an intervening side effect
S, which is actually in a block containingR2. T1, T2, and T3 are target basic blocks of the range conditions.
P1, P2, and P3 are predecessor basic blocks of the initial range condition and the last two targets. Figure
6(b) portrays how the side effect can be moved after R2 by duplicatingS on both transitions from the range
condition. Notethat the transitions fromP2 andP3 require that the side effect S be placed in separate basic
blocks. Theresulting sequence of range conditions now has no intervening side effects and can be
reordered.

T1R1
T

F

S

R2 T2

T3

T

F

P1

P2

P3

T1R1
T

F

R2 S
T

S T2

T3

F

P2

P3

P1

(a) Original Sequence (b) Transformed Sequence

Figure 6: Moving Side Effects from a Sequence of Two Range Conditions

Theorem 2. A side effect between two consecutive range conditions can be duplicated to follow the second
range condition with no semantic effect on the program if the side effect does not affect the branch variable
and the sequence can only be entered through the first range condition.

Corollary 2. A consecutive sequence of range conditions can be transformed to have no intervening side
effects and still have the same semantic effect on the program if the side effects do not affect the branch
variable of the range conditions and the sequence is only entered through the first range condition.

-7-

Figure 7 shows a code segment from the unix utilitywc. The differentif statements that comparec
to constants are contiguous in the control flow except for firstif statement due to the side effect updating
charct .

for(;;) {
c = getc(fp);
if(c == EOF)

break;
charct++;
if(’ ’<c && c<0177) {

if(!token) {
wordct++;
token++;

}
continue;

}
if(c==’\n’) {

linect++;
}
else if(c!=’ ’ && c!=’\t’)

continue;
token = 0;

}

Figure 7: Source Code Segment fromwc

Figure 8(a) shows the corresponding control-flow graph for the code segment in Figure 7. Since the
side effect charct++ must be executed whenever c ! = EOF, the compiler duplicatescharct++ at
each target except for block 19, as shown in Figure 8(b). In general, for a given target the transformation
technique has to duplicate all side effects along the path from the head of the sequence to the target.

An unconditional jump instruction could be added to the end of each one of the copies containing a
duplicated side effect as shown in Figure 8(b). But that could possibly increase the dynamic number of
instructions and also would make the cost estimation more complex. In order to avoid these two problems,
a simple code duplication algorithm is used.The transformation technique duplicates basic blocks starting
at the target by following the fall-through transitions until we reach a block containing an unconditional
jump, return, or indirect jump instruction.Thus, an unconditional jump instruction need not be inserted
since we duplicated code until another unconditional transfer of control is encountered that would have
been executed anyway in that path.A similar approach is used when transforming code to improve branch
prediction [12].

5. PRODUCING THE PROFILE INFORMATION

The profiling code for reordering range conditions checks if the common variable is within ranges of
values. Thisprofile information had to be collected in a different manner from conventional profiling. One
may believe that instrumentation code could simply be inserted at the basic block containing a branch in a
reorderable sequence or inserted either on the fall-through or taken transition.However, this approach will
not be sufficient since each branch in a sequence of range conditions may not be encountered every time the
sequence is executed. Likewise, a range condition in an original sequence may be executed without first
executing the head of the sequence when there are multiple entry points to the sequence.A compiler needs
to know how often each range condition in the sequence would have a transition out of the sequence given
it is executed when the head of the sequence is encountered.The instrumentation code for obtaining profile
information about the sequence is entirely inserted at the head of the sequence to check every range condi-
tion in the sequence. This involves duplicating the instructions associated with each branch as instrumenta-
tion code. However, additional ranges have to be determined from the ones calculated by the algorithm in
Figure 4.

-8-

B15

B30

B27

B26

B23

B19 B19

(a) Original CFG

c==EOF?

charct++

32<c &&

c<127?

c==10?

c==32?

c==9?

c==EOF?

c<127?

32<c &&

c==10?

c==32?

c==9?

charct++;

goto B15;

goto B30;

charct++;

charct++;

goto B27;

goto B26;

charct++;

goto B23;

charct++;

(b) CFG after Duplicating Side Effects

Figure 8: Control Flow Graph for Code Segment in Figure 7

Definition 9. An explicit range is a range that is checked by a range condition.

Definition 10.A default range is a range that is not checked by a range condition.

Consider the original sequence of range conditions in Figure 9(a). There are additional ranges asso-
ciated in the default target TD since these ranges will span any remaining values not covered by the other
ranges. Itis assumed in this figure thatMIN < c1, c2+1 < c3, and c4 < MAX. Figure 9(b) shows an equiv-
alent sequence with these default ranges explicitly checked. Figure9(c) shows a reordered sequence of
range conditions, where the range condition for the last default range in Figure 9(b) is placed first in the
sequence. Oncea point is reached in the sequence where there is only a single target possible, then all
remaining range conditions need not be explicitly tested, as shown in Figure 9(d).We calculated these
remaining ranges by sorting the explicit ranges and adding the minimum number of ranges to cover the
remaining values.

All of the ranges, both explicit and default, are checked by inserting instrumentation code at the head
of the sequence of branches. Thus, the code associated with Figure 9(a) would require 5 ranges to be
checked and only 1 of 5 counters associated with this sequence would be incremented each time the head of
the sequence of branches is encountered. The instrumentation code that would be inserted in the assembly
file for the sequence in Figure 9(a) is illustrated at the source code level in Figure 10.

-9-

T

F

P

R1 T1 [c1..c2]

T
R2 T2 [c3..c4]

T

R3

R4

R5

TD

T

T

T

[MIN..c1-1]

[c2+1..c3-1]

F

F

F

(b) Equivalent Original Sequence

[c4+1..MAX]

T1

P

R1
T

[c1..c2]

TD

[c2+1..c3-1]

R2 T2 [c3..c4]
T

[MIN..c1-1]

F

F

(a) Original Sequence

[c4+1..MAX]

R3

R4 TD

[MIN..c1-1]

[c2+1..c3-1]

T

T

F

F

T

F

F

P

T

T
R1

R2

T1 [c1..c2]

R5

T2 [c3..c4]

(c) Reordered Sequence

[c4+1..MAX]

T

F

F

P

T

T
R1

R2

T1 [c1..c2]

R5

T2 [c3..c4]

TD

F

[MIN..c1-1]

[c2+1..c3-1]

(d) Equivalent Reordered Sequence

[c4+1..MAX]

Figure 9: Example of Reordering Default Range Conditions

unsigned int count[5];
...
/* start of instrumentation code testing branch variable v*/

/* counters for sequence in Figure 9(a)*/

if (v < c1)
count[0]++; /* [MIN..c1-1] */

else if (c1 <= v && v <= c2)
count[1]++; /* [c1..c2]*/

count[2]++; /* [c2+1..c3-1]*/

count[3]++; /* [c3..c4]*/

else if (c2+1 <= v && v <= c3-1)

else if (c3 <= v && v <= c4)

else
count[4]++; /* [c4..MAX] */

/* first branch in R1 of Figure 9(a)*/
...

