1 Overview

Proposal Title: Preprocessing for Modulo Scheduling withh Open-Source
ARM Cortex-A8 Compiler
Principal Investigator (Pl): Gang-Ryung Uh, Associatefssor
Co-Principal Investigator (Co-Pl): David Whalley, Prcfes
Mailing Address of PI: MEC 302-N, Computer Science DeparitnBoise State University
1910 University Drive, Boise, ID 83725, USA
Emails of Pl and Co-Pl: uh@cs.boisestate.addwhalley@cs.fsu.edu
Telephone Numbers of Pl and Co-PI: (208) 426-568d(850) 644-3506
Affiliations: Boise State UniversitpndFlorida State University
Google contact: Dr. Brad Chen
Google sponsor: Dr. Stephen Hines

2 Proposal

2.1 Abstract

As communication and media applications become more commeent mobile devices are being built with multi-issue
processors to manage increasing data quantity and insinubdw. To automatically utilize the high instruction issu
rate on these processors, commercial compilers are betegaad to support variants ofaodulo schedulinglgorithm.
However, we recognized that, for multi-issue mobile preoes, these variants make little difference in finding adyett
Instruction Level ParallelisnfILP) between loop iterations. Instead, excessively longirs of data dependence cycles
of instructions, which are frequently found in signal anddiaeprocessing kernels, constrain scheduling freedomsé& he
cycles often causes the compiler to produce less satisjactale, which fails to exploit the full potential of the miult
issueProgram Dispatch Logi¢PDL). In this research, we propose to classify excessilaig data dependence cycles
of instructions in various loop kernels of DSPStone and Mi&ebenchmark suites for the dual-issue ARM Cortex-A8
processor.First, we will prepare an open-source compiler using LLVM and VRD ARM Instruction Set Architec-
ture (ISA). Second we will investigate an effective preprocessing strategyniodulo scheduling within the compiler to
split excessively long dependence chains into pieces. Tégrgcessing framework, which we plan to design and im-
plement, may greatly help Google engineers develop a higbnpeing Android platform that matches ARM Cortex-A9
performance, but with significantly reduced power consuompt

2.2 Problem Statement and Research Goals

Modulo scheduling is an aggressive loop transformatiohrigpie that exploits ILP in inner loops between loop itera-
tions [1]. When this compiler technique is successfully applied koap kernel, the critical path of the loop is drastically
compressed. As a result, performance can be greatly imgraten the loop kernel forms an execution hot-spot. As
multi-issue low-power processors become more populaineegs are beginning to use variants of a modulo scheduling
algorithm within compilers to optimize signal and mediagessing kernels for multi-issue PDLs. However, unlike a tra
ditional multi-issue general purpose processor, it is Inletthat most operations in low-power processors typiaaityuire

low latency. As a result, different slack scheduling sigas in these variants typically make no difference in figdin
better ILP between loop iterationg,[3]. Instead, for the multi-issue processors for mobile desjave recognized that
the limiting factor to the modulo scheduling is not the salledy algorithm, but the excessively long data dependence
cycles of instructions which are frequently found in sigaatl media processing loop kernels.

Problem Statement: The problem we plan to study is the classification of excelgslong data dependence cycles of
instructions in loop kernels for the dual-issue ARM Coreékprocessor.Once we correctly understand the nature of
these data dependence cycles, we believe we might be alghttive chains into pieces.

Research GoalsOur goal is to design and implement a practical preprocegsinategy that can enable modulo schedul-
ing to better exploit ILP spanning more loop iterations blitipg long data dependence cycles of instructiolmspartic-
ular, by statically utilizing the dual-issue ARM cortex-ADL via a compilation strategy that we plan to study, we may
achieve the performance of ARM Cortex-A9 with much less poageit dynamically selects instructions to be issued for
the PDL.

2.3 Proposed Research and Expected Outcome

How Modulo Scheduling is done in a Commercial Compiler for a Multi-lssue Low-Power Processor: Consider
freescaleSC140 processor since the alpha-2.6 SC140 commercial tamagis available to Pls. This processor supports
a 6-issue PDL with/ariable Length Execution SEYLES) [4]. To statically utilize this multi-issue logic, the comneéal
compiler is comprised of three main stages — front-end, feiéthd, and back-end. For a C source code, the front-end
produces an intermediate code in the form of Abstract Symtar (AST). The middle-end generates a sequential SC140

machine code by walking the ASTs multiple times. The badt-eempacts a sequential code from the middle-end
into VLESs for the 6-issue PDL. To maximize the use of VLESdarexecution hot-spot, the back-end applies various
transformations to a loop kernel with special emphasis odutwscheduling.

