
Concepts Introduced in Chapter 4
● Grammars

– Context-Free Grammars

– Derivations and Parse Trees

– Ambiguity, Precedence, and Associativity

● Top Down Parsing
– Recursive Descent, LL

● Bottom Up Parsing
– SLR, LR, LALR

● Yacc
● Error Handling

Grammars
G = (N, T, P, S)

1. N is a finite set of nonterminal symbols

2. T is a finite set of terminal symbols

3. P is a finite subset of

(N ∪T)* N (N ∪ T)* × (N ∪ T)*

An element (, β ) ∈ P is written as

 β

and is called a production.

4. S is a distinguished symbol in N and is called the       
  start symbol.

Example of a Grammar

block     begin  opt_stmts  end

opt_stmts    stmt_list   

stmt_list     stmt_list; stmt   stmt

Advantages of Using Grammars

● Provides a precise, syntactic specification of a 
programming language.

● For some classes of grammars, tools exist that 
can automatically construct an efficient parser.

● These tools can also detect syntactic ambiguities 
and other problems automatically.

● A compiler based on a grammatical description of 
a language is more easily maintained and 
updated.



Role of a Parser in a Compiler

● Detects and reports any syntax errors.
● Produces a parse tree from which intermediate code 

can be generated.

Conventions Used for Specifying 
Grammars in the Text

● terminals
– lower case letters early in the alphabet (a, b, c)

– punctuation and operator symbols [(, ), ',',  +, ]

– digits

– boldface words (if, then)

● nonterminals
– uppercase letters early in the alphabet (A, B, C)

– S is the start symbol

– lower case words

Conventions Used for Specifying 
Grammars in the Text (cont.)

● grammar symbols (nonterminals or terminals)
– upper case letters late in the alphabet (X, Y, Z)

● strings of terminals
– lower case letters late in the alphabet (u, v, ..., z)

● sentential form (string of grammar symbols)

– lower case Greek letters (, , )

Chomsky Hierarchy

A grammar is said to be

1. regular if productions in P are all right-linear or

    are all left-linear 

    a. right-linear

        A wB  or  A w
    b. left-linear

        A Bw  or  A w

    where A, B ∈ N and w ∈ T*

    Recognized by a finite automata (FA).



Chomsky Hierarchy (cont)

2. context-free if each production in P is of the form

      A where A ∈ N and  ∈ ( N ∪ T)*

    Recognized by a pushdown automata (PDA).

3. context-sensitive if each production in P is of the form

       where ||  ||

    Recognized by a linear bounded automata (LBA).

4. unrestricted if each production in P is of the form

       where ≠ 

    Recognized by a Turing machine.

Derivation
Derivation - a sequence of replacements from the start 

symbol in a grammar by applying productions

Example: E E + E
E E * E
E  ( E )
E   E
E  id

Derive - ( id ) from the grammar
E ⇒  E ⇒  ( E ) ⇒  ( id )

thus E derives  ( id )
  or E +⇒  ( id )

Derivation (cont.)

leftmost derivation - each step replaces  the leftmost
nonterminal

Derive id + id * id using leftmost derivation

   E ⇒ E + E ⇒ id + E ⇒ id + E * E ⇒ id + id * E ⇒        
         id + id * id

L(G) - language generated by the grammar G

sentence of G - if S +⇒ w, where w is a string of 
terminals in L(G)

sentential form - if S *⇒ , where  may contain  
nonterminals

Parse Tree

A parse tree pictorially shows how the start symbol of a
grammar derives a specific string in the language. 

Given a context-free grammar, a parse tree has the
properties:

1. The root is labeled by the start symbol.

2. Each leaf is labeled by a token or .

3. Each interior node is labeled by a nonterminal.

4. If A is a nonterminal labeling some interior node and  
      X1, X2, X3, .., Xn are the labels of the children of that node 

    from left to right, then A X1, X2, X3, .. Xn is a 
production of the grammar.



Example of a Parse Tree

                  list  list + digit   list  digit   digit

Parse Tree (cont.)

Yield - the leaves of the parse tree read from left to right 
or the string derived from the nonterminal at the root 
of the parse tree.