Figure 10: Instrumentation Code for Obtaining Profile Information
for the Sequence of Branches in Figure 9(a)

6. SELECTING THE SEQUENCE ORDERING

The ordering for a reorderable sequence of range conditions is chosen by using the items specified in
the following definitions.

Definition 11. pi is the probability that range conditionRi will exit the sequence of range conditions.

Eachpi is calculated using the profile information indicating how often the corresponding range condition
Ri would exit the sequence if it is executed. Notethat eachpi is independent since the ranges are nonover-
lapping. Theaccuracy of this probability depends on the correlation of the branch results between using the
training data set and the test data set.It has been found that conditional branch results can often be accu-
rately predicted using profile data [13].

Definition 12. ci is the cost of testing range conditionRi.

Eachci is estimated by determining the number of instructions required for the corresponding range condi-
tion. Thiscost includes the conditional branch(es), associated comparison(s), and any instructions that pro-
duce the values being compared.(A more accurate cost estimate could be obtained by estimating the
latency and pipeline stalls associated with these instructions.) Some factors of the cost can vary depending
upon the ordering of range conditions selected. In these cases, a conservative estimation of the cost was

-10-

used.

Definition 13. TheExplicit_Cost([R1,...,Rn]) is the estimated cost of executing a sequence of n range con-
ditions when one of the n range conditions will be satisfied.

The explicit cost of a sequence of range conditions is calculated as a sum of products.One factor is the
probability that a range condition will be reached and will exit the sequence, which is equal to the probabil-
ity that the range condition will be satisfied since the range conditions are associated with nonoverlapping
ranges. Theother factor is the cost of performing the instructions in that range condition and all preceding
range conditions in the sequence. Equation 1 represents the explicit cost of executing a sequence ofn range
conditions, where every range associated with the sequence is explicitly checked.

(1)Explicit_Cost([R1, . . . ,Rn]) = p1c1 + p2(c1 + c2) + . . .+ pn(c1 + c2 + . . .+ cn)

This explicit cost can be alternately expressed using summations.

Explicit_Cost([R1, . . . ,Rn]) =
n

i=1
Σ(pi

i

j=1
Σ ci)

Theorem 3. A reorderable sequence of two consecutive explicit range conditions can be optimally ordered
with respect to the probability and cost estimates as [R1,R2] whenp1/c1 ≥ p2/c2.

Corollary 3. A reorderable sequence of explicit range conditions can be optimally reordered as [R1, R2, ...,
Rn], whenp1/c1 ≥ p2/c2 ≥ ... pn/cn with respect to the probability and cost estimates.

Intuitively, this means that it is desirable to first execute the range conditions that have a high probability of
exiting the sequence along with a low cost.

However, there is also a default cost, which occurs when no range condition is satisfied and the con-
trol transfers to the default target. Thedefault cost is shown in Equation 2 and Equation 3 shows the com-
plete cost of a sequence, where only the firstn ranges are explicit.

(2)Default_Cost([R1, . . . ,Rn]) = (1 − (p1 + . . .+ pn))(c1 + . . .+ cn)

(3)Cost([R1, . . . ,Rn]) = Explicit_Cost([R1, . . . ,Rn]) + Default_Cost([R1, . . . ,Rn])

Once only a single target remains, then the range conditions associated with that target need not be
tested. Consideragain the example in Figure 9(a). The three targets of the range conditions areT1, T2, and
TD. Each of these targets could be potentially used as the default target and its associated range conditions
would not have to be tested. TheTD target has three associated ranges. If any of these ranges are explic-
itly checked, then Theorem 3 should be used to establish its best position relative to the other explicitly
checked range conditions to achieve the lowest cost for the sequence.If TD is used as the default target,
then at least one of the three range conditions should not be explicitly checked.

Definition 14. mindefault(Ti) is the minimum cost of any ordering of a range condition sequence, whereTi

is used as the default target.

For each potential default target having m associated ranges, there are 2m possible combinations of
these range conditions that do not have to be explicitly checked. We used the orderingp1/c1 ≥ ... ≥ pm/cm

between them ranges of a target to consider onlym+1 possible combinations of default range conditions,
{{}, { Rm}, { Rm-1,Rm}, ..., {R1,...,Rm}}. W e selected the lowest cost combination of default ranges by cal-
culating the minimum cost of the sequence excluding the range conditions associated with each of these
sets. Assumethat t is the number of unique targets out of the sequence.We then calculate the minimum of
{ mindefault(T1), mindefault(T2), ..., mindefault(T t)}. Note that only the cost ofn+1 sequences have to
be considered, wheren is the total number of ranges in the sequence.

-11-

Our approach is not guaranteed to be optimal.However, we also implemented an exhaustive
approach to find the lowest cost sequence.We discovered that our approach always selected the optimal
sequence for every reorderable sequence in every test program for the training data sets.Thus, selecting
among them combinations of default range conditions serves as an excellent heuristic.

Equation 4 represents the cost of executing a sequence ofn-1 explicitly checked range conditions,
where only range conditioni is a default range.

Cost([R1, . . . ,Ri−1,Ri+1,. . . ,Rn]) = p1c1 + . . .+ pi−1(c1 + . . .+ ci−1)
+ pi+1(c1 + . . .+ ci−1 + ci+1) + . . .

+ pn(c1 + . . .+ ci−1 + ci+1 + . . .+ cn)
(4)+ pi (c1 + . . .+ ci−1 + ci+1 + . . .+ cn)

However, Equation 4 can be rewritten as Equation 5, where the cost of a sequence of range conditions with
a default range can be calculated by subtracting the difference from Equation 1.

(5)Cost([R1, . . . ,Ri−1,Ri+1,. . . ,Rn]) = Explict_Cost([R1, . . . ,Rn]) + pi (ci+1 + . . .+ cn) − ci (pi + . . .+ pn)

The ordering of a sequence of range conditions is selected using the algorithm in Figure 11.The
algorithm first uses Equation 1 to calculate the cost of the optimal sequence when all of the range condi-
tions are explicitly checked. Itthen uses Equation 5 to avoid calculating the complete cost of then different
sequences. Thecomplexity of the algorithm isO(n), wheren is the number of ranges in the sequence.

