
Vector Computers SIMD Extensions GPUs Loop Deps

Concepts Introduced in Chapter 4

vector architectures

SIMD ISA extensions

graphics processing units (GPUs)

loop dependence analysis

Vector Computers SIMD Extensions GPUs Loop Deps

SIMD Advantages

SIMD architectures can signi�cantly improve performance by
exploiting DLP when available in applications.

SIMD processors are more energy e�cient than MIMD as they
only need to fetch a single instruction to perform the same
operation on multiple data items.

SIMD allows programmers to continue to write algorithms in a
sequential manner and sometimes SIMD parallelism can be
automatically exploited.

Vector Computers SIMD Extensions GPUs Loop Deps

Vector Architectures

A vector architecture includes instruction set extensions to an
ISA to support vector operations, which are deeply pipelined.

Vector operations are on vector registers, where each is a
�xed-length bank of registers.
Data is transferred between a vector register and the memory
system.
Each vector operation takes two vector registers or a vector
register and a scalar value as input.

A vector architecture can only be e�ective on applications that
have signi�cant data-level parallelism (DLP).

vector processing advantages

Greatly reduces the dynamic instruction bandwidth.
Generally execution time is reduced due to (1) signi�cantly
decreasing loop overhead, (2) stalls only occurring on the �rst
vector element rather than on each vector element, and (3)
performing vector operations in parallel.

Vector Computers SIMD Extensions GPUs Loop Deps

Extending RISC-V to Support Vector Operations (RV64V)

Add 8 vector registers where each register has 32 elements
with each element being 64 bits wide.

After an initial latency each vector functional unit can start a
new operation on each clock cycle.

Vector loads and stores also pay for the memory latency once
and afterwards a word is transferred each cycle between the
vector register and memory.

The processor has to detect both structural hazards, which can
cause stalls, and data hazards so that chaining (forwarding)
can be performed.

Vector Computers SIMD Extensions GPUs Loop Deps

Basic Structure of a Vector Architecture

© 2019 Elsevier Inc. All rights reserved. 2

Figure 4.1 The basic structure of a vector architecture, RV64V, which includes a RISC-V scalar architecture. There are also
32 vector registers, and all the functional units are vector functional units. The vector and scalar registers have a significant number
of read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches (thick gray lines) connects these
ports to the inputs and outputs of the vector functional units.

Vector Computers SIMD Extensions GPUs Loop Deps

RV64V Vector Instructions

© 2019 Elsevier Inc. All rights reserved. 3

Figure 4.2 The RV64V vector instructions. All use the R instruction format. Each vector operation with two operands is shown
with both operands being vector (.vv), but there are also versions where the second operand is a scalar register (.vs) and, when it
makes a difference, where the first operand is a scalar register and the second is a vector register (.sv). The type and width of the
operands are determined by configuring each vector register rather than being supplied by the instruction. In addition to the vector
registers and predicate registers, there are two vector control and status registers (CSRs), vl and vctype, discussed below. The
strided and indexed data transfers are also explained later. Once completed, RV64 will surely have more instructions, but the ones
in this figure will be included.

Vector Computers SIMD Extensions GPUs Loop Deps

RV64V Vector Instructions (cont.)

© 2019 Elsevier Inc. All rights reserved. 3

Figure 4.2 The RV64V vector instructions. All use the R instruction format. Each vector operation with two operands is shown
with both operands being vector (.vv), but there are also versions where the second operand is a scalar register (.vs) and, when it
makes a difference, where the first operand is a scalar register and the second is a vector register (.sv). The type and width of the
operands are determined by configuring each vector register rather than being supplied by the instruction. In addition to the vector
registers and predicate registers, there are two vector control and status registers (CSRs), vl and vctype, discussed below. The
strided and indexed data transfers are also explained later. Once completed, RV64 will surely have more instructions, but the ones
in this figure will be included.

Vector Computers SIMD Extensions GPUs Loop Deps

Example of Vector Code

This is the DAXPY (Double precision A times X Plus Y) loop
from the Linpack benchmark.
Assume x5 and x6 initially contain the beginning addresses of
the X and Y arrays.