An ambiguous grammar is one that can generate two or 
more parse trees that yield the same string.

Example of an Ambiguous Grammar

string  string + string
string  string - string
string  0   1   2   3   4   5   6   7 | 8 | 9   

a. string  string + string   string - string + string
  9  string + string   9  5 + string   9  5 + 2

b. string   string - string  9  string
  9  string + string   9  5 + string   9  5 + 2

Precedence

By convention
   9 + 5 * 2        * has higher precedence than + because
                            it takes its operands before +



Precedence (cont.)

Different operators have the same precedence when they 
are defined as alternative productions of the same
nonterminal.

expr  expr + term   expr  term   term
term  term * factor   term / factor   factor
factor  digit   (expr)

Associativity
By convention

   9  5  2  left (operand with  on both sides, the operation on
                                 the left is performed first)

   a = b = c  right (operand with = on both sides, the operation on
                             the right is performed first)

Eliminating Ambiguity

● Sometimes ambiguity can be eliminated by 
rewriting a grammar.

 stmt  if expr then stmt

          if expr then stmt else stmt

              other

● How do we parse:

 if E1 then if E2 then S1 else S2

Two Parse Trees for
“if E1 then if E2 then S1 else S2”



Eliminating Ambiguity (cont.)

                    stmt  matched_stmt

                              unmatched_stmt

    matched_stmt  if expr then matched_stmt else matched_stmt

                            other

unmatched_stmt  if expr then stmt

                                  if expr then matched_stmt else unmatched_stmt

Parsing
universal
top-down
   recursive descent
   LL
bottom-up
   operator precedence
   LR
      SLR
      canonical LR

      LALR

Top-Down vs Bottom-Up Parsing

● top-down
– Have to eliminate left recursion in the grammar.

– Have to left factor the grammar.

– Resulting grammars are harder to read and 
understand.

● bottom-up
– Difficult to implement by hand, so a tool is needed.

Top-Down Parsing

Starts at the root and proceeds towards the leaves.

Recursive-Descent Parsing - a recursive procedure is 
associated with each nonterminal in the grammar.

Example

      type   simple   ↑id   array [ simple ] of type

      simple   integer   char   num dotdot num



 Example of Recursive Descent Parsing
void type() {

if ( lookahead == INTEGER || lookahead == CHAR ||
lookahead == NUM)
simple();

else if (lookahead == '^') {
match('^');
match(ID);

}
else if (lookahead == ARRAY) {

match(ARRAY);
match('[');
simple();
match(']');
match(OF);
type();

}
else

error();
}

 Example of Recursive Descent Parsing (cont.)

void simple() { void match(token t)
if (lookahead == INTEGER)       {

match(INTEGER); if (lookahead == t)
else if (lookahead == CHAR) lookahead = nexttoken();

match(CHAR); else
else if (lookahead== NUM) { error();

match(NUM); }
match(DOTDOT);
match(NUM);

}
else

error();
}

Top-Down Parsing (cont.)
● Predictive parsing needs to know what first symbols 

can be generated by the right side of a production.

● FIRST() - the set of tokens that appear as the first 
symbols of one or more strings generated from .  If  
is  or can generate , then  is also in FIRST().

● Given a production 

   A     

  predictive parsing requires FIRST() and FIRST() to 
be disjoint.

Eliminating Left Recursion
● Recursive descent parsing loops forever on left recursion.
● Immediate Left Recursion
      Replace A  A      with A A´

                                                 A´ A´   
 Example:

                                       A                 
E  E + T   T E       +T       T

  T  T * F   F T         *F       F

F  (E)   id
 becomes

E TE´

E´ +TE´   
T FT´



Eliminating Left Recursion (cont.)
● What if a grammar is not immediately left recursive?
      A + A 
  
● For instance:

A  B  
  B  C

C  A

● For example:
A  BC

Eliminating Left Recursion (cont.)

In general, to eliminate left recursion given A1, A2, ..., An

for i = 1 to n do 
for j = 1 to i-1 do

replace each AiAj   with Ai 1      ...   k  

where Aj  1   2   ...  k are the current Aj

    productions
end for
eliminate immediate left recursion in the Ai productions

eliminate  transitions in the Ai productions
end for

This fails only if cycles ( A +⇒ A) or A    for some A.