/* Assume the range conditions are sorted in descending order of Pi/Ci.
Calculate the cost with all range conditions explicitly checked.*/

Explicit_Cost = 0.0;
cost = 0;
FOR i = 1 to n DO

cost += C[i];
Explicit_Cost += P[i]*cost;

/* tcost[i] = Ci+1 + ... + Cn and tprob[i] = Pi + Pi+1 + ... + Pn.*/
tcost[n] = 0;
tprob[n] = P[n];
FOR i = n-1 downto 1 DO

tcost[i] = C[i+1] + tcost[i+1];
tprob[i] = P[i] + tprob[i+1];

/* Now find the sequence with the lowest cost.*/
Lowest_Cost = Explicit_Cost;
FOR each unique target T DO

Cost = Explicit_Cost;
Elim_Cost = 0;
FOR each range condition Ri in T from lowest

to highest P[i]/C[i] DO
Cost += P[i]*(tcost[i] - Elim_Cost) - C[i]*tprob[i];
IF Cost < Lowest_Cost THEN

Lowest_Cost = Cost;
Best_Sequence = current sequence;

Elim_Cost += C[i];

Figure 11: Sequence Ordering Selection Algorithm

7. IMPROVING THE SELECTED SEQUENCE

Other improvements are obtained after the ordering decision was made.A compiler can determine
the best ordering of the two branches within a single range conditionRi that is of type Form 4 [c1..c2]
shown in Table 1. The transformation technique assumed that both branches would be executed in estimat-
ing the cost for selecting the range condition ordering.If the result of the first branch indicates that the
range condition is not satisfied, then the second branch need not be executed. Assumethat such a range

-12-

condition,Ri, is the ith range condition in the sequence and is associated with the range[c1..c2]. The prob-
ability that the value of the common variable is below or above the range[c1..c2]at the point that the range
condition is performed can be determined as follows. We know that the range conditions associated with
the sequence[R1,R2,...,Ri-1] have already been tested and the value of the common variable cannot be in
these ranges ifRi is reached.Given that there aren total range conditions, we examined the probability for
each of the remaining ranges,[Ri+1,Ri+2,...,Rn], to determine the probability thatv < c1 versus thatv > c2.
Remember that these probabilities are obtained from the data obtained during the profile run, as stated in
the description of Definition 11. Based on these probabilities, the branch is placed first that is most likely
to determine if the range condition is not satisfied. In effect, we attempt to short circuit the second branch
in a bounded range condition.

Another improvement we perform after the range conditions have been ordered is to eliminate redun-
dant comparisons.For instance, consider Figure 12(a). There are two consecutive range conditions that
test if the common variable is in the ranges[const+1..max] and [const..const]. Figure 12(b) shows a
semantically equivalent comparison and branch for the first range condition.The comparison instruction
within the second range condition becomes redundant and it is eliminated.

first comparison:
first branch:

second comparison:
second branch:

IC = reg ? const;
PC = IC==0 then label2;

IC = reg ? const+1; IC = reg ? const;
PC = IC>0 then label1;

PC = IC==0 then label2;
(a) Before (b) After

PC = IC>=0 then label1;

Figure 12: Eliminating Redundant Comparisons Example

8. APPLYING THE TRANSFORMATION

Once a branch ordering has been selected, the reordering transformation is applied. Figure 13(a)
shows a control-flow segment containing a sequence of three explicit range conditions (R1, R2, and R3) and
two intervening side effects (S1 and S2). Figure13(b) shows the control flow with the duplicated range
conditions (R1’, R2’, and R3’) inserted. Thepredecessors of the first original range condition now hav e
transitions to the first duplicated range condition.We always duplicated the sequence of range conditions
before reordering since the duplicated sequence has only a single entry point at the first range condition
through which the sequence can be entered.Note that the targetTD in Figure 13(a) has a fall-through pre-
decessor. Code starting at the target blockTD is duplicated until an unconditional jump, return, or indirect
jump was found.This approach avoids increasing the number of unconditional jumps executed from the
reordered sequence and also simplified the estimation of the cost of a reordered sequence.A similar
approach is used when transforming code to improve branch prediction [12]. Figure 13(c) shows the con-
trol flow with the two side effects duplicated to allow the sequence of range conditions to be reordered.T2

is also duplicated to avoid an extra unconditional jump. Figure 13(d) shows the control flow after reorder-
ing the range conditions.R4 was one of the original default range conditions and is now explicit and first in
the duplicated sequence.R1’ andR2’ have also been reversed. Figure13(e) shows the code after applying
dead code elimination. The original range conditionsR1 and R2 are deleted, while range conditionR3

remains since it is still reachable from another path.Other optimizations, such as code repositioning and
branch chaining to minimize unconditional jumps, are also reinvoked to improve the code.

Figure 14 shows the point at which reordering of branches is performed in the compilation by thevpo
compiler. We decided to perform branch reordering late in the compilation process after most optimiza-
tions are performed.The same point is used during the first compilation pass to obtain the profile data.
Performing this optimization late in the compilation process gives the compiler more opportunities to
exploit the transformation and better estimates on the cost for each branch. The other optimizations that are
reinvoked after branch reordering are also depicted in italics in the figure.

-13-

P1

...

T2

P2

S1

T2

S1

S2

T3

T1 R1’

F

R2’

F

R3’

F

F
T

T

T

R1
T

F

S1

R2

F

S2

R3
T

TD

F

P3

...

T

S1

S2

TD

R1 T1
T

F

S1

R2

F

S2

R3 T3
T

TD

T2

T

...

F

P2

P1

(a) Original Sequence

R1 T1
T

F

S1

R2

F

S2

R3 T3
T

TD

...

T

T2

F

P1

P2

R1’

S1

R2’

F

R3’

S2

F

F

T

T

T

TD

...

P3

...

P3

(b) After Duplicating the Sequence

R4

F

F

R3’

F

F

R2’

R1’

R1
T

F

S1

R2

F

S2

R3
T

TD

F

P1

...

T2

P2
P3

...

T
T

T

T

S1

S2

T3

S1

T2

T1

...

T2

P2

F

F

R3’

FS1

S2

T

T3

R4

F

TD

T
R2’

R1’

T1

T

P1

S2

P3

...
S1
T2

TD

F

R3
T

(e) After Dead Code Elimination(d) After Reordering Range Conditions

T T

S2

S1S1

S2

TD

(c) After Eliminating Intervening Side Effects

Figure 13: Applying the Reordering Transformation

9. EXPERIMENTAL RESULTS

Table 2 shows the three different sets of heuristics used when translatingswitch statements. The
front end uses Heuristic Set I, which are the same heuristics used in thepcc front end [14], when compiling
for a SPARC IPC and a SPARC 20.The authors used the dual loop method [15] and found that indirect
jumps on the SPARC Ultra II were about four times more expensive than indirect jumps on the SPARC IPC
or SPARC 20.5 This was due to the SPARC Ultra II using branch prediction to reduce the cost of branches,
while the SPARC IPC and SPARC 20 did not use branch prediction.All three machines provided no sup-
port for indirect jump prediction.Therefore, Heuristic Set II used for the Ultra only generates an indirect
jump whenn ≥ 16. Finally, Heuristic Set III always generates a linear search, which achieves the maximum
benefit from reordering.

5 The dual loop method is used to estimate the time required for a short sequence of instructions, which is difficult to obtain di-
rectly using system calls. This method involves executing a loop for a large number of iterations.For our experiments three different
loops were produced. The first loop only has the instructions to execute the loop. The second loop includes a linear sequence of
branches comparing a common variable. Thethird loop has an indirect jump within the loop. One may determine the loop overhead
by timing the first loop.This loop overhead is then subtracted from the time required to execute the second and third loops.These
times are then divided by the number of loop iterations to estimate the time for the sequence of branches and the indirect jump.Thus,
we were able to determine the relative cost of executing branches versus indirect jumps on each of these three machines.

