Fast Memory Bank Assignment for Fixed-point
Digital Signal Processors

JEONGHUN CHO

Korea Advanced Institute of Science and Technology
YUNHEUNG PAEK

Seoul National University

and

DAVID WHALLEY

Florida State University

Most vendors of digital signal processors (DSPs) support a Harvard architecture, which has two or
more memory buses, one for program and one or more for data and allow the processor to access
multiple words of data from memory in a single instruction cycle. Also, many existing fized-point
DSPs are known to have an irregular architecture with heterogeneous registers, which contains
multiple register fles that are distributed and dedicated to different sets of instructions. Although
there have been several studies conducted to efficiently assign data to multi-memory banks, most
of them assumed processors with relatively simple, homogeneous general-purpose registers. Thus,
several vendor-provided compilers for DSPs that we examined were unable to efficiently assign
data to multiple data memory banks; thereby often failing to generate highly optimized code for
their machines. As a consequence, programmers for these DSPs often manually assign program
variables to memories so as to fully utilize multi-memory banks in their code. This paper reports
our recent attempt to address this problem by presenting an algorithm that helps the compiler to
efficiently assign data to multi-memory banks. Our algorithm differs from previous work in that
it assigns variables to memory banks in separate, decoupled code generation phases, instead of a
single, tightly-coupled phase. The experimental results have revealed that our decoupled algorithm
greatly simplifes our code generation process; thus our compiler runs extremely fast, yet generates
target code that is comparable in quality to the code generated by a coupled approach.

Categories and Subject Descriptors: D.F4dgramming Language$: Processors-eode generation/ compil-
ers/optimizationC.1.2 [Processor Architecture§: Multiple Data Stream ArchitecturesParallel processors

General Terms: Algorithms
Additional Key Words and Phrases: Compiler, dependence analysis, DSP, dual memory banks,
maximum spanning tree, and non-orthogonal architecture

Corresponding author’ s address: Yunheung Paek, School of Electrical Engineering, Seoul National University,
Seoul 151-744, Koregjpaek@ee.snu.ac.kr . This research was supported in part by NSF grants CCR-
9904943, EIA-0072043, and CCR-0208892.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

© 20YY ACM 1084-4309/20YY/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY, Pages 1-20.

2 . Jeonghun Cho et al.

1. INTRODUCTION

DSPs are vital to the design of embedded systems today. As performance and cost require-
ments from the embedded system market become increasingly demanding, DSP archi-
tectures are increasing in complexity, which continuously drives state-of-the-art compiler
technology to the limit in order to generate the code that meets the desired performance
constraints. Often, as indicated by most system designers [Liem 1997], the lack of pow-
erful compilers becomes the greatest stumbling block in the development of embedded
systems.

As the speed gap between processor and memory is steadily growing, numerous ad-
vanced memory architectures have been proposed to remove the memory bottleneck. As
one such effort, system-on-chip DSP architectures support on-chip memory which is inter-
nal to the processor for rapid data access, thus filling the speed gap between the processor
and off-chip main memory. Although the size of internal memory is quite limited, access-
ing the off-chip memory causes great performance overhead in terms of time and energy;
hence, the code embedded in the system is generally designed to fit into the on-chip mem-
ory. Therefore, this paper focuses on utilizing the on-chip memory architecture.

Conventional memory systems use a von Neumann architecture, which has a single
memory bank with shared data and address bus shown in Figure 1(a). Efficient utilization
of on-chip internal memory is extremely important in embedded applications. In order
to better utilize this internal memory, many DSPs employ a Harvard architecture which
consists of program and data memory banks shown in Figure 1(b). In this architecture,
two memory banks are connected through two independent address and data buses. One
obvious advantage of a Harvard architecture, therefore, is that it can simultaneously access
one instruction word and one data word in a single instruction cycle.

Program Data
Memory £
Memory Memory
T 'y $ $ Y 'y
v Program meméry addres bus
4+ address bus
Program memory datp bus
data bus f Data memory addresg bus
‘ e Data memory data bus
ALU ALU
Processor Processor
(a) Von Neumann Memory Architecture (b) Harvard Memory Architecture

Fig. 1. Comparison of memory architectures

To maximize the speed of data memory accesses, the original design of a Harvard ar-
chitecture has been enhanced by the vendors of DSPs. In one design supported by many
DSPs, such as Analog Device ADSP2100, DSP Group PineDSPCore, Motorola DSP56000
and NEC uPD77016, three memory banks are provided: a program memory bank plus two
data memory banks each with an independent address space. These three memory banks
increase the memory bandwidth by allowing the machine to access the program and the
two data memories in parallel. This type of memory architecture has been shown to be
effective for many DSP functions such as a FIR filter

e(n) = XN a(i) x b(n —).
In fact, a C implementation of the FIR filter shown in Figure 2(a) can be executed at an

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

Fast Memory Bank Assignment for Fixed-point Digital Signal Processors . 3

ideal rate of one tap per instruction cycle on a DSP with the three memory banks. However,
it can be clearly seen from the code in Figure 2(b) that this ideal speed of execution is only
possible with one condition: the two variable§)(andb[N-1-1]) to befetched for the

mac instruction should be assigned to different data memory banks. In the example, arrays
a andb are assigned respectively to ttheal data memory bankséand Y, thereby enabling

the processor to compute a single filter tap per cycle.

int fir filter(int *a, int *b) {
intc =0, i rep #N-1
for (i = 0; i < N; i++) mac x0,y0,a x:(r0)+,x0 y:(r4)-,y0
c += afi] * b[N-1-i]; macr x0,y0,a (r4)+
return c; } movep a\y:.c
(a) An example of C code for a FIR filter (b) An example of assembly code of DSP56000

Fig. 2. Implementation of a finite impulse response (FIR) filter

Unfortunately, several existing vendor-provided compilers that we tested were not able
to exploit this hardware feature of multiple memory banks efficiently; thereby failing to
generate highly optimized code for their target DSPs. This inevitably implies that the
programmers for these DSPs should hand-optimize their code in assembly to fully exploit
dual data memory banks, which makes programming the processors quite complex and
time consuming.

The objective of this work is to describe our implementation of a code generation algo-
rithm that helps the compiler to efficiently assign data to multi-memory banks for DSPs.
This paper extends our earlier findings and brief discussion in [Cho and Paek 2002] by
presenting more recent progress in exploiting this hardware feature and analyzing in depth
the results of a more extensive experiment. This paper introduces two novel techniques
respectively based on MST (maximum spanning tree) and graph coloring algorithms, for
register and multi-memory bank assignment for DSPs.

In Sections 2 and 3, we start our discussion with an overview of our approach to address
the memory bank assignment problem by comparing it with previous compiler approaches
related to ours. We provide in Section 4 an overview of the multi-memory bank architecture
that we are targeting. We detail in Sections 5 and 6 our memory bank assignment and
additive techniques, which includes assignment of variables to memory banks via MST and
graph coloring algorithms. We then present in Section 7 the experimental results with a set
of DSP benchmarks on a commercial DSP and compare the performance of our compiler
with others. Finally we conclude our discussion in Section 8.