Example of Eliminating Left Recursion

1. X  YZ   a
2. Y  ZX  Xb
3. Z  XY   ZZ   a

A1 = X   A2 = Y   A3 = Z

i = 1 (eliminate immediate left recursion)
nothing to do

Example of Eliminating Left 
Recursion (cont.)

i = 2, j = 1
Y   Xb  ⇒  Y  ZX   YZb   ab
now eliminate immediate left recursion

Y   ZXY´   ab Y´
Y´   ZbY´   

now eliminate  transitions
Y ZXY´   abY´   ZX   ab
Y´ ZbY´   Zb

i = 3, j = 1
Z  XY  ⇒  Z YZY   aY   ZZ   a



Example of Eliminating Left 
Recursion (cont.)

i = 3, j = 2
Z YZY  ⇒  Z ZXY´ZY   abY´ZY  ZXZY  

             abZY   aY   ZZ   a
now eliminate immediate left recursion

Z abY´ZYZ´   abZYZ´   aYZ´   aZ´
Z´ XY´ZYZ´   XZYZ´   ZZ´   

eliminate  transitions
Z abY´ZYZ´   abY´ZY   abZYZ´  abZY   aY

               aYZ´   aZ´   a
Z´ XY´ZYZ´   XY´ZY   XZYZ´   XZY   ZZ´  

   Z

Left-Factoring

A     ⇒ A A´
A´   

Example:
   Left factor
      stmt if cond then stmt else stmt
                 if cond then stmt
   becomes
      stmt if cond then stmt E
         E  else  stmt     

Grammars must be left factored for predictive parsing so 
we will know which production to choose.

Nonrecursive Predictive Parsing

● Instead of recursive descent, predictive parsing can be 
table-driven and use an explicit stack.  It uses

   1. a stack of grammar symbols ($ on bottom)

   2. a string of input tokens ($ on end)

   3. a parsing table [NT, T] of productions

Algorithm for Nonrecursive 
Predictive Parsing

1. If top == input == $ then accept
2. If top == input then
        pop top off the stack
        advance to next input symbol
        goto 1
3. If top is nonterminal
        fetch M[top, input]
        If a production
            replace top with rhs of production
        Else
            parse fails
        goto 1
4. Parse fails



First

FIRST(α) = the set of terminals that begin strings
                    derived from .  If  is  or generates ,
                    then  is also in FIRST().

1. If X is a terminal then FIRST(X) = {X}
2. If X  a, add a to FIRST(X)
3. If X , add  to FIRST(X)
4. If X Y1, Y2,  ..., Yk and Y1, Y2, ..., Yi-1 *⇒  

where i  k
Add every non  in FIRST(Yi) to FIRST(X)

If Y1, Y2, ..., Yk *⇒ , add  to FIRST(X)

FOLLOW

FOLLOW(A) = the set of terminals that can immediately
                         follow A in a sentential form.

1. If S is the start symbol, add $ to FOLLOW(S)
2. If A B, add FIRST() - {} to FOLLOW(B)
3. If A B or  A B and  *⇒ , 

add FOLLOW(A) to FOLLOW(B)

 Example of Calculating FIRST and FOLLOW

Production FIRST FOLLOW
E TE´ { (, id } { ), $ }
E´ +TE´ |  { +,  } { ), $ }
T FT´ { (, id } { +, ), $ }
T´ *FT´ |  {*,  } { +, ), $ }
F  (E) | id { (, id } {*, +, ), $ }

Another Example of Calculating
 FIRST and FOLLOW

Production FIRST FOLLOW
X Ya {        } {       }
Y ZW {        } {       }
W c |  {        } {       }
Z a | bZ {        } {       }



Constructing Predictive Parsing 
Tables

For each  A   do

   1. Add  A  to M[A, a] for each a in FIRST(α)
   2. If  is in FIRST()
          a. Add  A   to M[A, b] for each b in                   
             FOLLOW(A)
          b. If $ is in FOLLOW(A) add  A to M[A, $]
   3. Make each undefined entry of M an error.

