Concepts Introduced in Chapter 4 SIMD Advantages

@ SIMD architectures can significantly improve performance by
exploiting DLP when available in applications.

@ vector architectures S o ) X
) @ SIMD processors are more energy efficient than MIMD as the
@ SIMD ISA extensions P . SNerey € y
_ _ _ only need to fetch a single instruction to perform the same
@ graphics processing units (GPUs) operation on multiple data items.
@ loop dependence analysis @ SIMD allows programmers to continue to write algorithms in a

sequential manner and sometimes SIMD parallelism can be
automatically exploited.

Vector Computers
0®0000000000000000

Vector Computers
©00000000000000000

Vector Architectures Extending RISC-V to Support Vector Operations (RV64V)

@ A vector architecture includes instruction set extensions to an
ISA to support vector operations, which are deeply pipelined.

o Vector operations are on vector registers, where each is a @ Add 8 vector registers where each register has 32 elements
fixed-length bank of registers. with each element being 64 bits wide.
° ?;tzr: transferred between a vector register and the memory @ After an initial latency each vector functional unit can start a
e Each vector operation takes two vector registers or a vector new operation on each clock cycle.
register and a scalar value as input. @ Vector loads and stores also pay for the memory latency once
@ A vector architecture can only be effective on applications that and afterwards a word is transferred each cycle between the
have significant data-level parallelism (DLP). vector register and memory.
@ vector processing advantages @ The processor has to detect both structural hazards, which can
o Greatly reduces the dynamic instruction bandwidth. cause stalls, and data hazards so that chaining (forwarding)
o Generally execution time is reduced due to (1) significantly can be performed.

decreasing loop overhead, (2) stalls only occurring on the first
vector element rather than on each vector element, and (3)
performing vector operations in parallel.




Vector Computers SIMC i GPU p Dey Vector Computers
00®000000000000000 000@00000000000000

Basic Structure of a Vector Architecture RV64V Vector Instructions

. Mnemonic Name Description
Main memory vadd ADD Add elements of V[rs1] and V[rs2], then put each result in V[rd]
vsub SUBtract Subtract elements of V([rs2] frpm V([rs1], then put each result in V[rd]
vmul MULtiply Multiply elements of V[rs1] and V[rs2], then put each result in V[rd]
vdiv DIVide Divide elements of V[rs1] by V[rs2], then put each result in V[rd]
vrem REMainder Take remainder of elements of V[rs1] by V[rs2], then put each result in V[rd]
Vector FP add/subtract £ = = = 2 3
load/store vsqrt SQuare RooT T'ake square root of elements of V[rs1], then put each result in V[rd]
- vsll] Shift Left Shift elements of V[rs1] left by V[rs2], then put each result in V[rd]
FP multiply
vsrl Shift Right Shift elements of V[rs1] right by V[rs2], then put each result in V[rd]
-~ vsra Shift Right Shift elements of V[rs1] right by V[rs2] while extending sign bit, then put each result in
FP divide 5 % - ki o e
— Arithmetic V(rd]
Vector L - I vxor XOR Exclusive OR elements of V[rs1] and V[rs2], then put each result in V[rd]
X — Integer
registers . d vor OR Inclusive OR elements of V[rs1] and V([rs2], then put each result in V([rd]
—>
vand AND Logical AND elements of V([rs1] and V[rs2], then put each result in V[rd]
ogica < - = = S R S = =
- vsgnj SiGN source Replace sign bits of V([rs1] with sign bits of V[rs2], then put each result in V([rd]
vsgnjn Negative SiGN Replace sign bits of V[rs1] with complemented sign bits of V[rs2], then put each result
source in V[rd]
scalar . . . . . ~ .
registers vsgnjx Xor SiGN Replace sign bits of V[rs1] with xor of sign bits of V[rs1] and V[rs2], then put each
source result in V[rd]