2. PREVIOUS WORK

Not until recently had code generation for DSPs or other types of embedded processors
received much attention from the main stream of conventional compiler research. One
prominent example of a compiler study targeting DSPs may be that of Araujo and Ma-
lik [Araujo and Malik 1998] who proposed a linear-time optimal algorithm for instruc-
tion selection, register allocation, and instruction scheduling for expression trees. Like
most other previous studies for DSPs, their algorithm was not designed specifically for the
multi-memory bank DSPs.

One of the early studies that addressed this problemerhory bank assignmefar
DSPs is that of Saghir et al. [Saghir et al. 1996]. In their work, they presented two algo-
rithms: compaction-based data partitioniradpartial data duplication However, their

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

4 . Jeonghun Cho et al.

algorithms assumed a processor architecture featuring a register file with a set of general-
purpose registers, which are commonly found in floating-point DSPs and general-purpose
processors (GPPs). Our work differs from theirs because we tirged-poim@SPs, such

as DSP56000 and ADSP2100, which are widely available in the DSP market today [Eyre
and Bier 1998]. One noticeable hardware feature of fixed-point DSPs is that their register
architecture is ratheineterogeneousThat is, their architecture lacks a large number of
centralized general-purpose registers; instead, it has multiple small register files where dif-
ferent files are distributed and dedicated to different sets of functional units. An example
of such an architecture is displayed in Figure 3. Although some techniques may be com-
monly applicable to both architectures despite such differences, the heterogeneous register
architecture adds more complexity to the original problem of memory bank assignment
with homogeneous registers, which drives the compiler to take a different approach, as
indicated in [Sudarsanam and Malik 2000]. In fact, in our earlier work [Jung and Paek
2001], we also reached a similar conclusion that conventional code generation techniques
originally developed for GPPs often become obsolete for a DSP.

XDB

¥oB [

N g

AGU

Fig. 3. Motorola DSP56000 data path with dual data memory banks X and Y

By the same token, our approach differs fromB@Nproject at MIT [Barua et al. 2001]
since their memory bank assignment techniques neither assume heterogeneous registers
nor even fixed-point DSP architectures. However, some of theimory disambiguation
techniques, calledquivalence-class unifi catemdmodulo unrolling may be applicable
in part to memory bank assignment for DSPs.

Panda’ s work [Panda 1999] also differs from ours because he handled the bank as-
signment problem in the area of high-level synthesis, not of compiler. In his work, the
application-specific customization of memory banks for arrays was addressed during be-
havioral synthesis by using the k-way min-cut graph partitioning algorithm. Because he
focused on minimization of memory access delay and area from the standpoint of be-
havioral synthesis, he did not consider conflict constraints on heterogeneous registers and
memory banks as we do for a given fixed-point DSP at compile time.

In [Powell et al. 1992], Powell et. al, used a simple greedy method to handle multi-
ple memory banks. In their approach, they synthesized optimized assembly code from
signal flow block diagrams directly. Using a library, block diagrams are instantiated to a
meta-assembly language with symbolic register and memory references. After a simple
optimization of the meta-assembly code, scheduling and register allocation are performed.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

Fast Memory Bank Assignment for Fixed-point Digital Signal Processors . 5

The assignment of program variables to the X/Y banks is performed with an alternat-
ing approach, according to their access sequence. The efficiency of this simple approach
strongly depends on the hand-coded library of the meta-assembly blocks, and the alternate
partitioning cannot expect a good quality code for complex programs.

Most recently, this bank assignment problem was addressed by Leupers et. al,[Leupers
and Kotte 2001]. In their approachdata dependency grapgidDG) is first constructed
for each assembly code function. For a given DDG,ittterference graplis constructed
in such a way that potential parallelism is reflected by graph edges. After a step for re-
ducing the interference graph size, they appliedrdeger Linear Programming (ILP)o
partitioning for the interference graph. The ILP approach works well for small bench-
mark programs. However, the ILP partitioning technique would take an enormous amount
of compilation time for a very large program; thereby requiring further study for more
heuristics.

TheSPAMproject is closely related to our work, which was conducted by researchers at
Princeton and MIT [Araujo and Malik 1998; Sudarsanam and Malik 2000]. In their work,
they presented experimental results showing that the SPAM compiler can generate highly
optimized code for a commercial DSP in most cases. However, the results also showed
evidence that the compilation time may increase substantially for large applications just
in the case of [Leupers and Kotte 2001], and that the compiler may not reach an optimal
solution even after a long exhaustive search. Since compilation speed is relatively of less
importance for compilers targeting embedded systems, even this possible long compilation
time may be still tolerable for some compilers which put more emphasis on the code quality
than compilation time. However, if this is excessively too long, it could be a flaw for some
other industry compilers due to their ever increasing demands on faster time-to-market
embedded software design and implementation.

3. MOTIVATION OF OUR APPROACH

In our quest for a more practical algorithm, we have found that the long compilation time

in these previous studies results from their attempt to deal with memory bank assignment
in a single, combined step, where several code generation phases are coupled and simulta-
neously considered to address the issue. In this sense, we deem that thegtcopkeal
approachfor memory bank assignment. In their approaierence allocatiorfregister
allocation plus memory bank assignment) ocainsultaneouslythat is, temporaries are
allocated to physical registers at the same time they are assigned the memory banks. To
solve their simultaneous reference allocation problem, they butlonatraint graphthat
represents multiple constraints under which an optimal solution to their problem is sought.
Unfortunately, these multiple constraints in the graph turn their problem into a typical mul-
tivariate optimum problem which is an NP-complete problem. In this coupled approach,
multivariate constraints are unavoidable as various constraints on many heterogeneous reg-
isters and multi-memory banks should be all involved to find an optimal reference alloca-
tion simultaneously. As a consequence, to avoid using such an expensive algorithm, they
inevitably resorted to a heuristic algorithm, calddhulated annealingpbased on a Monte

Carlo approach [Gould and Tobochnik 1988]. However, their paper reported [Sudarsanam
and Malik 2000] that even with this heuristic, their compiler still had to take more than
1000 seconds even for a moderately sized program. This is mainly because their constraint
graph with so many constraints became rapidly large and complicated as the code size

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

6 . Jeonghun Cho et al.

grew.

We see that the slowdown in compilation is obviously caused by the intrinsic complexity
of their coupled approach. Thus in our work, we eased the problem by choosing a more
relaxed approach where we carefullgcoupledhe code generation process into several
small phases. The phases were sequentialized, and local optimizations were applied along
with the sequence to form a finakar-optimalbank assignment. More specifically, in
our approach, register allocation and assignment are decoupled from code compaction and
memory bank assignment; thereby, the binding of physical registers to temporaries comes
only after code has been compacted and variables assigned to memory banks.

Of course, one would expect a degradation of our output code quality due to the limita-
tions newly introduced by considering physical register binding separately from memory
bank assignment. In fact, conventional wisdom holds that coupled approaches always do
better than decoupled ones because all factors that may affect the process of finding an
optimal solution can be simultaneously considered before any decision is made. This is
quite true in principle. However, in practice, a coupled approach may increase the cost of
computation significantly while only achieving a slight improvement in the solution.