LL(1)

First ''L'' - scans input from left to right
Second ''L'' - produces a leftmost derivation
1 - uses one input symbol of lookahead at

   each step to make a parsing decision

A grammar whose predictive parsing table has no 
multiply-defined entries is LL(1).

No ambiguous or left-recursive grammar can be LL(1).

When Is a Grammar LL(1)?

A grammar is LL(1) iff for each set of  productions
where  A1   2   ...   n, the following conditions
hold.

1. FIRST(i) ∩ FIRST(j) = where 1 ≤ i ≤ n 
                                                        and 1 ≤ j ≤ n 

    and  i ≠ j
2.  If i *⇒  then

a. 1,...,i-1,i+1,...,n does not *⇒ 
b. FIRST(j) ∩FOLLOW(A) = 

where j ≠ i and 1 ≤ j ≤ n

Checking If a Grammar is LL(1)

  Production FIRST FOLLOW
S  iEtSS′   a { i, a } { e, $ }
S′ eS    { e,  } { e, $ }
E  b { b } { t }

Nonterminal     a   b          e     i           t          $
        S             Sa                         SiEtSS′
        S′                                  S′eS
                                               S′                           S′
        E                         Eb

So this grammar is not LL(1).



Shift-Reduce Parsing
● Shift-reduce parsing is bottom-up.

– Attempts to construct a parse tree for an input string beginning at 
the leaves and working up towards the root.

● A ''handle'' is a substring that matches the rhs of a production.

● A ''shift'' moves the next input symbol on a stack.

● A ''reduce'' replaces the rhs of a production that is found on the stack 
with the nonterminal on the left of that production.

● A ''viable prefix'' is the set of prefixes of right sentential forms that 
can appear on the stack of a shift-reduce parser.

● Shift reduce parsing includes

– operator-precedence parsing

– LR parsing

Model of an LR Parser

● See Figure 4.35.

● Each si is a state.
● Each Xi is a grammar symbol (when implemented these 
  items do not appear in the stack).
● Each ai is an input symbol.

● All LR parsers can use the same algorithm (code).
● The action and goto tables are different for each LR       
  parser.

Model of an LR Parser (cont.)

● A shift pushes a state on the stack and processes an 
input symbol.
● A reduce pops states off the stack and pushes one state 
back on the stack.

LR(k) Parsing

''L'' - scans input from left to right
''R'' - constructs a rightmost derivation in reverse
''k'' - uses k symbols of lookahead at each step to 

make a parsing decision

Uses a stack of alternating states and grammar symbols.  
The grammar symbols are optional.  Uses a string of 
input symbols ($ on end).  



LR (k) Parsing (cont.)

If config == (s0 X1 s1 X2 s2 ... Xm sm, ai ai+1 ... an$)
1. if action [sm, ai] == shift s then

  new config is (s0 X1 s1 X2 s2 ... Xm sm ais, ai+1 ... an$)

2. if action [sm, ai] == reduce A and 
goto [sm-r, A] == s ( where r is the length of ) then 
  new config is (s0 X1 s1 X2 s2...Xm-r sm-r As, ai ai+1...an$)

3. if action [sm, ai] == ACCEPT then stop
4. if action [sm, ai] == ERROR then attempt recovery
Can resolve some shift-reduce conflicts with lookahead.
   ex: LR(1)
Can resolve others in favor of a shift. 
   ex: S iCtS   iCtSeS

Advantages of LR Parsing
● LR parsers can recognize almost all programming 

language constructs expressed in context -free 
grammars.

● Efficient and requires no backtracking.
● Is a superset of the grammars that can be handled with 

predictive parsers.
● Can detect a syntactic error as soon as possible on a 

left-to-right scan of the input.

LR Parsing Example

1. E  E + T
2. E T
3. T  T * F
4. T  F
5. F  ( E )
6. F  id

See Fig 4.37.