/* Scalar RISC-V Code */ /* Source Code */

fld f0,a <= for (i = 0; i < 32; i++)

addi x28,x5,#256 Y[i] = a * X[i] + Y[i];

Loop:

fld f1,0(x5) /* RV64V Code */

fmul.d f1,f1,f0 vsetdcfg 4*FP64

fld f2,0(x6) fld f0,a

fadd.d f2,f2,f1 vld v0,x5

fsd f2,0(x6) => vmul v1,v0,f0

addi x5,x5,#8 vld v2,x6

addi x6,x6,#8 vadd v3,v1,v2

bne x28,x5,Loop vst v3,x6

vdisable

Vector Computers SIMD Extensions GPUs Loop Deps

Chaining, Convoys, and Chimes

Chaining allows the results of one vector operation to be directly used
as input to another vector operation.
A convoy is a set of vector instructions that can potentially execute
together. Only structural hazards cause separate convoys as true
dependences are handled via chaining in the same convoy. The RV64V
code below has 3 convoys as there is only one vector memory unit.
A chime is the unit of time taken to execute one convoy, which is the
vector length along with the startup cost. The following RV64V code
executes in three chimes since there are three convoys.

/* RV64V code */ /* convoys */

vld v0,x5 1. vld v0,x5

vmul v1,v0,f0 vmul v1,v0,f0

vld v2,x6 2. vld v2,x6

vadd v3,v1,v2 vadd v3,v1,v2

vst v3,x6 3. vst v3,x6

Vector Computers SIMD Extensions GPUs Loop Deps

Startup Time

The startup time for a convoy is primarily a�ected by the
pipelining latency of the vector functional unit associated with
the vector operation.
pipeline latencies in clock cycles for the RV64V

FP add - 6
FP multiply - 7
FP divide - 20
load - 12

Additional cycles need to be added for stalls between the
chained vector operations, but only for the �rst element of
each vector operation.

The cycles to execute the following convoy should be the sum
of the startup time and the vector length, or 51 (19+32).

vld v0,x5

vmul v1,v0,f0

Vector Computers SIMD Extensions GPUs Loop Deps

Using Multiple Lanes

Vector operations on vector register elements can also be
executed in parallel when there is an array of parallel pipelined
functional units.

So element N of a vector register will take part in operations
with element N from other vector registers.

Each lane contains one portion of the register �le and one
execution pipeline from each vector functional unit.

Each lane i of n lanes operates on each k vector register �le
element where k % n is equal to i.

No communication is needed between lanes.

Convoy time is now startup time + ceil(vector length/n).

Vector Computers SIMD Extensions GPUs Loop Deps

Using Multiple Functional Vector Units

© 2019 Elsevier Inc. All rights reserved. 5

Figure 4.4 Using multiple functional units to improve the performance of a single vector add instruction, C = A + B. The
vector processor (A) on the left has a single add pipeline and can complete one addition per clock cycle. The vector processor (B)
on the right has four add pipelines and can complete four additions per clock cycle. The elements within a single vector add
instruction are interleaved across the four pipelines. The set of elements that move through the pipelines together is termed an
element group. Reproduced with permission from Asanovic, K., 1998. Vector Microprocessors (Ph.D. thesis). Computer Science
Division, University of California, Berkeley.

Vector Computers SIMD Extensions GPUs Loop Deps

Structure of a Vector Unit Containing Four Lanes

© 2019 Elsevier Inc. All rights reserved. 6

Figure 4.5 Structure of a vector unit containing four lanes. The vector register memory is divided across the lanes, with each
lane holding every fourth element of each vector register. The figure shows three vector functional units: an FP add, an FP multiply,
and a load-store unit. Each of the vector arithmetic units contains four execution pipelines, one per lane, which act in concert to
complete a single vector instruction. Note how each section of the vector register file needs to provide only enough ports for
pipelines local to its lane. This figure does not show the path to provide the scalar operand for vector-scalar instructions, but the
scalar processor (or Control Processor) broadcasts a scalar value to all lanes.

Vector Computers SIMD Extensions GPUs Loop Deps

Vector Length Register

A vector length register (vl) allows the length of a vector
operation to be determined at run time.

Loops are strip mined so that the maximum vector length
(MVL) is no more than the length of a vector register.

The innermost loop in the strip mined loop nest can be
vectorized.

/* original loop */ /* strip mined loop nest */

for (i = 0; i < n; i++) low = 0;

Y[i] = a * X[i] + Y[i]; vl = n % MVL;

for (j = 0; j <= n/MVL; j++) {

for (i = low; i < low+vl; i++)

Y[i] = a * X[i] + Y[i];

low += vl;

vl = MVL;

}

Vector Computers SIMD Extensions GPUs Loop Deps

A Vector of Arbitrary Length Processed with Strip Mining

The �rst vector operation processes m = n % MVL elements.