The actual motivation of this research is to explore the benefits and detriments of the
decoupled approach, as opposed to the coupled one; that is, through this work, we tried
to find how fast the compilation time can be in real cases by trading-off the code quality.
In their papers [Sudarsanam 1998; Sudarsanam and Malik 2000], Sudarsanam, et. al, in
fact, discussed possible drawbacks of a decoupled approach, as compared to their coupled
one. However, we believe theareful decouplingnay alleviate such drawbacks in practice
while maximizing the advantages in terms of compilation speed, which is often a critical
factor for industry compilers. To verify this, we implemented a memory bank assignment
algorithm and compared the performance of our approach with the coupled one in an ex-
periment with the same benchmarks on the same commercial DSP. As will be reported
later in this paper, the results were quite encouraging. First of all, we found that the code
generation time was dramatically reduced by a factor of up to four orders of magnitude.
This result was somewhat already expected because our decoupled code generation phases
greatly simplified the bank assignment problem overall. Meanwhile, the benchmarking
results also showed almost in every case that we generated code that is nearly identical in
guality to the code generated by the coupled approach.

4. OPERATIONS WITH MULTIPLE DATA MEMORY BANKS

In this section, we discuss how operations are performed on DSPs with multiple data mem-
ory banks, and how memory bank assignment affects the performance of these operations.
As an example of multi-memory bank DSPs, we will use Motorola DSP56000 whose data
path was shown in Figure 3.

In the DSP56000, ALU operations are divided into data operations and address op-
erations. Data ALU operations are performed on a data ALU (see Figure 3)daith
registerswhich consist of four 24-bit input registers (X0, X1, YO and Y1) and two 56-bit
accumulators (A and B). Address ALU operations are performed iratlteess genera-
tion unit (AGU), which calculates memory addresses necessary to indirectly address data
operands in memory. Since the AGU operates independently from the data ALU, address
calculation can occur simultaneously with data ALU operations.

As shown in Figure 3, the AGU is divided into two identical halves, each of which has

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

Fast Memory Bank Assignment for Fixed-point Digital Signal Processors . 7

an address ALU and two sets of 16-bit register files. One set of the register files consists
of four address registeréR0, R1, R2 and R3) and fowffset registergNO, N1, N2 and

N3), and the other consists of four address registers (R4, R5, R6 and R7) and four offset
registers (N4, N5, N6 and N7). The two address ALUs are identical in that each contains a
16-bit full adder, called anffset adderwhich either performs auto-increment/decrement

or add/subtract the contents of the offset registeirNts set to/from the contents of the
selected address register.R

The address output multiplexers select the source for the XAB, YAB. The source of
each effective address may be the output of the address ALU for indexed addressing or an
address register for register-indirect addressing. At every cycle, the addresses generated by
the ALUs can be used to access two words in X and Y memory banks in parallel, each of
which consists of 512-word 24-bit memory.

Possible memory reference modes of the DSP56000 are of four types: X, Y, L and XY.
In X and Y memory reference modes, the operand is a single word either from the X or Y
memory bank. In L memory reference mode, the operand is a long word (two words each
from X and Y memaories) referenced by one operand address. In XY memory reference
mode, two independent addresses are used to move two word operands to memory simul-
taneously: one word operand is in X memory, and the other word operand is in Y memory.
Such independent moves of data in the same cycle are catlachliel move In Figure 3,
we can see two data buses XDB and YDB that connect the data path of DSP56000 to two
data memory banks X and Y, respectively. Through these buses, a parallel move is made
between memories and data registers.

These architectural features of the DSP56000, like most other DSPs with multi-memory
banks, allow a single instruction to perform one data ALU operation and two move oper-
ations in parallel per cycle, but only under certain conditions due to hardware constraints.
In the case of the DSP56000, the following four requirements should be met to maximize
the utilization of the dual memory bank architecture: (1) two memory accesses or a pair of
one memory access and one register transfer can be performed in parallel, (2) destination
registers have to be different, (3) two effective addresses should reference different mem-
ory banks, and (4) the X data memory access is performed with X0, X1, A, or B, and the
Y data memory access is performed with YO, Y1, A, or B.

In the following sections, we will discuss how we generate code for dual memory banks
by making the parallel move conditions meet in the code so that as many parallel moves as
possible can be generated in it.

5. MEMORY BANK ASSIGNMENT

Figure 4 shows the overall structure of our compiler, caedrgen Our code generation
process is divided into six phases: instruction selection, register class allocation, code com-
paction, memory bank assignment, register assignment, and memory offset assignment.
In this paper, we will focus only on memory bank assignment since all other phases are
explained in our earlier literature[Cho and Paek 2002]. Figure 5 shows an example code
generated after the code compaction phase.
After code compaction, each variable in the resulting code is assigned to one of multiple
memory banks (in this example, two banksor Y of the DSP56000). The first step of
this phase is to construct a weighted undirected graph, which we callesihthétaneous
reference grapliSRG). The graph contains variables referenced in the code as nodes. An

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

8 . Jeonghun Cho et al.

Front-end —'RTL"{ Instruction Selection —4 Code Compaction ‘
I ‘ Register Class Allocation

‘ Memory Bank Assignment

C Code ‘ Register Assignment ‘

Assembly Code 4—'Memory Offset Assignment

Fig. 4. Overall structure of the Soargen compiler

MOVE a,r0 b,rl

MOVE cr2 dr3

MAC r0,r1,r2 er4 fr5

MAC r3,r4,r5 low(r2),low(v)

MOVE high(r2),high(v) low(r5),low(w)
MOVE high(r5),high(w)

Fig. 5. Code sequence after compacting the code

edgee = (v;,vx) in the SRG means that both variabtgsandv,, are referenced within the
same instruction word in the compacted code. Figure 6(a) shows an SRG for the code from
Figure 5. The weight on an edge between two variables represents the number of times the
variables are referenced within the same word.

b w X Y MOVE X:a,r0 Y:b,rl

\ ! a b MOVE X:c,r2 Y:d,i3

C \" MAC 10,rl, 12 X:e,r4 Y15

c d
i\ MAC 13,14, 15 low(r2),X:low(v)
d f e f MOVE high(r2),X:high(v) low(r5),Y:low(w)
e /1 v, w MOVE high(r5),Y :high(w)
(a) SRG (b) Assigned Memory Bank (¢) Memory Bank Assignment

Fig. 6. Code result after memory bank assignment determined from its simultaneous reference graph
built for the code in Figure 5

According to the parallel move conditions, two variables referenced in an instruction
word must be assigned to different memory banks in order to fetch them in a single in-
struction cycle. Otherwise, an extra cycle would be needed to access them. Therefore, the
strategy that we take to maximize the memory throughput is to assign a pair of variables
referenced in the same word to different memory banks whenever it is possible. If a conflict
occurs between two pairs of variables, the variables in one pair that appear more frequently
in the same words shall have a higher priority over those in the other pair. Notice here that
the frequency is denoted by the weight in the SRG.