-14-

Branch Chaining
Useless Jump Elimination
Dead Code Elimination
Eliminating Unconditional Jumps by Code Positioning
Instruction Selection
Evaluation Order Determination
Global Instruction Selection
Register Assignment
Jump Minimization by Reversing Branches
Instruction Selection
DO {

Register Allocation
Instruction Selection
Common Subexpression Elimination
Dead Variable Elimination
Loop Optimizations Performed Innermost First

Code Motion
Recurrence Elimination
Loop Strength Reduction
Induction Variable Elimination

Useless Jump Elimination
Strength Reduction
Instruction Selection

} W HILE (change)
Branch Reordering
Dead Code Elimination
Eliminating Unconditional Jumps by Code Positioning
Branch Chaining
Useless Jump Elimination
Setup Entry and Exit
Filling Delay Slots

Figure 14: Ordering of Optimizations

Term Definition

n Number of cases in aswitch statement.
m Number of possible values between the first and last case.

Heuristic
Set Indirect Jump Binary Search Linear Search

I n ≥ 4 && ! indirect_jump !indirect_jump&&
m ≤ 3n && n ≥ 8 !binary_search

II n ≥ 16 && !indirect_jump !indirect_jump&&
m ≤ 3n && n ≥ 8 !binary_search

III never nev er always

Table 2: Heuristics Used for TranslatingswitchStatements

Measurements were collected on the code generated for the SPARC architecture by thevpocompiler
[1] using theeaseenvironment [17]. Table 3 shows the test programs used for this study. We chose these
non-numerical applications since they tend to have complex control flow and a higher density of condi-
tional branches.For each program we used realistic training and test data that were often similar to the
examples found in the man pages describing these applications.In each case the training data was smaller
than the test data, resulting in fewer instructions executed in the training run than in the test runs reported in
this section.Table 4 shows the dynamic frequency measurements that were obtained.The Original Insts

-15-

Program Description

awk Pattern Scanning and Processing Language
cb A Simple C Program Beautifier
cpp CCompiler Preprocessor
ctags GeneratesTag File for vi
deroff Removes nroff Constructs
grep Searchesa File for a String or Regular Expression
hyphen ListsHyphenated Words in a File
join RelationalDatabase Operator
lex Lexical Analysis Program Generator
nroff Text Formatter
pr PreparesFile(s) for Printing
ptx Generatesa Permuted Index
sdiff Displays Files Side-by-Side
sed StreamEditor
sort Sortsand Collates Lines
wc DisplaysCount of Lines, Words, and Characters
yacc Parsing Program Generator

Table 3: Test Programs

column contains the number of instructions executed with all ofvpo’s conventional optimizations applied.
We present in the rest of the table the percentage change in the number of instructions and branches
executed after reordering sequences of range conditions. The reordering transformation has significant ben-
efits both in reducing the total number of instructions and conditional branches. One may notice that the
transformation has a slight negative impact onhyphen, which occurred for a couple of reasons.First, dif-
ferent test input data is used as compared to the training input data for the results presented in the table.
When we use the same test input data as the training input data, the number of branches never increased.
Second, the reordering transformation is applied after all optimizations except for filling delay slots.

Switch
Translation
Heuristics

Set I Set II Set III

Original After Reordering Original After Reordering Original AfterReordering
Insts Insts Branches Insts Insts Branches Insts Insts Branches

Program

awk 13,611,150 -2.02% -4.19% 13,552,831 -2.97% -6.15% 13,651,335 -3.63% -7.44%
cb 17,100,927 -7.65% -15.46% 17,100,927 -7.65% -15.46% 19,662,207 -21.79% -37.41%
cpp 18,883,104 -0.13% -0.19% 18,880,116 -0.13% -0.19% 30,477,974 -28.37% -41.85%

ctags 71,889,513 -9.10% -14.72% 71,824,093 -9.02% -14.64% 72,222,399 -9.13% -14.73%
deroff 15,460,307 -1.53% -2.63% 15,451,383 -1.39% -2.38% 15,491,185 -1.40% -2.39%
grep 9,256,749 -3.60% -8.31% 9,938,414 -10.53% -22.04% 11,810,072 -32.04% -51.42%

hyphen 18,059,010 +3.42% +3.40% 18,059,010 +3.42% +3.40% 18,059,010 +3.42% +3.40%
join 3,552,801 -1.68% -2.12% 3,552,801 -1.68% -2.12% 3,552,801 -1.68% -2.12%
lex 10,005,018 -4.56% -10.39% 10,003,391 -4.57% -10.40% 10,028,151 -4.77% -10.73%

nroff 25,307,809 -2.48% -6.35% 25,313,527 -2.50% -6.39% 25,339,678 -2.53% -6.45%
pr 73,051,342 -16.25% -29.96% 73,051,352 -16.25% -29.96% 73,051,352 -16.25% -29.96%
ptx 20,059,901 -9.18% -13.28% 20,059,901 -9.18% -13.28% 20,059,901 -9.18% -13.28%
sdiff 14,558,535 -16.09% -37.03% 14,558,530 -16.09% -37.03% 14,558,530 -16.09% -37.03%
sed 14,229,310 -1.16% -2.03% 14,243,263 -1.28% -2.32% 15,368,724 -10.07% -17.01%
sort 23,146,400 -47.20% -57.38% 23,146,400 -47.20% -57.38% 23,146,434 -47.20% -57.38%
wc 25,818,199 -15.05% -26.26% 25,818,199 -15.05% -26.26% 25,818,199 -15.05% -26.26%

yacc 25,127,817 -0.25% -0.44% 25,127,817 -0.25% -0.44% 25,168,370 -0.47% -0.76%

av erage 23,477,465 -7.91% -13.37% 23,510,571 -8.37% -14.30% 24,556,842 -12.72% -20.75%

Table 4: Dynamic Frequency Measurements

-16-

Sometimes delay slots are filled from the other successor and do not execute a useful instruction.One
should note that inconsistent filling of delay slots sometimes resulted in increased performance benefits.
The transformation may also have very significant benefits when a program executes most of its instruc-
tions in a reorderable sequence, such as insort. Thus, the benefits depend on how often sequences of
branches could be profitably reordered and what percent of the total instructions executed did such
sequences comprise.

We found that the original default target in a sequence is almost always selected as the default target
for the reordered sequence.However, the profile data also indicates that one of the original default ranges
was frequently satisfied and was explicitly checked in the reordered sequence.Also, comparison instruc-
tions became redundant and were eliminated much more often when an original default range became an
explicit range in the reordered sequence.