The remaining vector operations process MVL elements.

© 2019 Elsevier Inc. All rights reserved. 7

Figure 4.6 A vector of arbitrary length processed with strip mining. All blocks but the first are of length MVL, utilizing the full
power of the vector processor. In this figure, we use the variable m for the expression (n % MVL). (The C operator % is modulo.)

Vector Computers SIMD Extensions GPUs Loop Deps

Strip Mined Vectorized Code

/* stripmined loopnest */ /* RV64V code */
i = 0; vsetdcfg 2 DP FP # enable 2 vect regs
while (n != 0) { fld f0,a # f0=M[a]

vl = min(MVL,n); loop:
for (j = 0; j < vl; setvl t0,a0 # vl=t0=min(MVL,n)

j++, i++) vld v0,x5 # load vector x
Y[i] = slli t1,t0,3 # t1=t0*8

a*X[i]+Y[i]; add x5,x5,t1 # x5 += t1
n -= vl; vmul v0,v0,f0 # vect-scalar mult

} vld v1,x6 # load vector y
vadd v1,v0,v1 # vect-vect add
sub a0,a0,t0 # n -= t0
vst v1,x6 # store vector y
add x6,x6,t1 # x6 += t1
bnez a0,loop # loop if n != 0
vdisable # disable vect regs

Vector Computers SIMD Extensions GPUs Loop Deps

Vector Mask Registers

Mask registers provide support for conditional execution of
each element within a vector register in a vector instruction.
When the vector-mask register is enabled, vector instructions
update results only for vector elements where the
corresponding bit in the vector-mask register is set.
No execution time is saved for the elements where the bits in
the vector-mask register are zero.

/* original loop */ /* RV64V assembly code */
for (i = 0; i < 32; i++) vsetdcfg 2*FP64 # enable 2 vect regs

if (X[i] != 0) vsetpcfgi 1 # enable 1 pred reg
X[i] -= Y[i]; vld v0,x5 # load X into v0

vld v1,x6 # load Y into v1
fmv.d.x f0,x0 # f0 = 0.0
vpne p0,v0,f0 # p0 = v0 != f0
vsub v0,v0,v1 # if (p0) v0 -= v1
vst v0,x5 # if (p0) M[X] = v0
vdisable # disable vect regs
vpdisable # disable pred reg

Vector Computers SIMD Extensions GPUs Loop Deps

Using Cache/Memory Banks

The more recent vector computers use caches to reduce the
latency of vector loads and stores.

Word-interleaved banks for cache and main memory often
provide the ability for simultaneous independent accesses.

Supporting multiple vector load or store operations to avoid a
structural hazard.
Supporting vector loads or stores that are not sequential.
Supporting multiple processor cores sharing the same L3 cache
and main memory.

Vector Computers SIMD Extensions GPUs Loop Deps

Handling Non-Unit Strides

The distance separating elements in memory can be nonsequential,
which is called a non-unit stride.
The vector stride can be put in a general-purpose register and can be
accessed with vector load/store instructions.
Supporting non-unit strides may cause more bank contention and cache
misses, which complicates the vector load/store operations.
Assume the addresses of B and D are in x7 and x8, respectively.

/* matrix multiply loop nest */ /* inner loop RV64V code */

for (i = 0; i < 100; i++) vld v1,x7 # load B into v1

for (j = 0; j < 100; j++) { mov x5,#800 # stride = 800

A[i][j] = 0.0; vlds v2,(x8,x5) # strided load of

for (k = 0; k < 100; k++) # D into v2

A[i][j] += vmul v3,v1,v2 # vect B * vect D

B[i][k]*D[k][j]; ...

}

Vector Computers SIMD Extensions GPUs Loop Deps

Gather-Scatter Operations

Sparse matrices are common and are usually stored in some compacted
form and indirectly accessed.
An index vector contains the indices of nonzero array elements.
A gather/scatter operation uses the index vector along with a base
address to fetch/store elements in an array.
Assume the addresses of K, M, A, and C are in x7, x28, x5, and x6,
respectively.