Figure 6(b) shows that the variablesc, e, andv are assigned to X memory, and the
remaining one9, d, f, andw are to Y memory. This is optimal because all pairs of
variables connected via edges are assigned to different memories X and Y, thus avoiding
extra cycles to fetch variables, as can be seen from the resulting code in Figure 6(c). In the
case of variables andw, we still need two cycles to move each of them because they are
long type variables with double-word length. However, they also benefit from the optimal
memory assignment as each half of the variables is moved together in the same cycle.

The memory bank assignment problem that we face in reality is not always as simple
as the one in Figure 6. To illustrate a more realistic and complex case of the problem,
consider Figure 7 where the SRG has five variables.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

Fast Memory Bank Assignment for Fixed-point Digital Signal Processors . 9

vl X
|
/ V22— 3 v4 Y
' |
vl I\ 2 v2 X
i N
N N
vaT v v3 V5 Y
(a) SRG (b) Maximum Spanning Tree

Fig. 7. More complex example of a simultaneous reference graph and the maximum spanning tree
constructed from it

We view the process of assignimgmemory banks as that of dividing the SRG into
disjoint subgraphs; that is, all nodes in the same subgraph are assigned a memory bank
that corresponds to the subgraph. In our compiler, therefore, we try to obtain an optimal
memory bank assignment for a given SRG by findingaatition of the graph with the
minimum cost according to Definition 1.

DErINITION 1. LetG = (V, E) be a connected, weighted graph whéfes a set of

nodes and¥ is a set of edges. Let. be the weight on an edgec E. Suppose that
a partition P =<G1,Gs, -, G, > of the graphG dividesG into n disjoint subgraphs
Gi = (Vi, E;),1 <i < n,suchthatv;,v;) € E; if (vj,v;) € Eforv; € V; anduv, € V;.
Then, thecostof the partitionP is defi nned as

> Y w

i=1 e€E;
Finding such an optimal partition with the minimum cost is another NP-complete problem.
So, we developed a greedy approximation algorithm \@thE| + |V |lg|V|) time com-
plexity, as shown in Figure 8. Since in practidgl ~ |V| for our problem, the algorithm
usually runs fast irO(|V']lg|V]) time, as demonstrated in Section 7. In the algorithm, we
assumer = 2 because virtually no existing DSPs have more than two data memory banks.
But, this algorithm can be easily extended to handle the cases¥o?. First, we describe
the algorithm for dual memory banks in the next subsection, and then we generalize the
algorithm forn memory banks in the following subsection.

5.1 Whenn=2

In our memory bank assignment algorithm, we first identifigaximum spanning trg@1ST)
of the SRG. Given a connected graghaspanning treef G is a connected acyclic sub-
graph that covers all nodes 6f. A MST is a spanning tree whose total weight of all its
edges is not less than those of any other spanning tre@s @ne interesting property of
a spanning tree is that it is a bipartite graph as any tree is actually bipartite [Cormen et al.
1990]. So, given a spanning tréefor a graph, we can obtain a partitio? =<G 1, Go>
from T by, starting from an arbitrary node, sayin 7', assigning ta= ; all nodes an even
distance from: and toG» those an odd distance from

Based on this observation, our algorithm is designed to first identify a spanning tree
from the SRG, and then, to compute a partition from it. But we here use a heuristic that
chooses not an ordinary spanning tree but a maximum spanning tree. The rationale for
the heuritic is that, if we build a partition from a MST, we can eliminate heavy-weighted
edges of the MST, thereby increasing the chance to reduce the overall cost of the resul-
tant partition. Unfortunately, constructing a partition from a MST does not guarantee the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

10

. Jeonghun Cho et al.

Input: a simultaneous reference grap g = (Vsgr, Esr)

two memory bankd\/x and My

Output: a setVggr whose nodes are all colored either witlly or My

a setEy n whose edges are unselected in MST

Algorithm : DMBA

St —Q «— 0; /I ST is a set of MSTs an@ is a priority queue
for all nodesv in Vg g do unmarkv;
u <« selectunmarked_node.in(Vsg); // Return_L if every node inVs g is marked
i« 1; create a new MST;;
while uw # L do // Find all MSTs for connected subgraphs@$ r
marku;
E,, < the set of all edges incident an
sort the elements aF,, in increasing order by weights, and add then@p
while @ # 0 do
remove an edge = (w, z) with highest priority fromQ;
if z is unmarkedhenT; «— T; U {e}; u < z; break;
if wisunmarkedhenT; — T; U {e}; u «— w; break;
od
if uis markedthen /I All nodes in a connected subgraph@§ r have been visited
u <« selectunmarked_node.in(Vs g)/ Select a node in another subgraph, if any(afr
addT; to S7; i++; create a new MST;;
fi
od
Euyn =Q; /I For extended memory bank assignment
for all nodesv in Vg g do uncolorwv;
for every MSTT; € St do // Assign variables iff;’ s to memory bank®/ x and My
next_visitors_Q « ;
m < # of nodes inVg g of M x-color — # of nodes inVs g of My -color;
select an arbitrary nodein 7;;
if m > 0then /I More nodes have beeWx -colored
color v with My -color;
else /I More nodes have beel -colored
color v with M x -color;
repeat
for every nodeu adjacent ta do
if w is not colorecthen
color u with a color different from the color of;
appendu to next_visitors_Q;
fi
v « extract one node fromext_visitors-Q;
until all nodes inT; are colored;

od
m < # of nodes inVs g of M x-color — # of nodes inVs g of My -color;
while m > 0 do /I While there are moréd/x -colored nodes thaid/y -colored ones

if 3 uncolored node € Vgg then
color v with My -color; m-- ;
elsebreak;
while m < 0 do /I While there are moré/y -colored nodes thai/y -colored ones
if 3 uncolored node € Vgg then
color v with Mx-color; m++;
elsebreak;
if m = 0then
for any uncolored node in Vs i do
color v alternately withMx and My~ colors;
return Vs andEy n;

Fig. 8. A memory bank assignment algorithm for dual memonriég and My

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

Fast Memory Bank Assignment for Fixed-point Digital Signal Processors . 11

optimum solution. However, according to our empirical study [Cho and Paek 2002], the
notion of a MST provides us an important idea about how to find a partition with low cost,
which is in turn necessary to find a near-optimal memory bank assignment. For instance,
our algorithm can find an optimal partitioning for the SRG in Figure 7.

To find a MST, our algorithm uses Prim’ s MST algorithm [Prim 1957]. Our algorithm
is global; that is, it is applied across basic blocks. For each node, the following sequence
is repeatedly iterated until all SRG nodes have been marked. In the algorithm, the edges
in the priority queue@ are sorted in the order of their weights, and an edge with the
highest weight is removed first. When there is more than one edge with the same highest
weight, the one that was inserted first will be removed. Note here that the simultaneous
reference grapld- s is not necessarily connected, as opposed to our assumption made
above. Therefore, we create a set of MSTs one for each connected subgrapy,of
Also, note in the algorithm that at least one of the nadesdz should always be marked
because the edges of a marked nadeas always inserted i@ earlier in the algorithm.
Figure 7(b) shows the spanned tree obtained after this algorithm is applied to the SRG
given in Figure 7(a). We can see that X memory is assigned in even depth and Y memory
in odd depth in this tree.

