
1 Overview
Proposal Title: Preprocessing for Modulo Scheduling within Open-Source

ARM Cortex-A8 Compiler
Principal Investigator (PI): Gang-Ryung Uh, Associate Professor

Co-Principal Investigator (Co-PI): David Whalley, Professor
Mailing Address of PI: MEC 302-N, Computer Science Department, Boise State University

1910 University Drive, Boise, ID 83725, USA
Emails of PI and Co-PI: uh@cs.boisestate.eduandwhalley@cs.fsu.edu

Telephone Numbers of PI and Co-PI: (208) 426-5691and(850) 644-3506
Affiliations: Boise State UniversityandFlorida State University

Google contact: Dr. Brad Chen
Google sponsor: Dr. Stephen Hines

2 Proposal

2.1 Abstract
As communication and media applications become more complex, recent mobile devices are being built with multi-issue
processors to manage increasing data quantity and instruction flow. To automatically utilize the high instruction issue
rate on these processors, commercial compilers are being extended to support variants of amodulo schedulingalgorithm.
However, we recognized that, for multi-issue mobile processors, these variants make little difference in finding a better
Instruction Level Parallelism(ILP) between loop iterations. Instead, excessively long chains of data dependence cycles
of instructions, which are frequently found in signal and media processing kernels, constrain scheduling freedom. These
cycles often causes the compiler to produce less satisfactory code, which fails to exploit the full potential of the multi-
issueProgram Dispatch Logic(PDL). In this research, we propose to classify excessivelylong data dependence cycles
of instructions in various loop kernels of DSPStone and MiBench benchmark suites for the dual-issue ARM Cortex-A8
processor.First , we will prepare an open-source compiler using LLVM and VPO for ARM Instruction Set Architec-
ture (ISA). Second, we will investigate an effective preprocessing strategy for modulo scheduling within the compiler to
split excessively long dependence chains into pieces. The preprocessing framework, which we plan to design and im-
plement, may greatly help Google engineers develop a high performing Android platform that matches ARM Cortex-A9
performance, but with significantly reduced power consumption.

2.2 Problem Statement and Research Goals
Modulo scheduling is an aggressive loop transformation technique that exploits ILP in inner loops between loop itera-
tions [1]. When this compiler technique is successfully applied to aloop kernel, the critical path of the loop is drastically
compressed. As a result, performance can be greatly improved when the loop kernel forms an execution hot-spot. As
multi-issue low-power processors become more popular, engineers are beginning to use variants of a modulo scheduling
algorithm within compilers to optimize signal and media processing kernels for multi-issue PDLs. However, unlike a tra-
ditional multi-issue general purpose processor, it is notable that most operations in low-power processors typicallyrequire
low latency. As a result, different slack scheduling strategies in these variants typically make no difference in finding a
better ILP between loop iterations [2, 3]. Instead, for the multi-issue processors for mobile devices, we recognized that
the limiting factor to the modulo scheduling is not the scheduling algorithm, but the excessively long data dependence
cycles of instructions which are frequently found in signaland media processing loop kernels.
Problem Statement: The problem we plan to study is the classification of excessively long data dependence cycles of
instructions in loop kernels for the dual-issue ARM Cortex-A8 processor.Once we correctly understand the nature of
these data dependence cycles, we believe we might be able to split the chains into pieces.
Research Goals:Our goal is to design and implement a practical preprocessing strategy that can enable modulo schedul-
ing to better exploit ILP spanning more loop iterations by splitting long data dependence cycles of instructions.In partic-
ular, by statically utilizing the dual-issue ARM cortex-A8PDL via a compilation strategy that we plan to study, we may
achieve the performance of ARM Cortex-A9 with much less power as it dynamically selects instructions to be issued for
the PDL.

2.3 Proposed Research and Expected Outcome
How Modulo Scheduling is done in a Commercial Compiler for a Multi-Issue Low-Power Processor:Consider
freescaleSC140 processor since the alpha-2.6 SC140 commercial compiler was available to PIs. This processor supports
a 6-issue PDL withVariable Length Execution Set(VLES) [4]. To statically utilize this multi-issue logic, the commercial
compiler is comprised of three main stages – front-end, middle-end, and back-end. For a C source code, the front-end
produces an intermediate code in the form of Abstract SyntaxTree (AST). The middle-end generates a sequential SC140

1

machine code by walking the ASTs multiple times. The back-end compacts a sequential code from the middle-end
into VLESs for the 6-issue PDL. To maximize the use of VLES foran execution hot-spot, the back-end applies various
transformations to a loop kernel with special emphasis on modulo scheduling.