It produces rightmost derivation in reverse:
   E E + T  E + F  E + id  T + id  T * F + id

T * id + id  F * id + id  id * id + id

Calculating the Sets of LR(0) Items

LR(0) item - production with a dot at some position in     
the rhs indicating how much has been parsed

Example:
A BC has 3 possible LR(0) items

A ·BC
A B·C
A BC·

A  has 1 possible item
A ·

3 operations required to construct the sets of LR(0) items:
(1) closure, (2) goto, and (3) augment



Example of Computing the Closure of 
a Set of LR(0) Items

Grammar Closure (I0) for I0 = {E´·E}

E´ E E´ ·E
E E + T   T E ·E + T
T T * F   F E ·T
F ( E )   id T ·T * F

T ·F
F ·( E )
F · id

Calculating Goto of a Set of LR(0) Items
Calculate goto (I,X) where I is a set of items and X is a grammar 
symbol.
Take the closure (the set of items of the form AX·)
where  A·Xβ is in I.
 Grammar Goto (I1,+) for I1= {E´E·,EE·+T}

 E´ E E E + ·T
 E  E + T   T T ·T * F
 T  T * F   F T ·F
 F  ( E )  id F ·( E )

F ·id
Goto (I2,*) for I2={ET·,TT·*F}

T T * ·F
F ·( E )
F ·id

Augmenting the Grammar

Given grammar G with start symbol S, then an 
augmented grammar G´ is G with a new start symbol S´ 
and new production S´S.

Analogy of Calculating the Set of LR(0) 
Items with Converting an NFA to a DFA

Constructing the set of items is similar to converting 
an NFA to a DFA.  Each state in the NFA is an 
individual item.  The closure (I) for a set of items is 
similar to the -closure of a set of NFA states.  Each 
set of items is now a DFA state and goto (I,X) gives 
the transition from I on symbol X.



Constructing SLR Parsing Tables

Let C = {I0, I1, ..., In} be the parser states.

1. If [A·a] is in Ii and goto (Ii, a) = Ij then set

    action [i, a] to 'shift j'.

2. If [A·] is in Ii, then set action [i, a] to 'reduce A'
for all a in the FOLLOW(A).  A may not be S´.

3. If [S´ S·] is in Ii, then set action [i, $] to 'accept'.

4. If goto (Ii, A)=Ij, then set goto[i, A] to j.

5. Set all other table entries to 'error'.

6. The initial state is the one holding [S´·S].

LR(1)

The unambiguous grammar
S  L = R | R
L *R | id
R  L

is not SLR.

See Fig 4.39.

action[2, =] can be a ''shift 6'' or ''reduce R  L''
FOLLOW(R) contains ''='' but no form begins with ''R=''

LR (1) (cont.)
Solution - split states by adding LR(1) lookahead

form of an item
[Aαβ,a]

where Aαβ is a production and
'a' is a terminal or endmarker $

Closure(I) is now slightly different
repeat

for each item [AαBβ, a] in I,
     each production B in the grammar,
      and each terminal b in FIRST(βa) do
      add [B , b] to I (if not there)
until no more items can be added to I

Start the construction of the set of LR(1) items by computing the 
closure of {[SS, $]}.

LR(1) Example
(0) 1. S´  S

(1) 2. S  CC

(2) 3. C  cC

(3) 4. C  d

 I0: [S´S, $] goto ( S )= I1

 [S CC, $] goto ( C )= I2

[C cC, c/d] goto ( c ) = I3

[C d, c/d] goto ( d )= I4

 I1: [S´ S, $]

 I2: [S CC, $] goto ( C )= I5

[C cC, $] goto ( c ) = I6

[C d, $] goto ( d )= I7



LR(1) Example (cont.)
 I3: [C  c·C, c/d] goto ( C ) = I8

[C  ·cC, c/d] goto ( c ) = I3

[C  ·d, c/d] goto ( d ) = I4

 I4: [C  d·, c/d]

 I5: [S  CC·, $]

 I6: [C  c·C, $] goto ( C ) = I9

[C  ·cC, $] goto ( c ) = I6

 [C  ·d, $] goto ( d ) = I7

 I7: [C  d·, $]

 I8: [C  cC·, c/d]

 I9: [C  cC·, $]