Vector Computers
000008000000000000

Vector Computers
000080000000000000

RV64V Vector Instructions (cont.) Example of Vector Code

vid Load Load vector register V[rd] from memory starting at address R[rs1] ° ThIS iS the DAXPY (DOUble precision A times X P|US Y) IOOp
vids Strided Load Load V[rd] from address at R[rs1] with stride in R[rs2] (i.c.. R[rs1]+i x R[rs2]) from the LinPaCk benchmark.
v1dx :z‘dC:Cd) Load Load V[rs1] with vector whose elements are at R[rs2] + V[rs2] (i.e., V[rs2] is an index) @ Assume x5 and x6 initia”y contain the beginning addresses of
yather
vst Store Store vector register V[rd] into memory starting at address Rrs1] the X and Y arrays.
vsts Strided Store Store V([rd] into memory at address R[rs1] with stride in R[rs2] (i.e., R[rs1]+i x R[rs2]) /* Scalar RISC-V Code */ /* Source Code */
vstx Indexed Store Slo.rc V[rs1] into memory vector whose elements are at R[rs2]+ V[rs2] (i.e., V[rs2] is f14 £0,a <= for (j_ =0; i < 32; i++)
(Scatter) an index) . . . R
vpeq Compare = Compare elements of V[rs1] and V([rs2]. When equal, put a 1 in the corresponding 1-bit addi x28,x5,#256 YO] = a * X[i] + Y[il ;
element of p[rd]; otherwise, put 0 LOOp :
vpne Compare ! Compare elements of V[rs1] and V[rs2]. When not equal, put a 1 in the corresponding fld £1,0(x5) /* RV64V Code */
1-bit element of p[rd]; otherwise, put 0 fmul.d f1,f1,f0 vsetdcfg 4%FP64
vplt Compare < C_ompun: clcn}cmx of V[rslI] 'und V[rs2]. When less than, puta | in the corresponding 1- £1d £2,0 (x6) £1d £0,a
bit element of p[rd]: otherwise, put 0
vpxor Predicate XOR Exclusive OR 1-bit elements of p[rs1] and p[rs2], then put each result in p[rd] fadd.d £2,£2,f1 vld v0,x5
vpor Predicate OR Inclusive OR 1-bit elements of p[rs1] and p[rs2], then put each result in p[rd] fsd 2 ’ 0 (X6) => vmul vl 4 v0 4 0
vpand Predicate AND Logical AND 1-bit elements of p[rs1] and p[rs2], then put each result in p[rd] addi x5,x5,#8 vld v2,x6
setvl Set Vector Set vl and the destination register to the smaller of mvl and the source regsiter addi x6,%6,#8 vadd v3,vl,v2
Length bne x28,x5,Loop vst v3,x6
vdisable




Vector Computers
000000800000000000

Chaining, Convoys, and Chimes

/* RV64V code */

vld v0,x5
vmul v1,v0,f0
vld v2,x6
vadd v3,vl,v2
vst v3,x6

e Chaining allows the results of one vector operation to be directly used
as input to another vector operation.

@ A convoy is a set of vector instructions that can potentially execute
together. Only structural hazards cause separate convoys as true
dependences are handled via chaining in the same convoy. The RV64V
code below has 3 convoys as there is only one vector memory unit.

@ A chime is the unit of time taken to execute one convoy, which is the
vector length along with the startup cost. The following RV64V code
executes in three chimes since there are three convoys.

/* convoys */

1.

vld
vmul
vld
vadd

. vst

v0,x5
v1,v0,f0
v2,x6
v3,vl,v2
v3,x6

Vector Computers
00000000e000000000

Vector Computers
000000080000000000

Startup Time

@ The startup time for a convoy is primarily affected by the
pipelining latency of the vector functional unit associated with
the vector operation.

@ pipeline latencies in clock cycles for the RV64V

o FP add -6

e FP multiply - 7
o FP divide - 20
e load - 12

e Additional cycles need to be added for stalls between the
chained vector operations, but only for the first element of
each vector operation.

@ The cycles to execute the following convoy should be the sum
of the startup time and the vector length, or 51 (19+32).

vld v0,x5
vmul v1,v0,f0

Vector Computers
000000000e00000000

Using Multiple Lanes

functional units.

@ Vector operations on vector register elements can also be
executed in parallel when there is an array of parallel pipelined

@ So element N of a vector register will take part in operations
with element N from other vector registers.

@ Each /lane contains one portion of the register file and one
execution pipeline from each vector functional unit.

e Each lane i of n lanes operates on each k vector register file
element where k % n is equal to /.

@ No communication is needed between lanes.

e Convoy time is now startup time + ceil(vector length/n).

Using Multiple Functional Vector Units

A[91| [B(9)
A[8]| |B[8)
aA[71| |B(7)
A[6]| |B[6)
A[5]| |B[5]
A[4]| |B[4)
A[3]| |B[3)
Ar2]| |B[2)
A[l] E
4
*-
E /eme;;r group
(A) (B)