/* sparse array loop */ /* RV64V code */

for (i = 0; i < n; i++) vsetdcfg 4*FP64 # enable 4 vect regs

A[K[i]] += C[M[i]]; vld v0,x7 # load K[]

vldx v1,(x5,v0) # load A[K[]]

vld v2,x28 # load M[]

vldx v3,(x6,v2) # load C[M[]]

vadd v1,v1,v3 # v1 += v3

vstx v1,(x5,v0) # store A[K[]]

vdisable # disable vect regs

Vector Computers SIMD Extensions GPUs Loop Deps

SIMD Extensions to GP Processors

Many GP processors now have SIMD extensions to support
simultaneous operations on applications, including for multimedia.
SIMD extensions are simpler than vector operations.

Operate on a �xed number of operands (no vl register).
Do not support non-unit strides or gather-scatter access.
Do not support conditional execution of operations (no vector
mask register).

SIMD operations work on shorter vectors and all operations are
typically performed in parallel, as opposed to being pipelined.
Examples include the x86 SIMD extensions.

MultiMedia eXtensions (MMX) in 1996 - used FP registers
Streaming Simd Extensions (SSE) 1999 - separate 128-bit registers
Advanced Vector eXtensions (AVX) 2010 - separate 256-bit
registers
Extended Advanced Vector eXtensions (AVX-512) 2016 - separate
512-bit registers

Vector Computers SIMD Extensions GPUs Loop Deps

AVX DP Instructions for the x86 Architecture

© 2019 Elsevier Inc. All rights reserved. 10

Figure 4.9 AVX instructions for x86 architecture useful in double-precision floating-point programs. Packed-double for 256-
bit AVX means four 64-bit operands executed in SIMD mode. As the width increases with AVX, it is increasingly important to add
data permutation instructions that allow combinations of narrow operands from different parts of the wide registers. AVX includes
instructions that shuffle 32-bit, 64-bit, or 128-bit operands within a 256-bit register. For example, BROADCAST replicates a 64-bit
operand four times in an AVX register. AVX also includes a large variety of fused multiply-add/subtract instructions; we show just two
here.

Vector Computers SIMD Extensions GPUs Loop Deps

SIMD Extensions Easier to Implement

Can be added with little cost. For instance, an option to a
conventional integer adder can be to not perform carries across
speci�c partitions (e.g. parallel 8-bit additions).

Require little state as compared to vector architectures, which
means it is easier to implement context switches.

Need much less memory bandwidth.

Operands in memory for SIMD extensions on many
architectures have to be aligned within a L1 DC line, which
means one instruction only needs one access to the memory
system. However, due to this SIMD alignment problem, it is
much harder for compilers to automatically exploit these SIMD
extensions.

Vector Computers SIMD Extensions GPUs Loop Deps

SIMD Example

X and Y have to be aligned on a 32 byte boundary.

/* sparse array /* RISC-V SIMD code */

loop */ fld f0,a # load scalar a

for (i = 0; splat.4D f0,f0 # make 4 copies of a

i < 32; addi x28,x5,#256 # address after X

i++) Loop:

Y[i] = fld.4D f1,0(x5) # load X[i]..X[i+3]

a*X[i]+Y[i]; fmul.4D f1,f1,f0 # a*X[i]..a*X[i+3]

fld.4D f2,0(x6) # load Y[i]..Y[i+3]

fadd.4D f2,f2,f1 # a*X[i]+Y[i]..

a*X[i+3]+Y[i+3]

fsd.4D f2,0(x6) # store Y[i]..Y[i+3]

addi x5,x5,#32 # incr X index

addi x6,x6,#32 # incr Y index

bne x28,x5,Loop # loop if not done

Vector Computers SIMD Extensions GPUs Loop Deps

Graphics Processing Units (GPUs)

GPUs were �rst developed as graphics accelerators, where the
main emphasis was for the video game industry. But now
GPUs are also starting to be used in mainstream computing
(GPGPUs).

GPUs support many types of parallelism (ILP, SIMD,
multithreading, MIMD), but work best with DLP applications.

Some GPUs have their own programming language.

CUDA is o�ered by NVIDIA.
OpenCL is vendor-independent for multiple platforms.

Vector Computers SIMD Extensions GPUs Loop Deps

NVIDIA GPU Overview

heterogeneous execution model

CPU is the host.
GPU is the device.

CUDA is a C-like programming language to exploit GPU
features.

The programming model is called single instruction, multiple
thread (SIMT).