Although the modulo scheduling in the back end is highly @ffe, excessively long chains of data dependence
cycles of instructions, which are frequently observed gmal processing kernels, restrict scheduling freedom. s a

for (k=64; k<128; k++) {
twa_1 = re_ac[m][K];
twa_2 =im_ac[m][K];
re_tw = twiddle[n][j];
s
im_tw = twiddle[n][j];
j+t;
re_ac[m][k]=(twa_1*re_tw)—(twa_2*im_tw);
re_ac[m][k]=re_ac[m][k]>>10;
im_ac[m][k]=(twa_1*im_tw)+(twa_2*re_tw);
im_ac[m][k]=im_ac[m][k]>>10;

doen3 dl ;hardware loop counter = 64
i dosetup3 L25 ; address of the loop body

i loopstart3 ; start of the hardware loop
'L25

i move.w (r1),d3 ;1) load_re_ac[m][k] to d3

. move.w (r6)+n3,d4 ;2) load twiddle[n][j] to d4
' ;postincrement the pointer r6 by 4
. impy d4,d3,d5 ;3)d5 <-twa_1*re_tw

. move.w (r0),d6 ;4) load im_ac[m][k] to d6

i move.w (r3)+n3,d7 ;5) load twiddle[n][j] to d7

: ;postincrement the pointer r3 by 4
i imac -d7,d6,d5 ;6) d5 <- d5—(twa_2*im_tw)
i sxtl db ;7) d5[39:32] <- d5[31]
(a) A Signal Processing Kernel in C : asir #<10,d5 ;8) d5 <- (d5>>10)
¢ move.l d5,(r1)+ ;9) store d5 to re_ac[m][k]
: ;postincrement the pointer rl by 4
. impy d4,d6,d8 ;10) d8 <- twa_2*re_tw
i imac d7,d3,d8 ;11) d8 <~ d8+(twa_1*m_tw)
| asrr #<10,d8 ;12) d8 <~ (d8>>10)
© move.l d8,(r0)+ ;13) store d8 to im_ac[m][k]
: ;postincrement the pointer r0 by 4

loopend3 ;end of hardware loop
doen3 di1 :

dosetup3 L25

loopstart3 ;start of the hardware loop (b) Machine Code right before Modulo Scheduling

L25

move.w (rl),d3 move.w (r6)+n3,d4

impy d4,d3,d5 move.w (r0),d6 move.w (r3)+n3,d7
imac -d7,d6,d5 impy d4,d6,d8

sxtl d5 imac d7,d3,d8

asrr #<10,d5 asrr #<10,d8

move.l d5,(r1)+ move.l d8,(r0)+

loopend3 ;end of hardware loop

(c) Machine Code after Modulo Scheduling

Figure 1: FFT Loop Kernel in C and SC140 Compiler Code Germrat

illustration, for theFast Fourier Transform(FFT) loop kernel shown in Figur&a), the alpha-2.6 SC140 DSP compiler
generates the machine code shown in Fidi{bd for modulo scheduling. To aggressively compress thp legight, mod-

ulo scheduling in the back end attempts to expose ILP betloegnterations. However, due to the long data dependence
cycle of instructions formed /0, 1/, /0, /0, /0, 14, Lin Figure1(b), modulo
scheduling fails to find ILP between loop iterations, anddoices a less satisfactory schedule as shown in Fiifa)e
The resulting code requires 6 machine cycles per loop iterand uses only 30% of the SC140 6-issue PDL.

Expected Benefits by Splitting the Data Dependence Cycles bfstructions: The length of this dependence cycle of
instructions appears irreducible since the dependenn@L is a loop-carried flow (true) dependericé. How-
ever, there is no memory dependence fi> , and therefore, the loop-carried dependence wittcan be safely
removed by creating an additional induction variabled that replicates the behavior ofL. After repeating this prepro-
cessing, this excessively long data dependence cycletofiai®ns is split into pieces. As a result, modulo scheuuin

the back end is able to find ILP that spans three loop iteratiand achieves a better loop schedule requiring only four
machine cycles per loop iteration, and using 54% of the Bei$2DL. This is a significant performance improvement over
the schedule shown in Figutéc).

Research Challenges and PlanFirst, to mirror the performance improvement rate by spigtiong data dependence
cycles to the dual-issue ARM Cortex-A8 processor, we needpam-source compiler to design and implement various
preprocessing strategies for modulo scheduling. Howévere exists no such open-source compiler to enable oungthn
research. Second, to the best of our knowledge, no existemrpcessing strategy for dual-issue ARM Cortex-A8 hasbee

1 m/d, : m denotes delay cycles amdrepresents loop iteration distance from instructions ;.
2r1in instruction is post-incremented and the updated value bfs read by instructio in the next loop iteration.
3The ARM ISA also supports post/pre increment/decrementessing modes, i.eSTMVDA andL DVDA.

developed for modulo scheduling. Therefore, we need tocegpdractical preprocessing strategies, which can (1) spot
excessively long data dependence cycles of instructiopslynomial time for analysis, and (2) split these dependenc
cycles into pieces by using functional resources which #reraise left unused. Our plan is detailed in the following.