The differences between using the different sets of heuristics indicates that the effectiveness of
branch reordering increases as indirect jumps become more expensive. It is also interesting to note that the
total number of instructions executed after reordering often decreases as fewer indirect jumps were gener-
ated. Infact, the average number of instructions for the test programs that were executed after reordering is
actually the smallest forSet III. This shows that profile information should be used to decide if an indirect
jump should be generated or branch reordering should instead be applied.

Branch prediction measurements were simulated by modifying theeaseenvironment [17] associated
with the vpo compiler [1]. Table 5 shows the branch prediction measurements that were obtained for the
SPARC Ultra II. The SPARC Ultra II uses branch prediction (for branches and not indirect jumps) and the
SPARC IPC and SPARC 20 do not.A branch predictor is often described using the notation (m, n), where
the predictor will use the behavior of the lastm branches encountered to choose from 2m predictors and
each predictor will usen bits [18]. The SPARC Ultra II supports branch prediction with a (0,2) predictor
with 2048 entries. The authors anticipated that the number of branch mispredictions would decrease since
the number of total branches executed was substantially reduced.Fewer mispredictions had been observed
when branches were coalesced into indirect jumps [16].However, the misprediction results for branch

Original Mispredictions Ratio of Decreased
Number of after Instructionsto

Mispredictions Reordering IncreasedMispredictions
Program

awk 243,027 -0.46% N/A
cb 440,712 +5.77% 51.41
cpp 389,566 -1.75% N/A
ctags 569,753 +225.50% 5.04
deroff 62,819 -2.87% N/A
grep 115,007 -4.30% N/A
hyphen 266,177 +84.12% -2.76
join 50,440 -5.62% N/A
lex 66,534 +1.93% 355.47
nroff 141,167 -0.93% N/A
pr 750,570 +0.33% 4,793.65
ptx 215,218 +37.58% 22.78
sdiff 156,440 -5.35% N/A
sed 83,579 -1.84% N/A
sort 171,619 -10.41% N/A
wc 481,767 +0.18% 4,519.65
yacc 373,825 +0.55% 30.28

av erage 269,307 +18.97% 1,221.94

Table 5: Branch Prediction Measurements Using a (0,2) Predictor with 2048 Entries

-17-

reordering were mixed. Nine of the test programs had fewer mispredictions after reordering and the
remaining eight had more. Overall, the average number of mispredictions increased.

After examining a few of the sequences that have been reordered, we realized that our branch
reordering transformation avoids the execution of the predictably executed branches. Consider the source
code in Figures 1(b) and 1(c), which would be translated into a loop containing branches comparingc to a
blank, newline, and an end-of-file character. Assume that most of the characters read in are letters, digits,
or punctuation symbols and there are rarely consecutive blanks or newlines. Whenc > ’ ’, all three
branches in Figure 1(b) and the branch checking ifc > ’ ’ in Figure 1(c) are all likely to be predicted
correctly. Whenc <= ’ ’, the branches in Figure 1(b) will have zero to three branches mispredicted.
However, the branches in Figure 1(c) will have one to four mispredictions. Thus, it appears that branch
reordering can increase the number of branch mispredictions.

One may question the value of branch reordering since it sometimes increases the number of branch
mispredictions. InTable 5 we show that the average ratio of decreased instructions executed to the
increased number of branch mispredictions was 1221.94 to 1 for the eight programs that exhibited an
increased number of mispredictions.Thus, the increase in mispredictions was on average far outweighed
by the benefit of reducing the number of instructions executed. Comparableresults were obtained using
other branch predictors as shown in Table 6. Again the benefit of reducing the number of instructions
executed was far more significant than the increase in the number of branch mispredictions.

(0,1) Predictor (0,2) Predictor (2,2) Predictor

Mispredic- Decreased Mispredic- Decreased Mispredic- Decreased
tions after Instructions to tions after Instructions to tions after Instructions to

Branch Increased Branch Increased Branch Increased
Reordering Mispredictions Reordering Mispredictions Reordering Mispredictions

Entries

32 +16.65% 681.20 +17.37% 1313.47 +17.05% 805.78
64 +21.96% 720.73 +21.15% 1082.02 +20.77% 640.08

128 +21.91% 8583.19 +20.60% 1091.28 +19.40% 661.92
256 +21.91% 972.87 +20.21% 953.70 +19.03% 569.88
512 +19.67% 5852.38 +18.09% 1200.25 +17.34% 681.98

1024 +20.45% 13331.71 +18.88% 1217.61 +18.44% 664.03
2048 +20.59% 13311.73 +18.97% 1221.94 +37.65% 653.02

av erage +21.43% +19.32% +21.38%

Table 6: Branch Prediction Measurements for a Variety of Predictor Configurations

The execution time measurements shown in Table 7 were obtained from the average reporteduser
times of ten executions of each program using the C run-time library functiontimes()on the SPARC IPC
and SPARC 20 and theptimeutility on the SPARC Ultra II. One should note that in Table 4 the measure-
ments from the code compiled by our compiler did not include the C run-time library code, which did con-
tribute to the execution times.Also, the benefits for the Ultra II were probably not as significant due to the
impact of issuing multiple instructions simultaneously and some additional branch mispredictions.The
SPARC Ultra II had a superscalar implementation and the SPARC IPC and SPARC 20 did not.

Machine HeuristicSet Average Execution Time

SPARC IPC I -4.94%
SPARC 20 I -5.57%
SPARC Ultra II II -3.65%

Table 7: Average Effect from Reordering on Execution Times

Table 8 shows static measurements for the same set of programs.There is only about a 5% increase
in the number of instructions generated.TheTotal Seqscolumn represents the total number of reorderable
sequences detected in each program.The Percent Reordered column indicates the percentage of these

-18-

Switch ReorderedSequences
Trans- Pro- Total
lation gram Percent Avg Seq Len

Heuris-
tics Orig AfterReorderedSeqs

Instructions

awk +1.91% 48 16.67% 2.88 3.75
cb +8.32% 12 83.33% 2.50 2.80
cpp +1.57% 15 33.33% 2.20 3.20

ctags +9.48% 28 39.29% 2.64 3.36
deroff +1.58% 38 23.68% 2.67 2.89
grep +3.51% 7 28.57% 3.50 4.50

hyphen +8.70% 3 100.00% 2.67 3.33
join +7.61% 8 37.50% 3.33 3.67
lex +8.55% 95 58.95% 2.55 2.95

nroff +1.62% 87 21.84% 2.95 3.53
pr +2.40% 10 50.00% 3.00 4.20
ptx +1.47% 4 75.00% 3.00 4.33
sdiff +3.48% 8 37.50% 2.67 3.33
sed +4.22% 34 47.06% 2.88 3.50
sort +3.68% 16 56.25% 2.33 2.78
wc +10.20% 3 33.33% 5.00 5.00

yacc +6.42% 35 77.14% 3.70 4.48

avg +4.98% 26 48.20% 2.97 3.62

Set I

awk +2.05% 56 19.64% 3.91 4.55
cb +8.32% 12 83.33% 2.50 2.80
cpp +1.57% 16 31.25% 2.20 3.20