Vector Computers SIMD Extensions GPUs Loop Deps

NVIDIA Terminology

programming abstractions

A vectorizable loop is called a grid.
A grid is composed of thread blocks, which is equivalent to the
body of a strip-mined loop.
A thread block consists of a set of CUDA threads.
Each CUDA thread processes one element of the vector
registers and is equivalent to one iteration of a scalar loop.

machine object

A warp is a thread of PTX instructions.
A PTX (Parallel Thread eXecution) instruction is a SIMD
instruction.

processing hardware

A SIMD lane executes the operations in a CUDA thread of
SIMD instructions.
Multiple SIMD lanes within a thread block all simultaneously
execute the same instruction or are all idle.

Vector Computers SIMD Extensions GPUs Loop Deps

GPU Terms Used in this Chapter

© 2019 Elsevier Inc. All rights reserved. 13

Figure 4.12 Quick guide to GPU terms used in this chapter. We use the first column for hardware terms. Four groups cluster
these 11 terms. From top to bottom: program abstractions, machine objects, processing hardware, and memory hardware. Figure
4.21 on page 312 associates vector terms with the closest terms here, and Figure 4.24 on page 317 and Figure 4.25 on page 318
reveal the official CUDA/NVIDIA and AMD terms and definitions along with the terms used by OpenCL.

Vector Computers SIMD Extensions GPUs Loop Deps

GPU Terms Used in this Chapter (cont.)

© 2019 Elsevier Inc. All rights reserved. 13

Figure 4.12 Quick guide to GPU terms used in this chapter. We use the first column for hardware terms. Four groups cluster
these 11 terms. From top to bottom: program abstractions, machine objects, processing hardware, and memory hardware. Figure
4.21 on page 312 associates vector terms with the closest terms here, and Figure 4.24 on page 317 and Figure 4.25 on page 318
reveal the official CUDA/NVIDIA and AMD terms and definitions along with the terms used by OpenCL.

Vector Computers SIMD Extensions GPUs Loop Deps

Descriptive Terms to NVIDIA Terms

© 2019 Elsevier Inc. All rights reserved. 25

Figure 4.24 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon. OpenCL names are given
in the book’s definitions. Vector Computers SIMD Extensions GPUs Loop Deps

Vector-Vector Multiply Mapping to an NVIDIA Grid

© 2019 Elsevier Inc. All rights reserved. 14

Figure 4.13 The mapping of a Grid (vectorizable loop), Thread Blocks (SIMD basic blocks), and threads of SIMD instructions
to a vector-vector multiply, with each vector being 8192 elements long. Each thread of SIMD instructions calculates 32
elements per instruction, and in this example, each Thread Block contains 16 threads of SIMD instructions and the Grid contains 16
Thread Blocks. The hardware Thread Block Scheduler assigns Thread Blocks to multithreaded SIMD Processors, and the hardware
Thread Scheduler picks which thread of SIMD instructions to run each clock cycle within a SIMD Processor. Only SIMD Threads in
the same Thread Block can communicate via local memory. (The maximum number of SIMD Threads that can execute
simultaneously per Thread Block is 32 for Pascal GPUs.)

Vector Computers SIMD Extensions GPUs Loop Deps

Block Diagram of a Multithreaded SIMD Processor

© 2019 Elsevier Inc. All rights reserved. 15

Figure 4.14 Simplified block diagram of a multithreaded SIMD Processor. It has 16 SIMD Lanes. The SIMD Thread Scheduler
has, say, 64 independent threads of SIMD instructions that it schedules with a table of 64 program counters (PCs). Note that each
lane has 1024 32-bit registers.

Vector Computers SIMD Extensions GPUs Loop Deps

CUDA Source Example

// Invoke DAXPY in C.

daxpy(n, 2.0, x, y);

// DAXPY in C

void daxpy(int n, double a, double *x, double *y) {

for (int i = 0; i < n; i++)

y[i] = a*x[i] + y[i];

}

=>

// Invoke DAXPY in CUDA with 256 CUDA threads per thread block.

__host__

int nblocks = (n + 255)/256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

// DAXPY in CUDA

__device__

void daxpy(int n, double a, double *x, double *y) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

Vector Computers SIMD Extensions GPUs Loop Deps

Scheduling GPU Instructions

GPU hardware handles the thread management, not the OS or
the application, to improve performance.

A thread block scheduler assigns thread blocks to SIMD
processors.

A SIMD thread scheduler allocates SIMD threads within a
multithreaded SIMD processor.

SIMD threads are used to hide memory latency.