5.2 Whenn > 2

Virtually no existing DSPs currently support more than two memory banks. However, in

the next generation DSPs, it is likely that the number of memory operations will go up
and this will be supported by having memories with more memory banks. Therefore, to
handlen memory banks, we extend our DMBA (dual memory bank assignment) algorithm
shown in Figure 8. After dual memory bank assignment is performed, all nodes of each
spanning tree of unselected edges which can cause extra costs are assigned to the same

1
memory bank. For example, Figure 9 (a) shawsandwvs (in a spanning tree; — v7) are

currently assigned to memory bankl with cost 1, and 3, v4, andvs (v4 2z Vs 2 v3) are
assigned in\/2 with cost 3. The edgévy, vs) is not included in the MST since it does not
add any extra cost becausg andvs are assigned to different memory banks. When one
more memory bank is added to this resulting SRG, we choose the one with higher cost,

which isvy L vs 2 vs in this example, and again apply the DMBA algorithm to further
partition the graph. The variables, v4, andv; in this new SRG with cost 3 are assigned

to either memory banR/72 or M3. As a result, the SRG and memory banks shown in
Figure 9 (b) are generated. Through one more iteration, all variables are assigned to four
memory banks and parallel moves can be used without extra cost.

Figure 10 shows our algorithm extended from the DMBA algorithm to handle n memory
banks. As mentioned previously, the DMBA does not always result in the optimum solu-
tion. So, this extended algorithm based on greedy heuristics may not also find an optimal
bank assignment for some cases. However, our experience revealed that this extended al-
gorithm results in optimal or near-optimal partitionings for n memory banks in many cases,
as in the case of the example in Figure 9.

6. NAME SPLITTING AND MERGING

As discussed in [Cho and Paek 2002], our compiler, like most optimizing compilers, uses
graph coloring to improve register assignment. The central idea of graph coloring is to

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

12 . Jeonghun Cho et al.

Cost:1 Cost:0 Cost:0

" ost: | v5

(b)
v
/
v4

Cost:0 Cost:0 Cost:0 Cost:0
v4 v5

(c)
Fig. 9. Extended memory bank assignment for n =2, 3, and 4

Input: a simultaneous reference graplhr = (Vsr, Esr)
the number of memory banks
Output: a setVsg whose nodes are all colored with oneldf = {\M;, Mo, ..., My}
Algorithm : EMBA
B —{; /I B is a set of assigned banks
i My, j <« Mo;
(Vsr, Eun) =DMBA (Vs g, Esr,t,7);/l Memory bank assignment wifif; and Mo
B%BU{M1}U{M2};
for every memory bankn in {Ms, My, ..., M, } do
if By n = (0 then break;
k = select-mazimum_cost_in(B);
for every edge(v, w) in Eyny do
if v andw are colored withk then
Etmp — Etmp U (v7w); EUN — EUN - (Uyw);
od
(VSRr Etmp) =DMBA (VSR7 E'tmp,k,m);
Eyn «— Euyn U Etmp, B« BU{m};
od
return Vgg;

Fig. 10. A memory bank assignment algorithm extendedrfanemory banks

partition each variable into separate live ranges, where each live range is a candidate to
be allocated to a register rather than entire variables. We have found that the same idea
can be also used to improve the original memory bank assignment algorithm described in
Section 5.

Similar to conventional graph coloring approaches, we build an undirected graph, called
the memory bank interference grapto determine which live ranges conflict and could
not be assigned to the same memory bank. Disjoint live ranges of the same variable can
be assigned to different memory banks after giving a new name to each live range. This
additional flexibility of a graph coloring approach can sometimes result in more efficient
allocation of variables to memory banks, as we will show in this section.

Two techniques, calledame splittingand merging have been newly implemented to
help the memory bank assignment benefit from this graph coloring approach by relaxing
the name-related constraints on variables that are to be assigned to memory banks. Fig-
ure 11 presents an example of memory bank assignment where variables are assigned to
memory banks using the basic techniques discussed in Section 5.

Figure 11(a) shows an example of code that is generated after code compaction, and
Figure 11(b) depicts the live ranges of each of the variables. Note that the varables
andd each have multiple live ranges. Figures 11(c) and 11(d) show the SRG and the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

Fast Memory Bank Assignment for Fixed-point Digital Signal Processors .

MOVE a,r0 b,ri
MOVE c,r2 dr3
MAC r0,r1,r2 erd fr5
MAC r3,r4,r5 r2,a c,ré
ADD r2,16,r7 15,d e,r8

MOVE a,r9 d,rio
MAC r8,r9,r10
MOVE r10,d

(a) Result After Code Compaction

_L-a Extracost: 1

T
1‘1\

(b) Live Range of Each Variables

MOVE
MOVE

X:a,r0 Y:b,rl
X:d,r3Y:c,r2
MAC r0,r1,r2 X:f,r5Y:e,rd4

Y

MAC r3,r4,15 r2,X:a Y:c,ré
b ADD r2,r6,r7 r5,X:d Y:e,r8
Cc
e

b/ f
c 1 \l
Ny °

(c) SRG

MOVE X:a,r9

MOVE X:d,r10

MAC r8,r9,r10

MOVE r10,X:d

(e) Result After Memory Bank Assignment

a
d
2

(d) Partitioned Memory
Fig. 11. Code example and data structures to illustrate name splitting and merging

assignment of variables to memory banks. We can see that a single parallel move cannot
be exploited in the example becauseandd were assigned to the same data memory.
Finally, Figure 11(e) shows the resulting code after memory banks are assigned using the
memory partitioning information from Figure 11(d).

Figure 12 shows how name splitting can improve the same example in Figure 11. Name
splitting is a technique that tries to reduce the code size by compacting more memory
references into parallel move instructions. This technique is based on a well-known graph
coloring approach. Therefore, instead of presenting the whole algorithm, we will describe
the technique with an example given in Figure 12.

ala2 b ¢ dl d2e f

L al
L1y J o A a2
! f
e
c 1
I I '\ — ¢
di d2” !
(a) Live Range After Local Variable Renaming (b) SRG
MOVE X:al,r0Y:b,rl
MOVE X:d1,r3Y:c,r2
MAC r0,r1,r2 X:f,r5 Y:e,rd
ail b MAC r3,r4,r15 r2,X:a2 Y:c, 16
a2 c ADD r2,r6,r7 r5,X:d2Y:e,r8
MOVE X:a2,r9 Y:d2,r10
di | d2 MAC 18,9,r10
e f MOVE r10,X:d2

(c) Partitioned Memory (d) Result After Name Splitting

Fig. 12. Name splitting for local variables

We can see in Figure 12(a) that each live range of the variable is a candidate for being
assigned to a memory bank. In the example, the two variabbsdd with disjoint live
ranges arasplit; that is, each live range of the variables are given different names.

