
*

Lecture 8

Shell Programming – Control Constructs

COP 3353 Introduction to UNIX

*

Command Line Arguments Cont.

●$# contains the number of command line arguments.
●$@ will be replaced by a string containing the
command line arguments
●Example script echo.sh
#!/bin/sh

echo “The” $# “arguments entered:” $@

●Usage:
echo.sh alpha beta gamma

●Output:
The 3 arguments entered: alpha beta gamma

*

Testing Conditions

●There are two ways to test for conditions. The two
general forms are:

test <condition>
or

[<condition>]
●The latter method is easier to read. ***Remember
to include a space before and after the bracket
●A condition can be reversed with a ! before the
condition (this is the same as “not” some condition)

[!<condition>]
●A ‘:’ command in place of condition always returns
true

*

Testing File Attributes - examples
●To test if a file is readable
[-r prog.txt] #tests if prog.txt is readable
[-r $1.c] #tests if <argument1>.c is readable
●To test if a file is writeable
[-w specialfile.txt] #tests if specialfile.txt is writable
●To test if a file is executable
[-x prog4.sh] #tests if prog4.sh is executable
●To test if a file exists
[-f temp.text] #to test if temp.txt is a file (exists)
●Testing for the negation - use ! (eg. not writeable)
[! -w nochange.txt] #tests if nochange.txt is NOT writable

*

Numeric Tests

●The following operators can be used for numeric
tests:
{ -eq, -ne, -gt, -ge, -lt, -le }
(equal, not equal, greater than, greater than or equal, less than,
less than or equal. CANNOT USE >, <, >=, <=, == for
numbers)
●Examples
[$1 –lt $2] #tests if argument 1 is less than argument 2
[$1 –gt 0] #tests if argument 1 is greater than 0
[$# -eq 2] #tests if the number of arguments is equal to 2
[$# -lt 3] #tests if the number of arguments is less than 3

*

Simple If Statement

●General Form:
if <condition>
then

one-or more commands
fi

●Example:
if [-r tmp.text]
then

echo “temp.text is a readable file”
fi

*

General If Statement
●General form:
if <condition> #BEGINS the if block
then

one-or-more-commands
elif <condition>
then

one-or-more-commands
… #any number of elif clauses (else if)
else

one-or-more-commands
fi #CLOSES the entire if block
●Note that you can have 0 or more elif statements and that the
else is optional.

*

If Statement Example, using elif,
else

if [$var1 –lt $var2]
then

echo $var1 “is less than” $var2
elif [$var1 –gt $var2]
then

echo $var1 “is greater than” $var2
else

echo $var1 “is equal to” $var2
fi

*

Testing Strings

●Performing string comparisons. It is a good idea to
put the shell variable being tested inside double
quotes.
[“$1” = “yes”]
[“$2” != “no”]
- can use = and != with STRINGS , not numbers

●Note that the following will give a syntax error
when $1 is empty since:
[$1 != “no”]
●becomes
[!= “no”]

*

More on String Relational Operators

●The set of string relational operators are:
{ =, !=, >, >=, <, <= }
●The { >, >=, <, <= } operators assume an ASCII
ordering (for example “a” < “c”). These operators
are used with the expr command that computes
an expression. The backslash has to be used
before the operators so that they are not confused
with I/O redirection

*

Testing with Multiple Conditions

●&& is the and operator
●|| is the or operator
●checking for the and of several conditions
[“$1” = “yes”] && [-r $2.txt]
[“$1” = “no”] && [$# -eq 1]
●checking for the or of several conditions
[“$1” = “no”] || [“$2” = “maybe”]

*

Quoting Rules

●Using single quotes
‘xyz’ disables all special characters in xyz

●Using double quotes
“xyz” disables all special characters in xyz except $, `, and \.

●using the backslash
\x disables the special meaning of character x

*

Quoting Examples

var1=“alpha” #set the variable
echo $var1 #prints: alpha
echo “$var1” #prints: alpha
echo ‘$var1’ #prints: $var1
cost=2000
echo ‘cost:$cost’ #prints: cost:$cost
echo “cost:$cost” #prints: cost:2000
echo “cost:\$cost” #prints: cost:$cost
echo “cost:\$$cost” #prints: cost:$2000

*

Using Exit

●The exit command causes the current shell script to
terminate. There is an implicit exit at the end of each shell
script. The exit command can set the status at the time of
exit. If the status is not provided, the script will exit with the
status of the last command.
●General form:
exit
●or
exit <status>
●$? is set to the value of the last executed command
●Zero normally indicates success. Nonzero values indicate
some type of failure. Thus, exit 0 is normally used to indicate
that the script terminated without errors.