Vector Computers SIMD Extensions GPUs Loop Deps

GPU Threads

There are often more SIMD threads on a SIMD processor than
can run at one time, which is useful for hiding memory latency.

Uses a scoreboard to detect SIMD threads ready to run.

Each SIMD thread has its own PC and each SIMD instruction
within a thread simultaneously executes up to n operations.

The n parallel functional units to perform a SIMD operation
are called lanes.

No dependences can exist between di�erent SIMD threads.

A CUDA thread (vertical cut of SIMD instructions within a
SIMD thread) is typically assigned for each loop iteration.

For each CUDA thread, virtual registers are assigned to
distinct physical registers and a unique identi�er number is
used to determine the o�sets into arrays so the same code can
be invoked both within and across di�erent threads.

Vector Computers SIMD Extensions GPUs Loop Deps

Basic PTX GPU Thread Instructions

© 2019 Elsevier Inc. All rights reserved. 18

Figure 4.17 Basic PTX GPU thread instructions.

Vector Computers SIMD Extensions GPUs Loop Deps

Basic PTX GPU Thread Instructions (cont.)

© 2019 Elsevier Inc. All rights reserved. 18

Figure 4.17 Basic PTX GPU thread instructions.

Vector Computers SIMD Extensions GPUs Loop Deps

CUDA PTX Assembly Code Example

The �rst three parallel thread execution (PTX) instructions
below determine a unique byte o�set that is added to the base
of the arrays.

Special address coalescing hardware recognizes when SIMD
lanes within di�erent CUDA threads are collectively issuing
sequential addresses and requests a block transfer from the
memory system.

/* code for one loop iter */ /* CUDA PTX code */

Y[i] = a * X[i] + Y[i]; shl.u32 R8,blockIdx,9

add.u32 R8,R8,threadIdx

shl.u32 R8,R8,3

ld.global.f64 RD0,[X+R8]

ld.global.f64 RD2,[Y+R8]

mult.f64 RD0,RD0,RD4

add.f64 RD0,RD0,RD2

st.global.f64 [Y+R8],RD0

Vector Computers SIMD Extensions GPUs Loop Deps

PTX Conditional Branching

Predicate mask registers are used to handle conditional
branches as conditionally executed code.

Also uses a branch synchronization stack for complex control
�ow.

A branch synchronization entry is pushed when a conditional
branch is executed and some lanes diverge (IF-THEN portion),
which causes mask bits to be set based on the condition.
A branch synchronization marker is used to complement the
mask bits (ELSE portion).
Another branch synchronization marker is used to pop the
stack when the paths converge (end of IF).

Vector Computers SIMD Extensions GPUs Loop Deps

PTX Conditional Branching Example

Assume R8 already has the appropriate o�set and that *Push,
*Comp, and *Pop indicate the branch synchonization markers
inserted by the assembler.

/* conditional construct */ /* CUDA PTX code */

... ld.global.f64 RD0,[X+R8]

if (X[i] != 0) setp.neq.s32 P1,RD0,#0

X[i] = X[i] - Y[i]; @!P1,bra ELSE1,*Push

else ld.global.f64 RD2,[Y+R8]

X[i] = Z[i]; sub.f64 RD0,RD0,RD2

... st.global.f64 [X+R8],RD0

@P1,bra ENDIF1,*Comp

ELSE1:

ld.global.f64 RD0,[Z+R8]

st.global.f64 [X+R8],RD0

ENDIF1:

<next inst> *Pop

Vector Computers SIMD Extensions GPUs Loop Deps

Comparison with Vector Computers

similarities to vector computers

Works well on data-level parallel problems.
Supports scatter-gather memory operations.
Uses mask registers to support conditional execution.

di�erences with vector computers

Scalar instructions are not intermixed with GPU instructions.
Uses multithreading to hide memory latency.
Has many functional units, as opposed to a few deeply
pipelined vector functional units.

Vector Computers SIMD Extensions GPUs Loop Deps

Loop Dependences

A loop can be parallelized if its iterations are all independent.

A loop-carried dependence is when a data item in one loop
iteration depends on a value produced in an earlier iteration.