Figures 12(b) and 12(c) show the modified SRG and the improved assignment of vari-
ables to memory banks. Figure 12(d) demonstrates that, by considering live ranges as
opposed to entire variables for bank assignment, we can place the two live ranpigs of

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

14 . Jeonghun Cho et al.

different memory banks, which allows us to exploit a parallel move after eliminating one
MOVE instruction from the code in Figure 11(e).

Although name splitting helps us to further reduce the code size, it may increase the data
space, as we monitored in Figure 12. To mitigate this problenmesmgenames after name
splitting. Figure 13 shows how the data space for the same example can be improved using
name merging. In the earlier example, we salihto two namesl anda2 according to
the live ranges foa, and these new nhames were assigned to the same memory bank. Note
that these live ranges do not conflict. This means that they can in turn be assigned to the

same location in memory.
abd2)c dl e f

11 X |y
J J a b(d2)

a1 c
I I e ‘ f
(a) Live Range After (b) Partitioned Memory
Local Variable Merging

Fig. 13. Name merging for local variables

The compiler cannot only merge nonconflicting live ranges of the same variable, as in
the case of the variabkg but also nonconflicting live ranges of different variables. We see
in Figure 13(b) that two namésandd2 are merged to save one word in Y memory.

The algorithm for name splitting and merging has practically polynomial time com-
plexity even though name splitting and merging basically use a theoretically NP-complete
graph coloring algorithm. That is, asymptotically the time required for name splitting and
merging scales at worst casere®® for dual data memory banks. This is yet much faster
than conventional graph coloring for register allocation, whose time complexityris: ™)
wherem is typically more than 32 for GPPs. It has already been empirically proven that in
practice, register allocation with such high complexity runs in polynomial time thanks to
numerous heuristics such as pruning. Name splitting and merging also runs in polynomial
time, as we will demonstrate in the following section.

7. EXPERIMENTS

To evaluate the performance of our memory bank assignment algorithm, we implemented
the algorithm in our Soargen compiler and conducted experiments with DSP benchmark
suites on a commercial DSP, the Motorola DSP56000 [Motorola Inc. 1995]. The perfor-
mance is measured in two metrics: size and time. In this section, we report the performance
obtained in our experiments, and compare our results with other work.

7.1 Measurements of Code Sizes and Compilation Times

We compare our performance with that of SPAM to demonstrate the effectiveness of our
memory bank assignment. Besides, by comparing with SPAM, we can analyze the pros and
cons of our decoupled approach as opposed to their coupled approach. Unfortunately, for
some reason, we could not port SPAM successfully on our machine platform. However, in
their recent literature [Sudarsanam and Malik 2000], they reported several measurements
taken with a set of programs fro&DPCM [Lee et al. 1997] andSPStondZivojnovic

et al. 1994] benchmark suites. In this paper, therefore, we borrow the numbers from their
literature in a comparison with our experimental result. In Table I, we list the programs

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

Fast Memory Bank Assignment for Fixed-point Digital Signal Processors . 15

Table 1. Comparison of sizes of the code generated by both approaches for ADPCM and
DSPStone programs and comparison of their compilation times for code generation

Coupled approach Decoupled approach

Cunopt Cunopt

Benchmarks (words) | Size | Compile || (words) | Size | Compile | Compile

Copt ratio | timeg,n Copt ratio | timer,te; | timesyn
(words) (words)

complexmultiply 33 0.90 2 55 0.72 0.08 0.31
30 40

convolution 49 0.91 308 40 0.92 0.04 0.16
45 37

fir2dim 178 0.88 5482 63 0.92 0.2 0.86
158 58

iir_biguadN_sections 132 0.92 1632 124 0.93 0.06 0.23
128 116

leastmeansquare 115 0.88 2776 176 0.90 0.36 1.62
102 159

matrix multiply_1 89 0.95 1011 129 0.93 0.04 0.14
85 120

adaptquant 235 0.96 4399 256 0.98 0.05 0.13
227 252

adaptpredict 1 231 0.90 8105 273 0.96 0.19 0.91
209 264

iadptquant 85 0.95 324 63 0.93 0.11 0.51
81 59

scalefactor 1 74 0.89 266 60 0.96 0.03 0.08
66 58

speedcontrol 2 277 0.89 5217 217 0.92 0.75 3.68
247 200

tonedetectorl 84 0.89 536 75 0.94 0.06 0.25
75 71

that were compiled by the SPAM compiler and evaluated on their machine platform along
with their performance figures.

Table | shows the values in the column labetédde,,,,,: that represent the sizes (in
words) of the unoptimized codes, which are obtained immediately after instruction selec-
tion. The unoptimized code is fed into the subsequent code generation phases to produce
the final code optimized for dual data memory banks. The sizes of these optimized codes
are listed in the column labelégbde, ;. In the table, we compare the sizes of these unop-
timized codes in both approaches. Note here that these initial code sizes for each approach
are different. This is mainly because our code generator runs on a compilation infrastruc-
ture completely different from theirs [Araujo and Malik 1998].

In the table, we also compare the optimized code sizes and the code size reduction. We
compute the amount of size reduction, which is listed in the column lalSiedratio by
dividing the optimized code size by the unoptimized code size. Overall the sizes of our
optimized code are comparable to those of their code. In particular, the code size reduction
in both approaches ranges approximately from 5 to 10%, which is also quite comparable.
These results indicate that our memory bank assignment algorithm is as effective as their
simultaneous reference allocation algorithm in most cases.

To the contrary, the difference of compilation times is significant, as depicted in Ta-
ble I. According to their literature [Sudarsanam and Malik 2000], all experiments of SPAM

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

16 . Jeonghun Cho et al.

were conducted on Sun Microsystems Ultra Enterprise featuring eight processors and 1GB
RAM. We experimented on two machine platforms: one is the same Sun Microsystems
Ultra Enterprise but with two processors and 2GB RAM, and the other is a Linux system
running on dual Intel Pentium 11l and 512MB RAM. Although our compilation times on
the Sun processors are about four times slower than those on the Intel processors, they both
are still up to four orders of magnitude faster than SPAM’ s compilation times. Despites
these differences of machine platforms, therefore, we believe that such large difference of
compilation times clearly demonstrates the advantage of our approach over theirs in terms
of compilation speed. We credit this mainly to the decoupled approach which facilitated
our application of various fast heuristic algorithms that individually conquer each subprob-
lem encountered in the code generation process for the dual memory bank system.

9000
—=— Coupled Approach

% Decoupled Approach

8000 ’\

7000 \
6000 / \

5000 \/

4000

Compilation Time(Sec)

3000

A

2000 1
Compilation time measure

1000 >
—/N/ 023 0.14 1.62 368 0.13 091
- L L L |

0 50 100 150 200 250 300
Code Size (Words)

Fig. 14. Comparison of compilation time increases for both approaches as the code size increases

We can show this fact more clearly in Figure 14, which shows compilation time increas-
ing according to code size. Although compilation time is also influenced to some extent by
various other factors that include code complexity, number of variables, and dependencies
between variables, the figure indicates that code size appears to be the most significant
factor that affects compilation time. One thing we can clearly notice from Figure 14 that
compilation times of the coupled approach dramatically (almost exponentially) increase as
the code size increases while our approach results in quite consistently small compilation
times, as compared to the coupled approach.