Vector Computers
0000000000e0000000

Structure of a Vector Unit Containing Four Lanes

Vector Computers
00000000000e000000

Vector Length Register

Lane 0 Lane 1 Lane 2 Lane 3
s @ A vector length register (vl) allows the length of a vector
operation to be determined at run time.
':)’i’pzd(;’ ':’pzdf pr’pzdzd ';Fi’pzd; @ Loops are strip mined so that the maximum vector length
(MVL) is no more than the length of a vector register.
@ The innermost loop in the strip mined loop nest can be
Vector Vector Vector Vector vectorized.
registers: registers: registers: registers:
elements elements elements elements L. R X
0,4,8,... 1,5,9,... 2,6,10,. .. 3,7,11,... /* original loop */ /* strip mined loop nest */
for (i = 0; i < n; i++) low = 0;
Y[i] = a * X[i] + Y[il; vl = n % MVL;
FP mul. FP mul. FP mul. FP mul. for (j = 0; j <= n/MVL; j++) {
pipe 0 pipe 1 pipe 2 pipe 3 for (i = low; i < low+vl; i++)
Y[i] = a x X[i] + Y[i];
@ N A N J low += vl;
vl = MVL;
Vector load-store unit ¥

Vector Computers
000000000000e00000

A Vector of Arbitrary Length Processed with Strip Mining

Vector Computers
0000000000000e0000

Strip Mined Vectorized Code

/* stripmined loopnest */  /* RV64V code */
i=0; vsetdcfg 2 DP FP # enable 2 vect regs
@ The first vector operation processes m = n % MVL elements. vhile (n != 0) { fld £0,a # 10=M[a]
vl = min(MVL,n); loop:
@ The remaining vector operations process MVL elements. for (j = 0; j < vl; setvl t0,a0 # v1=tO=min(MVL,n)
j++, i++) vld v0,xb # load vector x
Value of j 0 1 2 3 e R n/MVL Y[i] = s11i t1,t0,3 # t1=t0*8
axX[1]+Y[i]; add x5,x5,t1 # x5 += t1
n -= vl; vmul v0,v0,f0 # vect-scalar mult
Rangeofi 0 m  (m+MVL) (m+2xMVL) ... (n—MVL) 3 vld v1,x6 # load vector y
5 - v 5 5 vadd v1,v0,vl # vect-vect add
L s - w0020 85 = 50
vst vl,x6 # store vector y
add x6,x6,t1 # x6 += t1
bnez a0,loop # loop if n !'=0
vdisable # disable vect regs




Vector Computers
00000000000000e000

Vector Mask Registers

@ Mask registers provide support for conditional execution of
each element within a vector register in a vector instruction.

@ When the vector-mask register is enabled, vector instructions
update results only for vector elements where the
corresponding bit in the vector-mask register is set.

@ No execution time is saved for the elements where the bits in
the vector-mask register are zero.

/* original loop */ /* RV64V assembly code */
for (i = 0; i < 32; it++) vsetdcfg 2xFP64 # enable 2 vect regs

if (X[i] !'= 0) vsetpcfgi 1 # enable 1 pred reg
X[i] -= Y[il; vld v0,xb # load X into vO

vld vl,x6 # load Y into vi
fmv.d.x £0,x0 # £f0 = 0.0
vpne poO,v0,f0 # p0 = vO != fO
vsub v0,v0,vl # if (p0) v0 -= vi1
vst v0,x5 # if (p0) M[X] = vO
vdisable # disable vect regs
vpdisable # disable pred reg

Vector Computers
0000000000000000e80

Handling Non-Unit Strides

Vector Computers
000000000000000e00

Using Cache/Memory Banks

@ The more recent vector computers use caches to reduce the
latency of vector loads and stores.

@ Word-interleaved banks for cache and main memory often
provide the ability for simultaneous independent accesses.
e Supporting multiple vector load or store operations to avoid a
structural hazard.
e Supporting vector loads or stores that are not sequential.
e Supporting multiple processor cores sharing the same L3 cache
and main memory.

Vector Computers
00000000000000000e

Gather-Scatter Operations

@ The distance separating elements in memory can be nonsequential,
which is called a non-unit stride.

@ The vector stride can be put in a general-purpose register and can be
accessed with vector load /store instructions.

@ Supporting non-unit strides may cause more bank contention and cache
misses, which complicates the vector load/store operations.

@ Assume the addresses of B and D are in x7 and x8, respectively.

/* matrix multiply loop nest */ /* inner loop RV64V code */
for (i = 0; i < 100; i++) vld wv1,x7 # load B into vil
for (j = 0; j < 100; j++) { mov x5,#800 # stride = 800
ATi][3j] = 0.0; vlds v2,(x8,x5) # strided load of
for (k = 0; k < 100; k++) # D into v2
ATiI[3] += vmul v3,v1,v2 # vect B * vect D
B[i] [k1*D[k] [j];

@ Sparse matrices are common and are usually stored in some compacted
form and indirectly accessed.

@ An index vector contains the indices of nonzero array elements.

@ A gather/scatter operation uses the index vector along with a base
address to fetch/store elements in an array.