*

Exit Command (again)

●Conventionally, zero normally indicates success.
Nonzero values indicate some type of failure. It is
thus good practice to ensure that if the shell script
terminates properly, it is with an “exit 0” command.

●If the shell script terminates with some error that
would be useful to a calling program, terminate with
an “exit 1” or other nonzero condition.

●most Unix utilities that are written in C will also
call “exit(<value>);” upon termination to pass a
value back to the shell or utility that called that
utility.

*

Exit Example
●The following shell script exits properly. It also

distinguishes the response through the value returned.
#!/bin/sh
#determines a yes (0) or no (1) answer from user
echo “Please answer yes or no”; read answer
while :
do

case $answer in
“yes”) exit 0;;
“no”) exit 1;;
*) echo “Invalid; enter yes or no only”

read answer;;
esac

done

*

Testing the Exit Status

●Conditions tested in control statements can also
be the exit status of commands. Assume that the
script “yes.sh” has been invoked.

●The following segment will test this as part of its
script:

if yes.sh
then

echo “enter file name”
read file

else
echo “goodbye”; exit 0

fi

*

Case Statement (strings only)

●Compares stringvalue to each of the strings in the patterns.
At a match, it does the corresponding commands. ;; (similar
to “break” in c++) indicates to jump to the statement after the
esac (end of case). *) means the default case.
●Form:
case stringvalue in
pattern1) one or more commands;;
pattern2) one or more commands;;
…

 *) one or more commands;;
esac

*

Case Statement Example

echo “do you want to remove file $1?”
echo “ please enter yes or no”
read ans
case $ans in
“yes”) rm $1

echo “file removed”
;;

“no”) echo “file not removed”
;;

 *) echo “do not understand your request”
esac

*

while and until statements

●while form:
while <condition>
do

one or more commands
done

●until form:
until <condition>
do

one or more commands
done

*

while and until examples
read cmd
while [$cmd != “quit”]
do

…
read cmd

done
######### note, both examples achieve the same result.
read cmd
until [$cmd = “quit”]
do

…
read cmd

done

*

For statement (loop)

●The shell <variable> is assigned each word in the
list, where the set of commands is performed each
time the word is assigned to the variable. If the “in
<word_list>” is omitted, then the variable is assigned
each of the command line arguments.

for <variable> [in <word_list>]
do
one or more commands
done

Using for in a directory (USEFUL!)

●Use the for loop to iterate through every file in a
directory

for filename in *

 do
echo $filename

done

●You can replace * with *.doc to iterate through only
.doc files in the current directory.
●To look inside a directory other than CWD, do:
for filename in <relativepathname>/*
ex: for filename in myDir/*

*

For statement examples

#!/bin/sh
#makes a backup of certain files and echoes arguments
for file in `ls *.c`
do
cp $file $file.bak

done
for arg
do
echo $arg
done
exit

*

Command Substitution

●a string in back quotes ` … ` does command
substitution

●This means that the result of the command (the standard
output of the command) replaces the back quoted string

Examples:
count=`wc -w <$1`
the value of count is assigned the number of words in file $1

if [`wc -l < $2.txt` -lt 1000];
#checks if the number of lines in the file is < 1000

cat `grep -l exit *.sh`
#print out all *.sh files containing the word exit

*

Expr

●expr evaluates an arithmetic or relational
expression and prints its result to standard output.
This is useful when you need to perform calculations
in the shell script. It outputs 1 (true) or 0 (false)
when evaluating a relational expression.

●Note that the arguments are operators must be
separated by spaces.

●Example from the tcsh command line (note set)
set alpha = 3
expr $alpha + 2 #result printed out is 5

*

More expr examples

var=`expr $var + 1` #increment var by 1

if [`expr $s1 \< $s2` = 1] #check if the value of s1
#is less than value of s2

beta=`expr $beta * 2` #multiply value of beta by 2
set beta = 10; expr $beta / 2 #using tcsh directly, result is 5

expr “$alpha” = hello #output 1 if variable alpha is
#hello

*

Good reference on scripting

●http://steve-parker.org/sh/sh.shtml

Also, see examples on blackboard.

http://steve-parker.org/sh/sh.shtml
http://steve-parker.org/sh/sh.shtml