Although the modulo scheduling in the back end is highly effective, excessively long chains of data dependence
cycles of instructions, which are frequently observed in signal processing kernels, restrict scheduling freedom. As an

 doen3 d1

for (k=64; k<128; k++) {
 twa_1 = re_ac[m][k];
 twa_2 = im_ac[m][k];
 re_tw = twiddle[n][j];
 j++;
 im_tw = twiddle[n][j];
 j++;
 re_ac[m][k]=(twa_1*re_tw)−(twa_2*im_tw);
 re_ac[m][k]=re_ac[m][k]>>10;
 im_ac[m][k]=(twa_1*im_tw)+(twa_2*re_tw);
 im_ac[m][k]=im_ac[m][k]>>10;
}

L25

 doen3 d1 ; hardware loop counter = 64
 dosetup3 L25 ; address of the loop body
 loopstart3 ; start of the hardware loop

 move.w (r6)+n3,d4 ;2) load twiddle[n][j] to d4
 move.w (r1),d3 ;1) load_re_ac[m][k] to d3

 ;postincrement the pointer r6 by 4
 impy d4,d3,d5 ;3) d5 <− twa_1 * re_tw
 move.w (r0),d6 ;4) load im_ac[m][k] to d6
 move.w (r3)+n3,d7 ;5) load twiddle[n][j] to d7

 imac −d7,d6,d5 ;6) d5 <− d5−(twa_2*im_tw)
 sxt.l d5 ;7) d5[39:32] <− d5[31]
 asrr #<10,d5 ;8) d5 <− (d5>>10)
 move.l d5,(r1)+ ;9) store d5 to re_ac[m][k]
 ;postincrement the pointer r1 by 4
 impy d4,d6,d8 ;10) d8 <− twa_2*re_tw
 imac d7,d3,d8 ;11) d8 <− d8+(twa_1*im_tw)
 asrr #<10,d8 ;12) d8 <− (d8>>10)
 move.l d8,(r0)+ ;13) store d8 to im_ac[m][k]
 ;postincrement the pointer r0 by 4

 loopend3 ;end of hardware loop

(b) Machine Code right before Modulo Scheduling

(a) A Signal Processing Kernel in C

 dosetup3 L25

 L25

 imac −d7,d6,d5 impy d4,d6,d8
 sxt.l d5 imac d7,d3,d8

 move.l d5,(r1)+ move.l d8,(r0)+

 move.w (r1),d3 move.w (r6)+n3,d4
 impy d4,d3,d5 move.w (r0),d6 move.w (r3)+n3,d7

 asrr #<10,d5 asrr #<10,d8

 loopstart3 ;start of the hardware loop

 loopend3 ;end of hardware loop

(c) Machine Code after Modulo Scheduling

 ;postincrement the pointer r3 by 4

Figure 1: FFT Loop Kernel in C and SC140 Compiler Code Generation

illustration, for theFast Fourier Transform(FFT) loop kernel shown in Figure1(a), the alpha-2.6 SC140 DSP compiler
generates the machine code shown in Figure1(b) for modulo scheduling. To aggressively compress the loop height, mod-
ulo scheduling in the back end attempts to expose ILP betweenloop iterations. However, due to the long data dependence
cycle of instructions formed by1) 1/0

−−→ 3)
1/0
−−→ 6)

1/0
−−→ 7)

1/0
−−→ 8)

1/0
−−→ 9)

1/1
−−→ 1) 1 in Figure1(b), modulo

scheduling fails to find ILP between loop iterations, and produces a less satisfactory schedule as shown in Figure1(c).
The resulting code requires 6 machine cycles per loop iteration and uses only 30% of the SC140 6-issue PDL.
Expected Benefits by Splitting the Data Dependence Cycles ofInstructions: The length of this dependence cycle of
instructions appears irreducible since the dependence from 9)

1/1
−−→ 1) is a loop-carried flow (true) dependence2 3 . How-

ever, there is no memory dependence from9)
1/1
−−→ 1) , and therefore, the loop-carried dependence withr1 can be safely

removed by creating an additional induction variabler10 that replicates the behavior ofr1. After repeating this prepro-
cessing, this excessively long data dependence cycle of instructions is split into pieces. As a result, modulo scheduling in
the back end is able to find ILP that spans three loop iterations, and achieves a better loop schedule requiring only four
machine cycles per loop iteration, and using 54% of the 6-issue PDL. This is a significant performance improvement over
the schedule shown in Figure1(c).
Research Challenges and Plan:First, to mirror the performance improvement rate by splitting long data dependence
cycles to the dual-issue ARM Cortex-A8 processor, we need anopen-source compiler to design and implement various
preprocessing strategies for modulo scheduling. However,there exists no such open-source compiler to enable our planned
research. Second, to the best of our knowledge, no existing preprocessing strategy for dual-issue ARM Cortex-A8 has been

1 i)
m/d
−−−→ j) : m denotes delay cycles andd represents loop iteration distance from instructionsi to j.