@ Assume the addresses of K, M, A, and C are in x7, x28, x5, and x6,
respectively.

/* sparse array loop */ /* RV64V code */

for (i = 0; i < n; i++) vsetdcfg 4*FP64 # enable 4 vect regs
A[K[i]] += c[M[il]; wvld v0,x7 # load K[]
vldx vl, (x5,v0) # load A[KI[]]
vld v2,x28 # load M[]
vldx v3, (x6,v2) # load C[M[]]
vadd vl,vl,v3 # vl += v3
vstx vl, (x5,v0) # store A[K[]]
vdisable # disable vect regs




SIMD Extensions
[ Yolele}

SIMD Extensions
0®00

SIMD Extensions to GP Processors AVX DP Instructions for the x86 Architecture

@ Many GP processors now have SIMD extensions to support

simultaneous operations on applications, including for multimedia.
@ SIMD extensions are simpler than vector operations.

e Operate on a fixed number of operands (no v/ register). AVX instruction Description
o Do not support non-unit strides or gather-scatter access. VADDPD Add four packed double-precision operands
e Do not support conditional execution of operations (no vector VSUBPD Subtract four packed double-precision operands
mask register). VMULPD Multiply four packed double-precision operands
@ SIMD operations work on shorter vectors and all operations are YDIVPQ Dryide fonepacked dopble Fecision petnds
. . . . . VFMADDPD Multiply and add four packed double-precision operands
typically performed in parallel, as opposed to being pipelined. T VTR —— — —
. . ultiply and subtract four packed double-precision operands
° Examples include the x86 SIMD extensions. VCMPxx Compare four packed double-precision operands for EQ, NEQ, LT, LE, GT, GE, ...
o MultiMedia eXtensions (MMX) in 1996 - used FP registers VMOVAPD Move aligned four packed double-precision operands
° Streaming Simd Extensions (SS E) 1999 - separate 128-bit registers VBROADCASTSD Broadcast one double-precision operand to four locations in a 256-bit register
o Advanced Vector eXtensions (AVX) 2010 - separate 256-bit
registers

o Extended Advanced Vector eXtensions (AVX-512) 2016 - separate
512-bit registers

SIMD Extensions GPUs p Dey ctor Computers SIMD Extensions
00e0 ) oooe

SIMD Extensions Easier to Implement SIMD Example

o _ _ @ X and Y have to be aligned on a 32 byte boundary.
@ Can be added with little cost. For instance, an option to a

conventional integer adder can be to not perform carries across /* sparse array /* RISC-V SIMD code */
specific partitions (e.g. parallel 8-bit additions). loop */ fld £0,a # load scalar a
T . . for (i = 0; splat.4D £0,f0 # make 4 copies of a
° Requwe_ ||.tt|e s’Fate as: compared to vector a.rchltectures, which i< 32 addi 28 ,x5,4#256 # address after X
means it is easier to implement context switches. 144) Loop:
@ Need much less memory bandwidth. Y[i] = £f1d.4D  £1,0(x5) # load X[i]..X[i+3]
@ Operands in memory for SIMD extensions on many axX[1]+YLi]; fmul.4D 11,11,£0 # axx[i]. ja*x EITSJ
. ; L . . £1d4.4D £2,0(x6) # load Y[i]..Y[i+3]
archltecture.s have ’Fo be aligned within a L1 DC line, which fadd.dD £2.£2,f1 # axX[i]4Y[i]. .
means one instruction only needs one access to the memory # axX[i+3]+Y[i+3]
system. However, due to this SIMD alignment problem, it is fsd.4D £2,0(x6) # store Y[i]..Y[i+3]
much harder for compilers to automatically exploit these SIMD addi x5,%x5,#32 # incr X index
extensions. addi x6,x6,#32 # incr Y index
bne x28,x5,Loop # loop if not dome




GPUs
©0000000000000000

GPUs
08000000000000000

Graphics Processing Units (GPUs) NVIDIA GPU Overview

@ GPUs were first developed as graphics accelerators, where the
main emphasis was for the video game industry. But now
GPUs are also starting to be used in mainstream computing

(GPGPUs).
e GPUs support many types of parallelism (ILP, SIMD,
multithreading, MIMD), but work best with DLP applications.

@ Some GPUs have their own programming language.

o CUDA is offered by NVIDIA.
e OpenCL is vendor-independent for multiple platforms.

@ heterogeneous execution model
e CPU is the host.
e GPU is the device.
e CUDA is a C-like programming language to exploit GPU
features.

@ The programming model is called single instruction, multiple
thread (SIMT).