7.2 Measurements of Execution Times

To estimate the impact of code size reduction on the running time, we generated three
versions of the code as follows.

uncompacted codeThe first version is our uncompacted code generated without mem-
ory bank assignment phase.

compiler-optimized codeThe uncompacted code is optimized for DSP 56000 by using
the techniques in Section 5 to produce the code.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

Fast Memory Bank Assignment for Fixed-point Digital Signal Processors . 17

Table 1. Comparison of execution times of Soargen output code with those produced by
hand-optimization

Benchmark H Timeynopt ‘ TiMmeopt | S_opt H TiMehand | Shand | Shand ‘
unopt opt unopt
complexmultiply 62 48 22.5% 44 8.3% 29.0%
convolution 640 592 7.5% 496 16.2% 22.5%
fir2dim 1172 1094 6.6% 924 15.5% | 21.1%
iir_biqguad N_sections 157 145 7.6% 140 3.4% 10.8%
leastmeansquare 2320 2052 11.5% 1821 11.2% 21.5%
matrix-multiply_1 4632 4282 7.5% 3926 8.3% 15.2%
adaptquant 226 216 3.5% 212 1.8% 6.2%
adaptpredict 1 4224 3946 6.5% 3898 1.2% 7.7%
iadptquant 130 122 6.0% 118 1.6% 9.2%
scalefactor. 1 168 164 2.3% 158 3.2% 6.0%
speedcontrol2 410 374 8.7% 358 4.2% 12.7%
tonedetectorl 176 168 4.5% 160 4.7% 9.1%
| Average I - | - [7.9%] - [6.6% | 14.2% |

hand-optimized codeThe uncompacted code is optimized by hand. We hand-optimized
the same code that the compiler used as the input so that the hand-optimized one may
provide us with the upper limit of the performance of the benchmarks on DSP56000.

Table 1l shows measurements of execution times represented in the number of instruction
cycles that each benchmark program takes to run. For direct comparison with the compiler
generated code, we hand-optimized the same code that our compiler used as the input so
that the hand-optimized code may provide us with the upper limit of the performance of
the benchmarks on DSP56000. We also compute speedups of the execution times of one
versionY over those of the otheX as follows:

Speedug = (1 - %mg’;) x 100.

In Table II, we can see that the average speedup of our compiler-optimized code over the
unoptimized code is 7.9%, and those of hand-optimized code over the compiler-optimized
code is 6.6%. These results indicate that the compiler has achieved roughly the half of the
performance we could get by hand optimization. Although these numbers may not be that
impressive, the results also indicate that, in six benchmarks out of the twelve, our compiler
has achieved comparable performance gains, as compared with hand optimization.

Of course, we also have several benchmarks, sudiraém , convolution and
least _meansquare , in which our compiler has much room for improvement. According
to our analysis, the main cause that creates such difference in execution time between the
compiler-generated code and the hand optimized code is the incapability of our compiler to
efficiently handle loops. To illustrate this, consider the example in Figure 15, which shows
a typical example where software pipelining is required to optimize the loop.

Notice in the example that a parallel move for variakdesndb cannot be compacted
into the instruction word containingDDbecause there is a dependence betw¢ryiand
them. However, after placing one copy of the parallel move into the preamble of the loop,
we can now merge the move wittbD Although this optimization may not reduce the total
code size, it eliminates one instruction within the loop, which undoubtedly would reduce
the total execution time noticeably.

This example informs us that, since most of the execution time is spent in loops, our
compiler cannot match hand optimization in run time speed without more advanced loop

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

18 . Jeonghun Cho et al.

MOV X:a,X0 Y:b,YO
DO #16, L10 DO #15,L10
MOV X:a,X0 Y:b,YO MPY X0,Y0,A X:c,X1Y:d,Y1

MPY X0,Y0,A X:c,X1Y:d,Y1
ADD X1,Y1,A X:a,X0 Y:b,YO

ADD X1,Y1,A MOV AXe
MoV AXe L10
L10
(a) Compiled Compacted Code by Our Approach (b) Hand-Optimized Compacted Code

Fig. 15. Compaction difference between our compiled code and hand-optimized code

optimizations, such as software pipelining, which are based on rigorous dependence anal-
ysis. Currently, this issue remains for our future research.

7.3 Extension to n Memory Banks

In Section 5.2, we extended our dual memory bank assignment algorithm for arbitrary
data memory banks. To see the impact of our extended algorithm on the performance, we
made an experiment to estimate the impact of code size reduction and dynamice instruction
counts, according as the number of memory banks was increased.

Tables Ill and IV respectively show these results of applying the extended algorithm of
Figure 10 to benchmark programs for various numbers of ALUs and memory banks. The
results were obtained by simulating the code that was generated for multiple ALUs and
multiple memory banks.

In Table 1ll, we can see that the average ratio of code size reduction is the best result
0.86 when the machine has two ALUs and three memory banks and three ALUs and three
memory banks. Also in Table IV, the average ratio of dynamic count is the best result
0.88 when the machine has two ALUs and two memory banks. When the machine has a
single ALU, these results indicate that we do not see much improvement in terms of both
the code size and the dynamic count for more than two memory banks. The main reason is
that at most two source operands need to fetched from memory for each ALU operation in
our compacted code. Therefore, we applied our algorithm to the machine having multiple
ALUs. From these results we have concluded that improving performance by exploiting
more than two data memory banks can be only expected for SIMD (single instruction
multiple data) or VLIW architectures. This is because these machines have more than one
ALUs, which consequently would require higher memory bandwidth for simultaneously
fetching more source operands at each cycle than conventional SISD (single instruction
single data) machines.