The loop below has two loop-carried dependences that prevent
it from being parallelized.

for (i = 1; i < 100; i++) {

A[i] = A[i-1] * 2; /* S1 */

B[i+1] = B[i] + A[i]; /* S2 */

}

Vector Computers SIMD Extensions GPUs Loop Deps

Dependence Distance

The distance in iterations for the loop-carried dependence is
called the dependence distance. The following loop has a
loop-carried dependence with a dependence distance of 4.

for (i = 4; i < 100; i++)

A[i] = A[i-4] * 2 + A[i]; /* S1 */

The greater the dependence distance, the greater the potential
ILP by unrolling the loop.
All four statements in the unrolled loop are independent of
each other.

for (i = 4; i < 100; i += 4) {

A[i] = A[i-4] * 2 + A[i]; /* S1 */

A[i+1] = A[i-3] * 2 + A[i+1]; /* S2 */

A[i+2] = A[i-2] * 2 + A[i+2]; /* S3 */

A[i+3] = A[i-1] * 2 + A[i+3]; /* S4 */

}

Vector Computers SIMD Extensions GPUs Loop Deps

Transforming Loops to Be Parallelizable

A loop with a loop-carried dependence can be parallelized if
the dependences in a loop do not form a cycle.

for (i = 0; i < 100; i++) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

S1 (use of B[i]) is dependent on S2 (set of B[i+1]) from the
previous iteration. This loop can be transformed so the only
dependences are within a single iteration.

A[0] = A[0] + B[0];

for (i = 0; i < 99; i++) {

B[i+1] = C[i] + D[i];

A[i+1] = A[i+1] + B[i+1];

}

B[100] = C[99] + D[99];

Vector Computers SIMD Extensions GPUs Loop Deps

Eliminating Reductions

A reduction is where a vector is reduced to a single value.

The following loop cannot be parallelized due to the recurrence
on the variable sum.

for (i = 0; i < 1000; i++)

sum = sum + x[i]*y[i];

Scalar expansion can be used to parallelize the loop at the
expense of adding a simpler loop that cannot be parallelized
afterwards.

for (i = 0; i < 1000; i++)

sum[i] = x[i]*y[i];

for (i = 0; i < 1000; i++)

finalsum = finalsum + sum[i];

Vector Computers SIMD Extensions GPUs Loop Deps

Pipelining Reductions

The following loop cannot even be e�ectively pipelined due to
the recurrence on the variable sum that results in stalls
between iterations.

for (i = 0; i < 1000; i++)

sum = sum + x[i];

Accumulator expansion can be used to minimize these stalls.

for (i = 0; i < 1000; i += 4) {

sum1 = sum1 + x[i];

sum2 = sum2 + x[i+1];

sum3 = sum3 + x[i+2];

sum4 = sum4 + x[i+3];

}

finalsum = sum1 + sum2 + sum3 + sum4;

Vector Computers SIMD Extensions GPUs Loop Deps

Dependence Analysis

Dependence analysis attempts to determine if two references
can ever access the same variable. Array-oriented dependence
analysis is performed when array references can be represented
as a�ne functions of the form a*i + b, where i is typically a
loop index variable, a is a constant, and b is a constant.

One simple test is the GCD test, where if we have two
elements to the same array indexed by a*j+b and c*k+d, then
a loop-carried dependence may exist if GCD(c,a) divides d-b
with no remainder.

for (i = 0; i < 100; i++)

X[2*i+3] = X[4*i];

Here, a=2, b=3, c=4, and d=0. So GCD(a,c) = 2, and d-b =
-3. -3/2 does not produce an integer quotient, so these two
references are not dependent.

Vector Computers SIMD Extensions GPUs Loop Deps

Crosscutting Issues

DLP processors tend to have lower clock rates and simpler
issue logic than GP OoO processors.

GPUs often have special DRAM chips, called GDRAM, that
provide higher bandwidth at lower capacity. Today the top-end
GPUs use stacked DRAMs, known as high bandwidth memory,
to achieve the higher bandwidth. GPU memory controllers
maintain separate queues of tra�c for di�erent GDRAM banks.

GPUs currently transfer data between I/O devices and system
memory and then between system memory and GPU memory,
which can degrade I/O performance.

Vector Computers SIMD Extensions GPUs Loop Deps

Fallacies and Pitfalls

Pitfall: Concentrating on peak performance in vector
architectures and ignoring startup-overhead.

Pitfall: Increasing vector performance, without comparable
increases in scalar performance.

Fallacy: On GPUs, just add more threads if you don't have
enough memory performance.

	
	Vector Computers
	

	SIMD Extensions
	

	GPUs
	

	Loop Deps
	

	