GPUs
00@00000000000000

GPUs
000®0000000000000

NVIDIA Terminology GPU Terms Used in this Chapter

@ programming abstractions

Official
e A vectorizable loop is called a grid. Descriptive Closest old term  CUDA/NVIDIA
name outside of GPUs  GPU term Short explanation

e A grid is composed of thread blocks, which is equivalent to the Type
body of a strip-mined loop.
e A thread block consists of a set of CUDA threads.

Vectorizable Vectorizable Loop  Grid A vectorizable loop, executed on the GPU, made up
Loop of one or more Thread Blocks (bodies of vectorized

& loop) that can execute in parallel
e Each CUDA thread processes one element of the vector § Body of Body of a (Strip-  Thread Block A vectorized loop executed on a multithreaded
registers and is equivalent to one iteration of a scalar IOOP- & Vectorized Mmed? SIMD _Processpr. mfxde up of one or more thrf:uds of
< Loop Vectorized Loop SIMD instructions. They can communicate via local
@ machine obJect E memory
o A warp is a thread of PTX instructions. f?_:b Sequence of One iteration of a  CUDA Thread A \"EI‘.IICZII cut of a thread of SI!VID instructions
R i i i & SIMD Lane Scalar Loop corresponding to one element executed by one SIMD
o APTX (ParaIIeI Thread eXecutlon) instruction is a SIMD Operations Lane. Result is stored depending on mask and
instruction. predicate register
. 31 A Thread of Thread of Vector Warp A traditional thread, but it only contains SIMD
@ processing hardware = SIMD Instructions instructions that are executed on a multithreaded
o A SIMD lane executes the operations in a CUDA thread of o asimetons :lL\:,[jn}:r:fl::m Resmi Somd Copendap ngpes
SIMD instructions. § SIMD Vector Instruction  PTX A single SIMD instruction executed across SIMD

e Multiple SIMD lanes within a thread block all simultaneously
execute the same instruction or are all idle.

Instruction

Instruction

Lanes




GPUs
00008000000000000

GPU Terms Used in this Chapter (cont.)

GPUs
00000800000000000

Descriptive Terms to NVIDIA Terms

Multithreaded (Multithreaded) Streaming A multithreaded SIMD Processor executes threads of
SIMD Vector Processor Multiprocessor ~ SIMD instructions, independent of other SIMD
) Processor Processors
z Thread Block Scalar Processor Giga Thread Assigns multiple Thread Blocks (bodies of
?’.; Scheduler Engine vectorized loop) to multithreaded SIMD Processors
=
0 SIMD Thread Thread Scheduler ~ Warp Hardware unit that schedules and issues threads of
? Scheduler in a Multithreaded ~ Scheduler SIMD instructions when they are ready to execute:
3 CPU includes a scoreboard to track SIMD Thread
£ execution
SIMD Lane Vector Lane Thread A SIMD Lane executes the operations in a thread of
Processor SIMD instructions on a single element. Results
stored depending on mask
GPU Memory Main Memory Global DRAM memory accessible by all multithreaded
Memory SIMD Processors in a GPU

Stack or Thread
Local Storage
(O0S)

Private Memory

Local Memory

Portion of DRAM memory private to each SIMD
Lane

Memory hardware

Local Memory Local Memory Shared Fast local SRAM for one multithreaded SIMD
Memory Processor, unavailable to other SIMD Processors

SIMD Lane Vector Lane Thread Registers in a single SIMD Lane allocated across a

Registers Registers Processor full Thread Block (body of vectorized loop)
Registers

More Official
descriptive CUDA/
name used in  NVIDIA Short explanation and AMD and
Type this book term OpenCL terms Official CUDA/NVIDIA definition
Vectorizable Grid A vectorizable loop, executed on the A Grid is an array of Thread Blocks
loop GPU, made up of one or more “Thread  that can execute concurrently,
Blocks™ (or bodies of vectorized loop)  sequentially, or a mixture
that can execute in parallel. OpenCL
name is “index range.” AMD name is
“NDRange”
é Body of Thread A vectorized loop executed on a A Thread Block is an array of CUDA
5 Vectorized Block multithreaded SIMD Processor, made Threads that execute concurrently
.f_'f loop up of one or more threads of SIMD and can cooperate and communicate
< instructions. These SIMD Threads can  via shared memory and barrier
= communicate via local memory. AMD  synchronization. A Thread Block has
?D and OpenCL name is “work group” a Thread Block ID within its Grid
P Sequence of CUDA A vertical cut of a thread of SIMD A CUDA Thread is a lightweight
SIMD Lane Thread instructions corresponding to one thread that executes a sequential
operations element executed by one SIMD Lane. program and that can cooperate with
Result is stored depending on mask. other CUDA Threads executing in
AMD and OpenCL call a CUDA Thread  the same Thread Block. A CUDA
a “work item” Thread has a thread ID within its
Thread Block
A thread of Warp A traditional thread, but it contains just A warp is a set of parallel CUDA
T SIMD SIMD instructions that are executedona  Threads (e.g., 32) that execute the
= instructions multithreaded SIMD Processor. Results ~ same instruction together in a
:') are stored depending on a per-element multithreaded SIMT/SIMD
__g mask. AMD name is “wavefront” Processor
g SIMD PTX A single SIMD instruction executed A PTX instruction specifies an
= instruction instruction  across the SIMD Lanes. AMD name is  instruction executed by a CUDA