2r1 in instruction 9) is post-incremented and the updated value ofr1 is read by instruction1) in the next loop iteration.
3The ARM ISA also supports post/pre increment/decrement addressing modes, i.e.,STMDA andLDMDA.

2

developed for modulo scheduling. Therefore, we need to explore practical preprocessing strategies, which can (1) spot
excessively long data dependence cycles of instructions inpolynomial time for analysis, and (2) split these dependence
cycles into pieces by using functional resources which are otherwise left unused. Our plan is detailed in the following.

First, to properly execute the planned research for modulo scheduling, we will prepare an open-source compiler for
ARM Cortex-A8 ISA using two open-source compilers, LLVM andVPO [5, 6]. LLVM compiler is library-based and
therefore, it is highly reusable and extensible. The most important design aspect of LLVM is the Intermediate Represen-
tation (IR), which retains source level information that isvital to perform mid-level loop analysis and transformations.
However, some LLVM IRs can be lowered to multiple machine effects during target code generation, which can poten-
tially invalidate the effects from modulo scheduling. On the contrary, VPO is a machine level global optimizer, where each
machine-dependent code improving transformation is performed in a machine-independent way. Therefore, VPO is an
ideal framework to implement modulo scheduling and loop preprocessing to split data dependence cycles of instructions.
However, VPO uses LCC as a front end, which has no mid-level code improving transformations [7]. By streamlining
LLVM and VPO, the LLVM-VPO tool chain will be an ideal open-source compiler framework for the planned research,
where LLVM will prepare highly optimized machine code for signal and media processing kernels, and VPO will perform
modulo scheduling with various loop preprocessing strategies for the ARM Cortex-A8 processor.

Second, once the LLVM-VPO is prepared for the ARM Cortex-A8 processor, we will implement modulo scheduling
and develop an algorithm to enumerate all excessively long data dependence cycles of instructions in various loop kernels
from the DSPStone and MiBench benchmark suites [8, 9]. From this research activity, we will identify the nature of these
data dependence cycles, and explore a practical preprocessing strategy to reduce the length of the dependence chains.
Relevance to Google:This new open-source LLVM-VPO compiler may enable Google engineers to develop a highly
performing Android platform on low-power ARM Cortex-A8 that matches the performance of ARM Cortex-A9 while
requiring significantly less power. We look forward to potentially collaborating with Google system tools engineers on
this research.

3 Data Policy

We clearly understand the project may take more than one year. However, our intent is to build the LLVM-VPO compiler
tool chain for ARM Cortex-A8 and implement modulo scheduling during the first year. We will release the compiler to
the public to involve more researchers/developers with planned research beyond year one.

4 Budget

We are asking Google for $37,407 that covers (1) one year graduate research assistant support which includes salary,
fringe, and tuition ($33,907), (2) student conference travel ($1,500), (3) ARM Cortex-A development boards ($1,000),
and (4) ARM software tools ($1,000).

References
[1] B. Rau: Iterative modulo scheduling. InHP Laboratories Technical Report, HPL94115, Nov 1995.

[2] R. Huff: Lifetime-Sensitive Modulo Scheduling. InProceedings of the SIGPLAN’93 Conference on Programming Language Design and Imple-
mentation, June, 1993.

[3] I. Finlayson, G. Uh, D. Whalley, and G. Tyson: An overviewof Static Pipelining. InIEEE Computer Architecture Letters, 2011.

[4] Freescale semiconductor: Freescale SC140 DSP Core Reference Manual. Revision 4.1, Chapter 2, pages 32 – 100, September 2005

[5] C. Lattner and V. Adve: LLVM: A Compilation Framework forLifelong Program Analysis & Transformation. InProceedings of the 2004
International Symposium on Code Generation and Optimization, March, 2004.

[6] M. Benitez and J. Davidson: A Portable Global Optimizer and Linker. InProceedings of the SIGPLAN’88 Conference on Programming Language
Design and Implementation, June, 1988.

[7] C. Fraser and W. Hanson and R. David: A Retargetable C Compiler: Design and Implementation.ISBN 0-8053-1670-1, Addison-Wesley, 1995.

[8] V. Zivojnovic, J. Velarde, C. Schager, and H. Meyr: DSPStone - A DSP oriented Benchmarking Methodology. InProceedings of International
Conference on Signal Processing Applications and Technology, 1994.

[9] C. Lee, M. Potkonjak, and W. Smith: MediaBench: A Tool forEvaluating and Synthesizing Multimedia and Communications Systems. In
Proceedings of the 30th Annual IEEE/ACM International Symposium on Microarchitecture, Nov 1997.

3

	1 Overview
	2 Proposal
	2.1 Abstract
	2.2 Problem Statement and Research Goals
	2.3 Proposed Research and Expected Outcome

	3 Data Policy
	4 Budget