Constructing the LR(1) Parsing Table

Let C = {I0, I1, ..., In}

1. If [A·a, b] in Ii and goto(Ii, a) = Ij then set 
action[i, a] to “shift j”.

2. If [A·, a] is in Ii, then set action[i, a] to 

'reduce A'.  A may not be S´.
3. If [S´S·, $] is in Ii, then set action[i, $] to “accept.”
4. If goto(Ii, A) = Ij, then set goto[i, A] to j.
5. Set all other table entries to error.
6. The initial state is the one holding [S´·S, $]

Constructing LALR Parsing Tables

● Combine LR(1) sets with the same sets of the first 
parts (ignore lookahead).

● Table is the same size as SLR.
● Will not introduce shift-reduce conflicts since shifts 

depend only on the core and don't use lookahead.
● May introduce reduce-reduce conflicts but seldom do 

for grammars describing programming languages.

●Last example collapses to table shown in Fig 4.43.

●Algorithms exist that skip constructing all the LR(1) 
sets of items.

Compaction of LR Parsing Tables
● A  typical programming language may have 50 to 100 

terminals and over 100 productions.  This can result in 
several hundred states and a very large action table.

● One technique to save space is to recognize that many 
rows of the action table are identical.  Can create a pointer 
for each state with the same actions so that it points to the 
same location.

● Could save further space by creating a list for the actions 
of each state, where the list consists of terminal-
symbol/action pairs.  This would eliminate the blank or 
error entries in the action table.  While this technique 
would save a lot of space, the parser would be much 
slower.



Using Ambiguous Grammars

1. E  E + E E  E + T | T
2. E  E * E  instead of T  T * F | F
3. E  ( E ) F  ( E ) | id
4. E  id

See Figure 4.48.

Advantages:
Grammar is easier to read.
Parser is more efficient. 

Using Ambiguous Grammars (cont.)

Can use precedence and associativity to solve the 
problem.

See Fig 4.49.

shift / reduce conflict in state action[7,+]=(s4,r1)
s4 = shift 4 or  E  E · + E
r1 = reduce 1 or  E  E + E ·

id + id + id 
           ↑ cursor here

action[7,*]=(s5,r1)
action[8,+]=(s4,r2) action[8,*]=(s5,r2)

Another Ambiguous Grammar

0. S'  S

1. S   iSeS

2. S   iS

3. S   a

See Figure 4.50.

action[4,e]=(s5,r2)

Ambiguities from Special-Case 
Productions

E  E sub E sup E
E  E sub E
E  E sup E
E  { E }
E  c



Ambiguities from Special-Case 
Productions (cont)

1. E  E sub E sup E FIRST(E) = { '{', c}
2. E  E sub E FOLLOW(E) = {sub,sup,'}',$}
3. E  E sup E
4. E  { E } sub, sup have equal precedence 
5. E  c and are right associative

action[7,sub]=(s4,r2) action[7,sup]=(s10,r2)
action[8,sub]=(s4,r3) action[8,sup]=(s5,r3)
action[11,sub]=(s4,r1,r3) action[11,sup]=(s5,r1,r3)
action[11,}]=(r1,r3) action[11,$]=(r1,r3)

YACC

Yacc source program declarations
%%
translation rules
%%
supporting C-routines

YACC Declarations
● In declarations:

– Can put ordinary C declarations in

%{

... 

%}
– Can declare tokens using

● %token
● %left
● %right

– Precedence is established by the order the operators 
are listed (low to high).

YACC Translation Rules

● Form

     A : Body ;

   where A is a nonterminal and Body is a list of 
nonterminals and terminals.

● Semantic actions can be enclosed before or after 
each grammar symbol in the body.

● Yacc chooses to shift in a shift/reduce conflict.
● Yacc chooses the first production in a 

reduce/reduce conflict.



Yacc Translation Rules (cont.)
● When there is more than one rule with the same 

left hand side, a ' ' can be used.