“AMDIL” or “FSAIL” instruction

Thread

Vector-Vector Multiply Mapping to

GPUs
00000080000000000

an NVIDIA Grid

AL 0 J=B[ 0 J*c[ 0 ]
siMp | AL 1 7= 1 J*cl 1 ]
Thread0 [ ..

Al 31] [ 31 1*cC[ 31 ]
Al 32]-= 32 ]*c[ 32 ]
siMp | Al 33 ] = 33 ]1*c[ 33 ]
Thread [PPeRdl [

Block Al 63 ]1=8B[ 63 ]1*C[ 63 ]
Al 64 7= 64 ] *C[ 64 ]
Ak 4;9] -8 [ 479 1 '"c[ 479 ]
Al 480] =B [ 480 ] * C[ 480 ]

SIMD 5 0
SIMD | AL 4817 -8 [ 481 ] * C[ 481 ]
Al 511]=B[511 ]*C[ 511 ]
Al 512]=8B[512 ] *cC[ 512 ]
Grid e @ o = & g o
AL 7679] =B [7679 1 * C[ 7679 ]
AL 7680] =B [ 7680 ] * C[ 7680 ]
SIMD | AL 76817 =B [ 7681 ] * C[ 7681 ]
Thread0 | .
AL 7711] =B (7711 ] * C[ 7711 ]
Al 7712] =B [7712 ] * C[ 7712 ]
SsIMD | AL 77131 =8B [7713 ] * C[ 7713 ]
Thread |Tre2d! [ : . 5
Block A[ 7743] =B [7743 ] * C[ 7743 ]
15 AL 7744) =B [ 7744 ] * C[ 7744 ]
A[ 81"‘59] -8 [81'"59 ] 'wc[ 8159 ]
A[ 8160] =B [8160 ] * C[ 8160 ]

SIMD - *
SIMD [ AL 81617 -8 [8161 ] * C[ 8161 ]
A[ 8191] =B [8191 ] * C[ 8191 ]

GPUs
00000008000000000

Block Diagram of a Multithreaded SIMD Processor

Instruction
— Warp scheduler
cache
I Instruction register J
T
I o it S S S S TR TR e s e
SIMD lanes
(thread
processors)
Regi- | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg
sters
1Kx32 [1Kx 32 | 1Kx32 [1Kx 32 | 1Kx 32 [1Kx 32 | 1Kx 32 [1Kx32 | 1Kx 32 [1Kx32 | 1Kx 32 [1Kx32 | 1Kx 32 | 1Kx 32 | 1Kx 32 | 1Kx 32
Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load
store | store | store | store | store | store | store | store | store | store | store | store | store | store | store [ store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit
| Address coalescing unit I I Interconnection network |
i [} [}
] ] v
Local memory Tojglabel
memor
64KB Y




GPUs
00000000080000000

GPUs
00000000800000000

CUDA Source Example Scheduling GPU Instructions

// Invoke DAXPY in C.
daxpy(n, 2.0, x, y);

// DAXPY in C
void daxpy(int n, double a, double *x, double *y) {
for (int i = 0; i < nj; i++)

@ GPU hardware handles the thread management, not the OS or

y[il = a*x[i] + y[il; the application, to improve performance.
N ¥ @ A thread block scheduler assigns thread blocks to SIMD
// Invoke DAXPY in CUDA with 256 CUDA threads per thread block. processors.
__host__ @ A SIMD thread scheduler allocates SIMD threads within a
int nblocks = (n + 255)/256; multithreaded SIMD processor.

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

@ SIMD threads are used to hide memory latency.

// DAXPY in CUDA

__device__

void daxpy(int n, double a, double *x, double *y) {
int i = blockIdx.x * blockDim.x + threadldx.x;
if (i < n) yl[il = a*x[i] + y[il;

GPUs p Dey ctor C put S C sion GPUs

0000000000000 000 > 00000000000 e00000

Threads Basic PTX GPU Thread Instructions

Group Instruction Example Meaning Comments

@ There are often more SIMD threads on a SIMD processor than
can run at one time, which is useful for hiding memory latency.

