
 

Lecture 4

Redirecting standard I/O,
 Appending to files,

and Pipes

COP 3353 Introduction to UNIX



 

Standard input, output and error

● standard input (0: stdin)
● The default place where a process reads its input 

(usually the terminal keyboard)
● standard output (1: stdout)

● The default place where a process writes its output 
(typically the terminal display)

● standard error (2: stderr)
● the default place where a process can send its error 

messages (typically the terminal display)



 

Redirecting standard I/O
● Standard input and output can be redirected providing a 

great deal of flexibility in combining programs and unix 
tools

● Can redirect standard input from a file using <
a.out < input12

● any use of stdin will instead use input12 in this example
● Can redirect standard output to a file using >

testprog1 > testout1

cal > todaycal

● Can also redirect stderr and / or stdout at the same time
● a.out < input12 > testout
● input12 is used as the standard input to a.out and the stdout of a.out 

is redirected to file testout1 



 

Appending to a file

● If you use the > operator to redirect output to a 
filename that already exists, any existing data in 
that file WILL BE OVERWRITTEN!

● How to avoid this? Use >>
● The >> operator appends to a file rather than 

redirecting the output to a file
prog1.exe >>assign4
prog2.exe >>assign4
cat endinfo >>assign4



 

Pipes

● Pipes allow the standard output of one program to be used 
as the standard input of another program

● The pipe operator ‘|’ takes the output from the command 
on the left and feeds it as standard input to the command at 
the right of the pipe

● Examples
ls | sort -r
cat file.txt | wc -l

● Pipes are more efficient as compared to using intermediate 
files

- Can also use pipes and redirection together. 
prog1.exe < input.dat | prog2.exe | 
prog3.exe > output.dat



 

Redirection & Pipes: The Difference

● Redirection is used between a COMMAND and a 
FILE. Either redirecting the output of a command 
to some file, or using some file as input to a 
command.

○ command > file    (output redirection)
○ command < file    (input redirection)

● Pipes are used between TWO COMMANDS. 
You cannot use files with pipes.
○ command1 | command2 
(output of command1 used as input to 
command2)



 

Separating commands

● Multiple instructions on one line
● separate instructions by ‘;’
ls -l; cal; date

● Suppose you need to continue a command to the 
next line - use the ‘\’ to do so and then continue 
your command on the next line
cat filename | sort \

| wc

(These will be more useful when we get 
to shell scripting)