 A : B C D ;
 A : E F ;
 A : G ;
=>

 A : B C D

  E F

   G

 ;

       Example of a Yacc Specification
%token IF ELSE NAME /* defines multicharacter tokens */
%right '=' /* low precedence, a=b=c shifts */
%left '+' '-' /* mid precedence, a-b-c reduces */
%left '*' '/' /* high precedence, a/b/c reduces */
%%
stmt : expr ';'

  IF '(' expr ')' stmt
  IF '(' expr ')' stmt ELSE stmt
; /* prefers shift to reduce in shift/reduce conflict */

expr : NAME '=' expr /* assignment */
  expr '+' expr
  expr '-' expr
  expr '*' expr
 expr '/' expr
  '-' expr  %prec  '*' /* can override precedence */
  NAME
;

%%   /* definitions of yylex, etc. can follow */

Yacc Actions

● Actions are C code segments enclosed in { } and 
may be placed before or after any grammar 
symbol in the right hand side of a rule.

● To return a value associated with a rule, the 
action can set $$.

● To access a value associated with a grammar 
symbol on the right hand side, use $i, where i is 
the position of that grammar symbol.

● The default action for a rule is

 { $$ = $1; }

Syntax Error Handling
● Errors can occur at many levels

– lexical - unknown operator
– syntactic - unbalanced parentheses
– semantic - variable never declared
– logical - dereference a null pointer

● Goals of error handling in a parser

– detect and report the presence of errors
– recover from each error to be able to detect 

subsequent errors
– should not slow down the compilation of correct 

programs



Syntax Error Handling (cont.)

● Viableprefix property -  detect an error as soon as the 
parser sees a prefix of the input that is not a prefix of 
any string in the language.

Error-Recovery Strategies

● Panic­mode ­  skip until one of a synchronizing set of tokens 
is found (e.g. ';', ''end'').  Is very simple to implement but may 
miss detection of some errors (when more than one error in a 
single statement).

● Phrase­level ­  replace prefix of remaining input by a string 
that allows the parser to continue.   Hard for the compiler 
writer to anticipate all error situations.

● Error productions ­  augment the grammar of the source 
language to include productions for common errors.  When 
production is used, an appropriate error diagnostic would be 
issued.  Feasible to only handle a limited number of errors.

Error-Recovery Strategies (cont)

● Global correction - choose minimal sequence of 
changes to allow a least-cost correction.  Often 
considered too costly to actually be implemented in a 
parser.  Also the closest correct program may not be 
what the programmer intended.

Error-Recovery in Predictive Parsing

● It is easier to recover from an error in a nonrecursive 
predictive parser than using recursive descent.

● Panic-mode recovery
– Assume the nonterminal A is on the stack when we 

encounter an error.  As a starting point can place all 
symbols in FOLLOW(A) into the synchronizing set for the 
nonterminal A.  May also wish to add symbols that begin 
higher-level constructs to the synchronizing set of lower-
level constructs.  If a terminal is on top of the stack, then 
can pop the terminal and issue a message stating that the 
terminal was discarded.



Error-Recovery in Predictive Parsing 
(cont.)

Phrase-level recovery
– Can be implemented by filling in the blank entries in the 

predictive parsing table with pointers to error routines.  The 
compiler writer would attempt to address each situation 
appropriately (issue error message and update input 
symbols and pop from the stack).

Error-Recovery in LR Parsing

● Canonical LR Parser - will never make a single 
reduction before recognizing an error.

● SLR & LALR Parsers -  may make extra reductions but 
will never shift an erroneous input symbol on the stack.

● Panic-mode recovery - scan down stack until a state 
with a goto on a particular nonterminal representing a 
major program construct (e.g. expression, statement, 
block, etc.) is found.  Input symbols are discarded until 
one is found that is in the FOLLOW of the nonterminal. 
The parser then pushes on the state in goto.  Thus, it 
attempts to isolate the construct containing the error.

Error-Recovery in LR Parsing (cont)
● Phrase-level recovery - Implement an error recovery 

routine for each error entry in the table.
● Error productions - Used in YACC.  Pops symbols 

until topmost state has an error production, then shifts 
error onto stack.  Then discards input symbols until it 
finds one that allows parsing to continue.  The 
semantic routine with an error production can just 
produce a diagnostic message.