@ Uses a scoreboard to detect SIMD threads ready to run.

@ Each SIMD thread has its own PC and each SIMD instruction
within a thread simultaneously executes up to n operations.

a*b+c; multiply-add

=al/b; multiple microinstructions

d=a%h; integer remainder

Arithmetic
@ The n parallel functional units to perform a SIMD operation T Toating selects non NaN
are called /anes. oating selects pon-NaN
p.a.b p=(a<b): compare and set predicate
@ No dependences can exist between different SIMD threads. ). neu, Ttu, Teu, gtu, geu, num, nar
@ A CUDA thread (vertical cut of SIMD instructions within a d=p?a: b: PPy
. . . . . convert(a); convert atype (o dtype
SIMD thread) is typically assigned for each loop iteration. I
@ For each CUDA thread, virtual registers are assigned to e \q”n"l
distinct physical registers and a unique identifier number is o rsart.typ ta): reciprocal square root
Special function e T

sin(a): sine

used to determine the offsets into arrays so the same code can
be invoked both within and across different threads.

i=c a): cosine

binary logarithm

d=2%**a; binary exponential




GPUs
00000000000080000

Basic PTX GPU Thread Instructions (cont.)

Logical

d=~a; one's complement

C logical not

a<<b; shift left

shift right

.b32, .bé4

1d.global.b32 d, [a+off] load from memory space
st.shared.b32 [d+off], a store (o memory space
Memory access tex.2d.vd f32d,a. b texture lookup
atom.spc.o VT atom.global.add.u32d,[al. b atomic read-modify-write
atom.global.cas.b32d,.[al. b, c * operation
atom.o and, or r, add, min, max, exch, cas; .spc=.global: .type=.b32
branch @p bra target if (p)goto target; conditional branch
call call (ret), func, (params) ret = func(params); call function
Control flow ret ret return; return from function call
C bar.sy wait for threads barrier synchronization
exit exit exit; terminate thread execution

GPUs
00000000000000e00

PTX Conditional Branching

@ Predicate mask registers are used to handle conditional
branches as conditionally executed code.

@ Also uses a branch synchronization stack for complex control
flow.

e A branch synchronization entry is pushed when a conditional
branch is executed and some lanes diverge (IF-THEN portion),
which causes mask bits to be set based on the condition.

e A branch synchronization marker is used to complement the
mask bits (ELSE portion).

e Another branch synchronization marker is used to pop the
stack when the paths converge (end of IF).

GPUs
00000000000008000

CUDA PTX Assembly Code Example

@ The first three parallel thread execution (PTX) instructions
below determine a unique byte offset that is added to the base
of the arrays.

@ Special address coalescing hardware recognizes when SIMD
lanes within different CUDA threads are collectively issuing
sequential addresses and requests a block transfer from the
memory system.

/* code for one loop iter */ /* CUDA PTX code */

Y[i] = a * X[i] + Y[il; shl.u32 R8,blockIdx,9
add.u32 R8,R8,threadIdx
shl.u32 R8,R8,3

1d.global.f64 RDO, [X+R8]
1d.global.f64 RD2, [Y+R8]
mult.f64 RDO,RDO,RD4
add.f64 RDO,RDO,RD2
st.global.f64 [Y+R8],RDO

GPUs
00000000000000080

PTX Conditional Branching Example

@ Assume R8 already has the appropriate offset and that *Push,
*Comp, and *Pop indicate the branch synchonization markers
inserted by the assembler.

/* conditional construct */ /% CUDA PTX code */
1d.global.f64 RDO, [X+R8]

if (X[i] '= 0) setp.neq.s32 P1,RDO,#0

X[i] = X[i] - Y[il; Q!P1,bra ELSE1, *Push
else 1d.global.f64 RD2, [Y+R8]
X[i] = Z[i]l; sub.f64 RDO,RDO,RD2
st.global.f64 [X+R8],RDO
QP1,bra ENDIF1,*Comp
ELSE1:

1d.global.f64 RDO, [Z+R8]

st.global.f64 [X+R8],RDO
ENDIF1:

<next inst> *Pop




GPUs
0000000000000000e

Comparison with Vector Computers

@ similarities to vector computers

e Works well on data-level parallel problems.
e Supports scatter-gather memory operations.
e Uses mask registers to support conditional execution.
o differences with vector computers
e Scalar instructions are not intermixed with GPU instructions.
e Uses multithreading to hide memory latency.
e Has many functional units, as opposed to a few deeply
pipelined vector functional units.