ctags +9.47% 29 37.93% 2.64 3.36
deroff +1.76% 41 24.39% 3.00 3.20
grep +4.11% 19 36.84% 2.57 2.86

hyphen +8.70% 3 100.00% 2.67 3.33
join +7.61% 8 37.50% 3.33 3.67
lex +8.98% 103 58.25% 2.68 3.07

nroff +1.73% 93 25.81% 2.83 3.33
pr +2.62% 11 54.55% 3.67 4.67
ptx +1.47% 5 60.00% 3.00 4.33
sdiff +3.49% 10 40.00% 3.00 3.50
sed +4.32% 41 51.22% 2.81 3.29
sort +3.68% 16 56.25% 2.33 2.78
wc +10.20% 3 33.33% 5.00 5.00

yacc +6.42% 35 77.14% 3.70 4.48

avg +5.09% 29 48.67% 3.05 3.61

Set II

awk +1.97% 42 30.95% 18.15 18.69
cb +11.17% 6 66.67% 5.50 7.75
cpp +2.47% 16 37.50% 14.33 16.50

ctags +6.50% 21 38.10% 3.50 4.50
deroff +1.23% 34 20.59% 5.29 5.57
grep +3.29% 9 44.44% 8.00 8.50

hyphen +8.70% 3 100.00% 2.67 3.33
join +7.61% 8 37.50% 3.33 3.67
lex +6.25% 54 59.26% 6.16 7.00

nroff +1.71% 46 32.61% 6.00 6.87
pr +2.62% 11 54.55% 3.67 4.67
ptx +1.47% 5 60.00% 3.00 4.33
sdiff +3.49% 10 40.00% 3.00 3.50
sed +5.32% 25 48.00% 7.75 8.58
sort +3.76% 11 63.64% 3.57 4.29
wc +10.20% 3 33.33% 5.00 5.00

yacc +6.64% 29 79.31% 4.52 5.65

avg +4.96% 19 49.79% 6.08 6.96

Set III

Table 8: Static Measurements

sequences that were actually reordered. The single most common factor that prevented a sequence from
being reordered was that profile data indicated that the sequence was never executed. Usingmultiple sets

-19-

of profile data to provide better coverage of the branches in a program would increase this percentage.The
Avg Seq Lenshows the average number of branches in each reordered sequence before and after reordering.
The length of each reordered sequence typically increased since often one or more default ranges became
explicit after reordering.Heuristic Set III resulted in fewer sequences since no binary searches were gener-
ated when translatingswitch statements. Eachbinary search generated for Heuristic Sets I and II resulted
in several reorderable sequences being detected.

We also found that sometimes sequences did have intervening side effects. We found that 1.554% of
the sequences that were reordered initially had intervening side effects, such as the one shown forwc in
Figures 7 and 8. Note that this does not include side effects in the first range condition. In this case we just
split the initial basic block of the first range condition into two blocks, one containing the side effects and
one containing the comparison and branch instructions.

Figures 15, 16, and 17 show the distribution of the number of branches in reordered sequences for
each of the three heuristic sets. Note that most of the original sequences contained only two or three
branches. Thisshows that much of the benefit for reordering comes from short sequences of branches that
would never be translated into indirect jumps.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18
Original Sequence Length

Average: 2.97

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18
Reordered Sequence Length

Average: 3.62

Figure 15: Sequence Length for Heuristic Set I

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18
Original Sequence Length

Average: 3.05

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18
Reordered Sequence Length

Average: 3.61

Figure 16: Sequence Length for Heuristic Set II

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105
Original Sequence Length

Average: 6.08

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105
Reordered Sequence Length

Average: 6.96

Figure 17: Sequence Length for Heuristic Set III

-20-

Table 9 shows that the overhead of performing this optimization is relatively low. We obtained the
compilation times for each of the test programs with and without applying branch reordering. The compila-
tion time when performing the reordering code-improving transformation is only 1.044 times slower on
av erage than the normal compilation time.This includes not only the time for performing the code-improv-
ing transformation, but also the time required to reinvoke a number of additional transformations, as shown
in Figure 14.Note that this overhead does not include the first compilation pass. The execution time when
obtaining profile information is 2.545 times slower on average than normal execution time. The profiling
overhead can vary depending upon the frequency in which reorderable sequences of branches are encoun-
tered relative to the total number of instructions executed. However, similar profile information could be
used to support a variety of other code-improving transformations.

Program CompilationTime ProfilingTime

awk 1.035 1.514
cb 1.076 1.909
cpp 1.017 1.118
ctags 1.061 3.286
deroff 1.024 2.200
grep 1.030 1.800
hyphen 1.073 2.750
join 1.062 4.000
lex 1.072 2.429
nroff 1.052 2.105
pr 1.035 2.467
ptx 1.013 1.300
sdiff 1.026 2.231
sed 1.041 1.300
sort 1.037 7.714
wc 1.067 3.833
yacc 1.033 1.316

av erage 1.044 2.545

Table 9: Compilation and Profiling Time Overhead

10. CONCLUSIONSAND FUTURE WORK

This paper describes an approach for using profile information to decrease the number of conditional
branches executed by reordering branch sequences.An algorithm for detecting a reorderable sequence of
branches testing a common variable was presented.We also described techniques for transforming a
sequence of branches to make it reorderable. Profilingwas performed to estimate the probability that each
branch will transfer control out of the sequence.The most beneficial orderings for these sequences with
respect to profiling and cost estimates were obtained.The results showed significant reductions in the num-
ber of branches and instructions executed, as well as decreases in execution time.

There are several advantages of using the approach described in this paper for reordering branches.
First, the approach is simple to understand and implement. Second, we have shown that opportunities for
reordering sequences of branches to reduce the number of executed branches occur frequently in applica-
tions. Third,branches are expensive and the relative cost of executing branches compared to executing
other instructions is likely to increase as the complexity of pipelining and multiple issue architectures
grows. Finally, our approach may be a good fit for run-time optimization systems since the analysis
required for our transformation is relatively inexpensive.

There are several areas in which reordering branches could be extended. Asequence of range condi-
tions is one of several approaches that could be used to determine a target associated with the value of an
expression. Essentially, a sequence of range conditions is a linear search. Some of these other approaches
include performing a binary search, using a jump table, and hashing [9]. Profile data could be used to more
effectively apply these other approaches as a semi-static search method and to decide when each method or

-21-

a combination of methods is most beneficial.For instance, a sequence of 100 branches comparing a com-
mon variable to a compact number of cases may not guarantee that an indirect jump from a table is the best
approach. Ifa few of these cases dominate and the cost of an indirect jump is more expensive than a condi-
tional branch, then the compiler could instead generate a sequence of branches for these cases and coalesce
the remaining cases into a jump table.