8. CONCLUSIONS & FUTURE WORK

Many DSP vendors provide a dual data memory bank system that allows applications to
access two memory banks simultaneously. Unfortunately, several existing compilers were
not able to fully exploit this dual memory feature. In this paper, we proposed a decoupled
approach for supporting multiple memory architecture, whreggster class allocation

code compactionrmemory bank assignmemegister assignmentindmemory offset as-
signmentare performed separately. We presented a novel technique based on an MST
algorithm for multiple memory bank assignment. We also preseméade splittingand
mergingas additional techniques that improves our MST-based algorithm by using con-
ventional graph coloring. This decoupled structure of code generation phases led us to
simplify our data allocation algorithm for multiple memory banks and to run the algorithm

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

Fast Memory Bank Assignment for Fixed-point Digital Signal Processors . 19

Table 1ll. Comparison of code size according to the number of ALUs and memory banks for
ADPCM and DSPStone programs

1ALU 2 ALUs 3 ALUs
Benchmarks n=1]n=2]n=3] n=1] n=2] n=3] n=1] n=2] n=3
complexmultiply 55 40 40 54 38 34 54 38 34
convolution 40 37 36 40 35 32 40 35 32
fir2dim 63 58 57 61 55 55 61 55 55

iir_biguadN_sections|| 124 116 114 120 112 112 120 112 112
leastmeansquare 176 159 156 174 154 152 174 154 152
matrix-multiply_1 129 120 119 125 118 115 125 118 115

adaptquant 256 | 252 | 248 || 253 | 248 | 242 || 253 | 248 | 242
adaptpredict 1 273 | 264 | 258 || 269 | 258 | 240 || 269 [258 | 240
iadpt quant 63 | 59 59 63 57 57 63 57 57
scalefactor 1 60 58 58 60 56 56 60 56 56
speedcontrol 2 217 | 200 | 194 || 212 | 196 | 182 || 212 [196 | 182
tonedetectarl 75 71 71 73 69 69 73 69 69

| Averagerato [1 [092] 091 098] 0.89 | 0.86] 0.98] 0.89 [0.86 |

Table IV. Comparison of dynamic instruction counts according to the number of ALUs and mem-
ory banks

1ALU 2 ALUs 3 ALUs
Benchmarks n=1]n=2]n=3] n=1] n=2] n=3] n=1] n=2] n=3
complexmultiply 55 40 40 54 38 34 54 38 34
convolution 914 842 828 914 834 786 914 834 786
fir2dim 918 838 830 886 806 806 918 806 806

iir_biguadN_sections|| 124 116 114 120 112 112 124 112 112
2126 | 1914 | 1888 | 2094 | 1880 | 1864 | 2126| 1880 | 1864

leastmeansquare
matrixxmultiply-1 4234 | 3910 | 3896 || 4182 | 3824 | 3782 | 4234 | 3824 | 3782
adaptquant 106 104 102 105 103 101 105 103 101
adaptpredict 1 3273 | 3235 | 3187 || 3241 | 3153 | 3009 | 3241 | 3153 3009
iadptquant 63 58 58 63 57 57 63 57 57
scalefactor 1 50 48 48 50 46 46 50 46 46
speedcontrol 2 147 139 135 145 138 132 145 138 132
tonedetectorl 62 59 59 61 58 58 61 58 58

| Average ratio || 1 | 0.92 | 0.91 || 0.99 | 0.90 | 0.88 || 0.99 | 0.90 | 0.88 |

reasonably fast.
The comparative analysis of the experiments revealed that our compiler achieved compa-

rable results in code size, yet runs considerably faster than a previously described coupled
approach. The analysis also showed that exploiting multiple memory banks by carefully
assigning scalar variables to the banks brought about the speedup at run time. Finally, we
presented some experimental evidence that dual data memory banks are generally suffi-
cient for ordinary SISD-style machines, and that providing more than two banks would be
mainly useful to SIMD and VLIW architectures which require higher memory bandwidth.

A number of interesting topics still remain open for future work. For instance, while
our approach was limited to only scalar variables, memory bank assignement for arrays
can result in a large performance enhancement because most computations are performed
on arrays in DSP programs. This is actually illustrated in Table I, where even highly
hand-optimized code could not make a significant performance improvement in terms of

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

20 . Jeonghun Cho et al.

speed although we made a visible difference in terms of size. This is mainly because the
impact of scalar variables on the performance is relatively low as compared with the space
they occupy in the code. Another interesting topic would be to perform memory bank
assignment on arguments passed via memory to functions. This would require interproce-
dural analysis since otherwise a calling convention must be used so the caller can know the
memory access patterns of the callee for passing arguments. Also, certain loop optimiza-
tion techniques, like those listed in Section 7.2, need to be implemented to further improve
the execution time of the output code.

REFERENCES

ARAUJO, G.AND MALIK, S.April 1998. Code Generation for Fixed-point DSPEM Transactions on Design
Automation of Electronic Systems23,136-161.

BARUA, R., LEE, W., AMARASINGHE, S.,AND AGARWAL, A. Nov. 2001. Compiler Support for Scalable and
Efficient Memory SystemdEEE Transactions on Computers

CHO, J.AND PAEK, Y. June 2002. Efficient Register and Memory Assignment for Non-orthogonal Architectures
via Graph Coloring and MST Algorithms. Morkshop on Languages, Compilers and Tools for Embedded
Systems

CORMEN, T., LEISERSON C.,AND RIVEST, R., Eds. 1990.Introduction to Algorithms The MIT Press and
McGraw Hill Book Company.

EYRE, J.AND BIER, J.Aug. 1998. DSP Processors Hits the Mainstre#fi=E Computer51-59.

GOULD, H. AND TOBOCHNIK, J.1988.Computer Simulation Methodéddison-Wesley Publishing Company,
New York.

JUNG, S.AND PAEK, Y. Nov. 2001. The Very Portable Optimizer for Digital Signal Processorsnternational
Conference on Compilers, Architectures and Synthesis for Embedded Sy:tefs

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. Nov. 1997. MediaBench: A Tool for Evaluating
and Synthesizing Multimedia and Communications System&rdeeedings of the 30th Annaul IEEE/ACM
Internation Symposium on Microarchitectu&30-335.

LEUPERS R. AND KOTTE, D. 2001. Variable Partitioning for Dual Memory Bank DSPs. Rroceedings of
IEEE International Conference on Acoustics Speech and Signal Proce$st-1124.

LiIEM, C.1997. Retargetable Compilers for Embedded Core Procesd¢iswer Academic Publishers.

Motorola Inc. 1995DSP56000 24-Bit Digital signal Processor Family Manukotorola Inc., Austin, TX.

PANDA, P.1999. Memory Bank Customization and Assignment in Behavioral SynthesiBroseedings of
ICCAD. 477-481.

PoOwELL, D., LEE, E.,AND NEWMAN, W. 1992, Direct Synthesis of Optimizaed DSP Assembly Code from
Signal Flow Block Diagrams. IfProceedings of IEEE International Conference on Acoustics Speech and
Signal Processings53-556.

PrIM, R.1957. Shortest Connection Networks and Some GeneralizatgelsSystems Technical Journal 35,
1389-1401.

SAGHIR, M. A. R., CHOw, P.,AND LEE, C. G.1996. Exploiting Dual Data-Memory Banks in Digital Signal
ProcessorsACM SIGOPS Operating Syster284—243.

SUDARSANAM, A. May 15, 1998. Code Optimization Libraries For Retargetable Compilation For Embedded
Digital Signal Processors. Ph.D. thesis, Princeton University Department of EE.

SUDARSANAM, A. AND MALIK, S.April 2000. Simultaneous Reference Allocation in Code Generation for
Dual Data Memory Bank ASIPSACM Transactions on Design Automation of Electronic Systeris 42—

264.
ZIVOJNOVIC, V., VELARDE, J., SHAGER, C.,AND MEYR, H. 1994. DSPStone - A DSP oriented Bench-

marking Methodology. IrProceedings of International Conference on Signal Processing Applications and
Technology

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.