First, to properly execute the planned research for modeheduling, we will prepare an open-source compiler for
ARM Cortex-A8 ISA using two open-source compilers, LLVM aW@O [5, 6]. LLVM compiler is library-based and
therefore, it is highly reusable and extensible. The mogrtant design aspect of LLVM is the Intermediate Represen-
tation (IR), which retains source level information thawvital to perform mid-level loop analysis and transformato
However, some LLVM IRs can be lowered to multiple machineef$ during target code generation, which can poten-
tially invalidate the effects from modulo scheduling. Oe ttontrary, VPO is a machine level global optimizer, wheghea
machine-dependent code improving transformation is peréal in a machine-independent way. Therefore, VPO is an
ideal framework to implement modulo scheduling and looppreessing to split data dependence cycles of instructions
However, VPO uses LCC as a front end, which has no mid-levé¢ émproving transformations’[. By streamlining
LLVM and VPO, the LLVM-VPO tool chain will be an ideal open+tsme compiler framework for the planned research,
where LLVM will prepare highly optimized machine code fogsal and media processing kernels, and VPO will perform
modulo scheduling with various loop preprocessing stiatefpr the ARM Cortex-A8 processor.

Second, once the LLVM-VPO is prepared for the ARM Cortex-A8gessor, we will implement modulo scheduling
and develop an algorithm to enumerate all excessively l@tg dependence cycles of instructions in various loop kerne
from the DSPStone and MiBench benchmark suieS]l From this research activity, we will identify the naturetbese
data dependence cycles, and explore a practical prepingessategy to reduce the length of the dependence chains.
Relevance to Google:This new open-source LLVM-VPO compiler may enable Googlgireers to develop a highly
performing Android platform on low-power ARM Cortex-A8 thenatches the performance of ARM Cortex-A9 while
requiring significantly less power. We look forward to pdiafy collaborating with Google system tools engineers on
this research.

3 Data Policy

We clearly understand the project may take more than one ieavever, our intent is to build the LLVM-VPO compiler
tool chain for ARM Cortex-A8 and implement modulo schedglaturing the first year. We will release the compiler to
the public to involve more researchers/developers withmédal research beyond year one.

4 Budget

We are asking Google for $37,407 that covers (1) one yeargitedresearch assistant support which includes salary,
fringe, and tuition ($33,907), (2) student conferencedtd$1,500), (3) ARM Cortex-A development boards ($1,000),
and (4) ARM software tools ($1,000).

References

[1] B. Rau: Iterative modulo scheduling. hP Laboratories Technical Report, HPL941 1%ov 1995.

[2] R. Huff: Lifetime-Sensitive Modulo Scheduling. Proceedings of the SIGPLAN'93 Conference on Programmingylage Design and Imple-
mentation June, 1993.

[3] I. Finlayson, G. Uh, D. Whalley, and G. Tyson: An overviefStatic Pipelining. INEEE Computer Architecture Letter2011.
[4] Freescale semiconductor: Freescale SC140 DSP CoredReéeManual. Revision 4.1, Chapter 2, pages 32 — 100, Sbpte2005

[5] C. Lattner and V. Adve: LLVM: A Compilation Framework fdrifelong Program Analysis & Transformation. IRroceedings of the 2004
International Symposium on Code Generation and Optinaraarch, 2004.

[6] M. Benitez and J. Davidson: A Portable Global Optimizedd.inker. InProceedings of the SIGPLAN’88 Conference on Programmimguage
Design and Implementatiodune, 1988.

[7] C. Fraser and W. Hanson and R. David: A Retargetable C @emDesign and ImplementationSBN 0-8053-1670;1Addison-Wesley, 1995.

[8] V. Zivojnovic, J. Velarde, C. Schager, and H. Meyr: DS&&%t - A DSP oriented Benchmarking Methodology. Rroceedings of International
Conference on Signal Processing Applications and Teclgyol®94.

[9] C. Lee, M. Potkonjak, and W. Smith: MediaBench: A Tool févaluating and Synthesizing Multimedia and Communica&i®ystems. In
Proceedings of the 30th Annual IEEE/ACM International Sysiym on MicroarchitectureNov 1997.

	1 Overview
	2 Proposal
	2.1 Abstract
	2.2 Problem Statement and Research Goals
	2.3 Proposed Research and Expected Outcome

	3 Data Policy
	4 Budget