A different type of sequence of branches that can be reordered using profile data would consist of
consecutive branches with a common successor. Figure 18(a) shows a C source code segment containing
relational and logical expressions and Figure 18(b) shows the corresponding control-flow graph. The
sequence of branches in blocks 1, 2, and 3 have block 4 as a common successor. Likewise, the sequence of
branches in blocks 4 and 5 have block 7 as a common successor. Figure 18(c) shows these two sequences
of branches after reordering. Note that a reorderable sequence of branches with common successors cannot
contain intervening side effects. Whileside effects could be moved out of such a sequence, the resulting
sequence would not contain a common successor block.Interprocedural analysis could be used to deter-
mine if invoked functions do not cause a side effect. Avoiding the execution of a function call, such as

T

T

T

T

F

F

F
T

F

F
7 6

a==01

2

3 b==2

f()==1

d==4

c==34

5

T

F

F

F

d==4

c==3

b==2

a==0

f()==1

1

5

2

4

3
T

T

F

F T

T

67

(d) Before Reordering Sequences (e) After Reordering Sequences

T1T2 T2 T1

a==0

f()==1

b==2

c==3

d==4

T

T

T

T

F

F

F
T

1

2

3

4

5

F

F
7 6

T

T

T

T

F

F

F
T

F

F
7 6

a==01

2

3 b==2

f()==1

d==4

c==34

5

(b) Before Reordering Branches (c) After Reordering Branches

T2 T1 T2 T1

if (a == 0 && f() == 1 && b == 2 || c == 3 && d == 4)
T1;

else
T2;

(a) C Source Code Segment

Figure 18: Reordering Branches with Common Successors

-22-

depicted in block 2, could have significant performance benefits.Figure 18(d) depicts that a sequence of
branches with a common successor can be viewed as a single block containing a branch since such a
sequence would have only two possible successors.The first sequence (blocks 3, 1, and 2) has two succes-
sors (blocks 5 and 6).Likewise, the second sequence (blocks 5 and 4) also has two successors (blocks 6
and 7). Figure 18(e) shows that these sequences can be reordered when there are no side effects between
the sequences.

Obtaining profile data for a sequence of branches with a common successor will differ from obtain-
ing profile data for a sequence of nonoverlapping range conditions testing a common variable. Whileat
most one range condition will be satisfied for a given execution of a sequence of nonoverlapping range con-
ditions testing the same branch variable, more than one branch in a sequence of branches with a common
successor could branch to the common successor. Thus, all combinations of branch results would have to
be obtained using an array of profile counters. This approach may be reasonable for a small sequence
length (e.g.n ≤ 7), which seem to handle most branch sequences with a common successor [19].

APPENDIX

Proof of Theorem 1: Consider the original and reordered sequences of range conditions in Figure 3.The
two sequences are semantically equivalent given that (1) the state of the program is equivalent in both
sequences when blocksT1, T2, and T3 are reached, (2) blocksT1, T2, and T3 are always reached in both
sequences under the same conditions, and (3) no new error exceptions are raised.

Condition 1 is satisfied since the range conditionsR1 andR2 have no side effects. Condition2 is satisfied
since the ranges associated withT1, T2, and T3 are nonoverlapping, there are no assignments in either range
condition that can affect the other, and the only predecessor of the second range condition is the first range
condition. Condition3 can be satisfied by considering the following two facts. First,no new error excep-
tions can be introduced after exiting the reordered sequence due to conditions 1 and 2. Second, no new
error exceptions can be introduced inR1 or R2 since the instructions in a range condition cannot raise error
exceptions.

Proof of Corollary 1: Suppose for sequences with length of 2, 3, ...,n, Corollary 1 is true. Now we need to
prove for a sequence with length ofn+1, [R1, R2, ..., Rn+1], is semantically equivalent to any sequence that
is an arbitrary permutation of these range conditions.

(i) Supposethe first range condition of the permutation isR1. Then the rest of the permutation is a per-
mutation of [R2, R3, ..., Rn, Rn+1], which is a sequence of lengthn and by induction hypothesis it is
equivalent to [R2, R3, ..., Rn, Rn+1]. In this case, the whole permutation is equivalent to [R1, R2, R3,
..., Rn, Rn+1]. We know this sequence is valid since this is the original order of the sequence.

(ii) Supposethe first range condition of the permutation isRi (i ≠ 1). Thenthe rest of the permutation is
a permutation of [R1, R2, ..., Ri-1, Ri+1, ..., Rn, Rn+1] (exceptRi), which is a sequence of lengthn and
it is equivalent to [R1, R2, ..., Ri-1, Ri+1, ..., Rn, Rn+1] (a sequence of lengthn without Ri). Sothe
whole permutation is equivalent to [Ri, R1, R2, ..., Ri-1, Ri+1, ..., Rn, Rn+1]. Sincethe sequence [Ri,
R1] has a length of 2 and thus is equivalent to [R1, Ri], so the whole sequence is equivalent to [R1, Ri,
R2, ..., Ri-1, Ri+1, ..., Rn, Rn+1]

Now R1 is the first range condition, by (i) we know that the whole permutation is equivalent to [R1,
R2, R3, ..., Rn, Rn+1].

Proof of Theorem 2: Consider the original and transformed sequences of range conditions in Figure 6.The
two sequences are semantically equivalent given that (1) state of the program is equivalent in both
sequences when blocksT2 andT3 are reached, (2) blocksT2 andT3 are always reached in both sequences
under the same conditions, and (3) no new error exceptions are raised.

Condition 1 is satisfied since the range conditionR2 in the transformed sequence has no side effects,S is
executed in both sequences whenT2 or T3 is reached after executingR2, and S is not executed ifT2 or T3 is
reached without executing R2. Condition 2 is satisfied sinceS does not affect the branch variable ofR2.

-23-

Condition 3 can be satisfied by noting that no new side effects are introduced in the transformed sequence.

Proof of Corollary 2: Suppose for sequences with lengthn, Corollary 2 is true. Now we need to prove for a
sequence with length ofn+1, [R1, R2, ..., Rn+1], as shown in Figure 19(a), it can be transformed to have no
intervening side effects and still have the same semantic effect on the program.

Consider the sequence [R1, R2, ..., Rn], which is of lengthn. By induction hypothesis we know that this
sequence can be transformed to have no intervening side effects and still have the same semantic effect on
the program, as shown in Figure 19(b). Since the only predecessor of range conditionRn+1 is range condi-
tion Rn, so the duplicated side effectsS1, S2, ..., Sn-1 can be inserted directly intoRn+1 rather than creating
a new block containingS1, S2, ..., Sn-1. Now consider the sequence [Rn, Rn+1]. It satisfies the condition of
theorem 2 and as a result the side effect S1, S2, ..., Sn can be moved out of the sequence as shown in Figure
19(c). Combining the above transformations together, we hav eproved the corollary.