Loop Deps
[o] Yolelele]

Dependence Distance

@ The distance in iterations for the loop-carried dependence is
called the dependence distance. The following loop has a
loop-carried dependence with a dependence distance of 4.
for (i = 4; i < 100; i++)

Ali] = A[i-4] % 2 + A[i]; /* S1 %/

@ The greater the dependence distance, the greater the potential
ILP by unrolling the loop.
@ All four statements in the unrolled loop are independent of

each other.

for (i = 4; i < 100; 1 +=4) {
Ali] = A[i-4] * 2 + A[i]; /* S1 %/
A[i+1] = A[i-3] * 2 + A[i+1]; /* S2 %/
A[i+2] = A[i-2] * 2 + A[i+2]; /* S3 */
A[i+3] = A[i-1] * 2 + A[i+3]; /x S4 */

Loop Deps
©00000

Loop Dependences

@ A loop can be parallelized if its iterations are all independent.
@ A loop-carried dependence is when a data item in one loop
iteration depends on a value produced in an earlier iteration.

@ The loop below has two loop-carried dependences that prevent
it from being parallelized.

for (i = 1; i < 100; i++) {
Ali]l = A[i-1] * 2; /* S1 *x/
B[i+1] = B[i] + A[il; /* 82 x/

Loop Deps
00®000

Transforming Loops to Be Parallelizable

@ A loop with a loop-carried dependence can be parallelized if
the dependences in a loop do not form a cycle.

for (i = 0; i < 100; i++) {
A[i] = A[i] + B[il; /* S1 x/
B[i+1] = C[i] + D[i]l; /* 82 %/
}

@ S1 (use of Bfi]) is dependent on S2 (set of Bfi+1]) from the
previous iteration. This loop can be transformed so the only
dependences are within a single iteration.

AT0] = A[0] + B[O];

for (i = 0; i < 99; i++) {
B[i+1] = C[i] + D[il;
Ali+1] = A[i+1] + B[i+1];

}
B[100] = C[99] + D[99];




Loop Deps
000800

Eliminating Reductions

@ A reduction is where a vector is reduced to a single value.

@ The following loop cannot be parallelized due to the recurrence
on the variable sum.

for (i = 0; i < 1000; i++)
sum + x[il*y[i];

sSum

@ Scalar expansion can be used to parallelize the loop at the
expense of adding a simpler loop that cannot be parallelized
afterwards.

for (i = 0; 1 < 1000; i++)
sum[i] = x[il*y[i];

for (i = 0; i < 1000; i++)
finalsum = finalsum + sum[i];

Loop Deps
00000®

Dependence Analysis

@ Dependence analysis attempts to determine if two references
can ever access the same variable. Array-oriented dependence
analysis is performed when array references can be represented
as affine functions of the form a*/ + b, where i is typically a
loop index variable, a is a constant, and b is a constant.

@ One simple test is the GCD test, where if we have two
elements to the same array indexed by a*j+b and c*k+d, then
a loop-carried dependence may exist if GCD(c,a) divides d-b
with no remainder.

for (i = 0; i < 100; i++)
X[2%i+3] = X[4%i];

@ Here, a=2, b=3, c=4, and d=0. So GCD(a,c) = 2, and d-b =
-3. -3/2 does not produce an integer quotient, so these two
references are not dependent.

Loop Deps
000080

Pipelining Reductions

@ The following loop cannot even be effectively pipelined due to
the recurrence on the variable sum that results in stalls
between iterations.

for (i = 0; i < 1000; i++)
sum = sum + x[i];

@ Accumulator expansion can be used to minimize these stalls.

for (i = 0; 1 < 1000; i += 4) {

suml = suml + x[i];

sum?2 = sum?2 + x[i+1];
sum3 = sum3 + x[i+2];
sum4 = sum4 + x[i+3];

}

finalsum = suml + sum2 + sum3 + sum4;

Crosscutting Issues

@ DLP processors tend to have lower clock rates and simpler
issue logic than GP Q0O processors.

@ GPUs often have special DRAM chips, called GDRAM, that
provide higher bandwidth at lower capacity. Today the top-end
GPUs use stacked DRAMs, known as high bandwidth memory,
to achieve the higher bandwidth. GPU memory controllers
maintain separate queues of traffic for different GDRAM banks.

@ GPUs currently transfer data between |/O devices and system
memory and then between system memory and GPU memory,
which can degrade /O performance.




Fallacies and Pitfalls

e Pitfall: Concentrating on peak performance in vector
architectures and ignoring startup-overhead.

e Pitfall: Increasing vector performance, without comparable
increases in scalar performance.

@ Fallacy: On GPUs, just add more threads if you don’t have
enough memory performance.




	
	Vector Computers
	

	SIMD Extensions
	

	GPUs
	

	Loop Deps
	

	