P1

Rn+1

TD

P3 Tn+1

P2

Rn

T2

T1

R2

R1

P1

TD

P3 Rn+1 Tn+1

P2

Tn

Rn

T2

R2

T1

Tn+1

R1

Tn

P2

P3

TD

Rn+1

Rn

T2R2

T1R1

P1

S1

Sn-1

Sn

S1

Sn-1

Sn

S1

Sn-1

Sn

Sn-1

S1Sn-1

S1

Sn

S1

S1

...

F

T

T

T

T

F

F

F

F

T

T

...

F

T

T

T

F

T

F

T

F

...
T

F

(a) Original Sequence (b) Intermediate Sequence (c) Final Transformed Sequence

...

...

...

...

F

F

...

Figure 19: Moving Side Effects from a Sequence ofn+1 Range Conditions

Proof of Theorem 3: An optimal ordering of two consecutive nonoverlapping range conditions can be
achieved when the explicit cost of the selected ordering is less than or equal to the explicit cost of the other
ordering.

Explicit_Cost([R1, R2]) ≤ Explicit_Cost([R2, R1])
p1c1 + p2(c1 + c2) ≤ p2c2 + p1(c2 + c1)

p1c1 + p2c1 + p2c2 ≤ p2c2 + p1c2 + p1c1

p2c1 ≤ p1c2

p2/c2 ≤ p1/c1

p1/c1 ≥ p2/c2

Proof of Corollary 3: Suppose for a sequence of lengthn, Corollary 3 is true. In order to prove [R1, R2, ...,
Rn+1] is the optimal order for an+1 length sequence, we need to prove that an arbitrary permutation [Ri1,
Ri2, ..., Rin+1] will have an explicit cost that is at least as great asExplicit_Cost([R1, R2, ..., Rn+1]).

-24-

(i) Assumethe first condition isR1. If we only consider a subsequence formed by [R2, R3, ..., Rn+1],
then it is a sequence of lengthn. By induction, [R2, R3, ..., Rn+1] should have the lowest explicit
cost. TheExplicit_Cost([Ri2, Ri3, ..., Rin+1]) is greater than or equal to theExplicit_Cost([R2, R3, ...,
Rn+1]). This proves that the sequence [R1, R2, ..., Rn+1] has a cost that is less than or equal to the
cost of the sequence [R1, Ri2, ..., Rin+1].

(ii) Assumethe first condition isRi, where i ≠ 1. By applying the induction hypothesis and the result
given in (i), we have:

Explicit_Cost([Ri , Ri2, . . . ,Rin+1
])

(sortRi2, ..., Rin+1 by p/c)≥ Explicit_Cost([Ri , R1, . . . ,Rn+1])
(swapR1 andRi)≥ Explicit_Cost([R1, Ri , . . . ,Rn+1])

(sortRi, ..., Rn+1 by p/c)≥ Explicit_Cost([R1, R2, . . . ,Rn+1])

ACKNOWLEDGEMENTS

The authors thank Jack Davidson for allowing vpo to be used for this research. Michael Sjödin,
Chris Healy, Richard Whaley, and the anonymous reviewers provided several helpful suggestions that
improved the quality of the paper. This research was supported in part by the National Science Foundation
grants EIA-9806525, CCR-9904943, and EIA-0072043.

REFERENCES
1. M. E. Benitez and J. W. Davidson, “A Portable Global Optimizer and Linker,” Proceedings of the

SIGPLAN ’88 Symposium on Programming Language Design and Implementation, pp. 329-338
(June 1988).

2. J.Dongarra and A. Hinds, “Unrolling Loops in FORTRAN,” Software Practice & Experience9 pp.
219-226 (1979).

3. J.W. Davidson and S. Jinturkar, “Aggressive Loop Unrolling in a Retargetable, Optimizing Com-
piler,” Proceedings of Compiler Construction Conference, pp. 59-73 (April 1996).

4. F. Allen and J. Cocke, “A Catalogue of Optimizing Transformations,” pp. 1-30 inDesign and Opti-
mization of Compilers, ed. R. Rustin,Prentice-Hall, Englewood Cliffs, NJ (1971).

5. F. Mueller and D. B. Whalley, “Av oiding Conditional Branches by Code Replication,” Proceedings of
the SIGPLAN ’95 Conference on Programming Language Design and Implementation, pp. 56-66
(June 1995).

6. R.Bodik, R. Gupta, and M. Soffa, “Interprocedural Conditional Branch Elimination,” Proceedings of
the SIGPLAN ’97 Conference on Programming Language Design and Implementation, pp. 146-158
(June 1997).

7. G.R. Uh and D. B. Whalley, “Coalescing Conditional Branches into Efficient Indirect Jumps,” Pro-
ceedings of the International Static Analysis Symposium, pp. 315-329 (September 1997).

8. M. Schlansker, S. Mahlke, and R. Johnson, “Control CPR: A Branch Height Reduction Optimization
for EPIC Architectures,” Proceedings of the SIGPLAN ’99 Symposium on Programming Language
Design and Implementation, pp. 155-168 (May 1999).

9. D. A. Spuler, “Compiler Code Generation for Multiway Branch Statements as a Static Search Prob-
lem,” Technical Report 94/03, James Cook University, Townsville, Australia (January 1994).

10. B. Calder and D. Grunwald, “Reducing Branch Costs via Branch Alignment,” Proceedings of the
Sixth International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 242-251 (October 1994).

11. C. Young, D. S. Johnson, D. R. Karger, and M. D. Smith, “Near-optimal Intraprocedural Branch
Alignment,” Proceedings of the SIGPLAN ’97 Conference on Programming Language Design and
Implementation, pp. 183-193 (June 1997).

12. C.Young and M. D. Smith, “Improving the Accuracy of Static Branch Prediction Using Branch Cor-
relation,” Proceedings of the Sixth International Conference on Architectural Support for

-25-

Programming Languages and Operating Systems, pp. 232-241 (October 1994).

13. J.A. Fisher and S. M. Freudenberger, “Predicting Conditional Branch Directions from Previous Runs
of a Program,” Proceedings of the Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 85-95 (October 1992).

14. S.C. Johnson, “A Tour Through the Portable C Compiler,” Unix Programmer’s Manual, 7th Edition
2B p. Section 33 (January 1979).

15. R.M. Clapp, L. Duchesneau, R. A. Volz, T. N. Mudge, and T. Schultze, “Tow ard Real-Time Perfor-
mance Benchmarks for Ada,”Communications of the ACM19(8) pp. 760-778 (August 1986).

16. G.Uh, Effectively Exploiting Indirect Jumps,PhD Dissertation, Florida State University, Tallahassee,
FL (December 1997).

17. J.W. Davidson and D. B. Whalley, “A Design Environment for Addressing Architecture and Com-
piler Interactions,”Microprocessors and Microsystems15(9) pp. 459-472 (November 1991).

18. J.Hennessy and D. Patterson,Computer Architecture: A Quantitative Approach, Second Edition,
Morgan Kaufmann, San Francisco, CA (1996).

19. M. Yang, Improving Performance by Branch Reordering,Masters Thesis, Florida State University,
Tallahassee, FL (1998).

-26-

