5.1 Rho Attack

Motivation. Let \(H : \{0, 1\}^* \rightarrow \{0, 1\}^n \) be a hash function and let \(N = 2^n \). Suppose that we want to find a collision of \(H \). To speed up the running time, we want to run a collision-finding attack on every processor of a GPU. However, since those processors have a limited shared memory, it is crucial that the attack must use very little memory, preferably \(O(1) \) memory. This rules out the naive birthday attack, since that requires \(\Omega(\sqrt{N}) \) memory.

The rho method. Consider the following process. Initially, we start with a random string \(x_0 \leftarrow \{0, 1\}^n \), and then iterate \(x_1 \leftarrow H(x_0), x_2 \leftarrow H(x_1), \) and so on. Since these strings take value from a finite set \(\{0, 1\}^n \), eventually there must be \(i < j \) such that \(x_i = x_j \). But then \(x_{i+1} = H(x_i) \) and \(x_{j+1} = H(x_j) \) must be the same. In addition, \(x_{i+1} = H(x_{i+1}) \) and \(x_{j+2} = H(x_{j+1}) \) must also be the same, and so on. In other words, for every \(k \geq 0 \), we must have \(x_{i+k} = x_{j+k} \). See Figure 5.1 for an illustration. Pictorially, the sequence \(x_0, x_1, \cdots \) form a rho shape: it takes us some \(r \) steps to enter a cycle of length \(\ell \), where \(r = 3 \) and \(\ell = 6 \) in the example of Figure 5.1. If \(r \geq 1 \) then \(x_{r-1} \) and \(x_{r+\ell-1} \) form a collision of \(H \), since \(x_{r-1} \neq x_{r+\ell-1} \), yet \(H(x_{r-1}) = x_r = H(x_{r+\ell-1}) \).

![Figure 5.1: Illustration of the rho shape. Here \(x_3 = x_9 \), and thus \(x_{3+k} = x_{9+k} \) for every \(k \geq 0 \).](image)

Note that the rho method above may fail to generate a collision if \(r = 0 \), as illustrated in Figure 5.2. In this case, the rho shape degenerates into a cycle.
Lecture 5: Collision attacks

Figure 5.2: A degenerate case where the rho method fails to generate a collision.

Note that if we model H as a random oracle then x_0, x_1, \ldots can be modeled as independent, uniformly random strings (until repetition happens at step $L = r + \ell$). Then with high probability, the repetition will happen within $\sqrt{2N}$ steps—recall the Birthday Paradox—and thus it’s very likely that $L = O(\sqrt{N})$.

Now, we want to use the rho method above to find a collision. However, there are several daunting obstacles. First, recall that we have only $O(1)$ memory, so we can only store just a few strings x_i in memory at a time. Moreover, we don’t want to run $\Theta(\sqrt{N})$ steps. Since collision happens after L steps, we want to terminate after $O(L)$ steps, although we don’t know what L is. The attack consists of two steps: (i) detecting the presence of a cycle, and (ii) finding collision, both using $O(1)$ memory and $O(L)$ time.

Floyd’s cycle detection. Note that for each choice of x_0, there is a unique number $m \leq L$ such that $x_{2m} = m$. (For the example in Figure 5.1, $m = 6$.) To see why, note that $x_{2m} = x_m$ if and only if (i) $m \geq r$ (meaning that you should at least enter the cycle to have repetition), and (2) m is a multiple of ℓ (meaning that the gap m between the two positions x_m and x_{2m} should be a multiple of the cycle length). However, there is exactly one number among ℓ consecutive numbers $r, r + 1, \ldots, L = r + \ell - 1$ that is divisible by ℓ.

Floyd’s algorithm aims to find x_m from x_0 after $O(L)$ steps, using $O(1)$ memory. To have an intuition of the algorithm, imagine a running race between a hare and a tortoise along the rho shape, both starting at the initial point x_0. At each iteration the hare can run 2 steps, whereas the tortoise can only run 1 step. So at the k-th iteration, the tortoise is at position x_k, whereas the hare is at position $y_k = x_{2k}$. Hence the next time the two animals meet, this is at position $x_m = x_{2m}$.

Formally, given x_0, the algorithm initializes $y_0 \leftarrow x_0$ and proceeds as follows. At each step k, the algorithm will keep track of just two strings (x_k, y_k), and terminate if $x_k = y_k$. To move from step k to step $k + 1$, we compute $x_{k+1} \leftarrow H(x_k)$ and $y_{k+1} = H(H(y_k))$. Note that $y_k = x_{2k}$ for every $k \geq 0$. Hence the memory usage is just $O(1)$ and the algorithm stops at step m, returning x_m.

Collision finding. Now, from (x_0, x_m), we want to find the collision $(x_{r-1}, x_{\ell+r-1})$ using $O(1)$ memory and $O(L)$ time. (In Figure 5.1, it means that we want to find (x_2, x_8) from (x_0, x_6).)

To have an intuition of our method, imagine that we have two tortoises at positions x_0 and x_m, running along the rho shape. At each iteration, each tortoise can only move one step, so at the first iteration, they will be at positions x_1 and x_{m+1} respectively, and so on. We claim that when the two tortoises first meet, they will be at the position x_r. (In Figure 5.1, you can see that at the third iteration, the two tortoises will
memory usage is $O(k)$. Formally, in iteration k, we keep track of the tortoises’ current positions, and stop them right before they hit each other.

Formally, in iteration k, we keep track of (x_k, x_{m+k}) and terminate if $H(x_k) = H(x_{m+k})$, and thus the memory usage is $O(1)$. To move from iteration k to iteration $k+1$, we update $x_{k+1} ← H(x_k)$ and $x_{m+k+1} ← H(x_{m+k})$. Thus we will terminate after r steps, and the running time is $O(L)$.

Remark. It is instructive to see what happens when we apply the algorithms above in the degenerate case, where the rho method generates a cycle, instead of a rho shape. In that case, $r = 0$ and $m = \ell$. (In the example of Figure 5.2, we have $m = \ell = 6$.) When we apply the Floyd’s algorithm, we’ll get back $x_m = x_0$. Thus when we try to find a collision, our two tortoises will start from the same position x_0, and we’ll terminate immediately, since they will surely hit each other in the next iteration.

5.2 Joux’s Attack on Merkle-Damgard Hash Functions

The Problem. Suppose that we have two Merkle-Damgard hash functions $G_1 : \{0,1\}^* \rightarrow \{0,1\}^n$ and $G_2 : \{0,1\}^* \rightarrow \{0,1\}^n$. Let $N = 2^{n/2}$, and define $F : \{0,1\}^* \rightarrow \{0,1\}^{2n}$ as $F(x) = G_1(x)||G_2(x)$. At the first glance, it seems plausible that finding a collision for F should take $\Omega(N^2)$ time. However, we now show an attack, by Antoine Joux, that takes just $O(N\log(N))$ queries. We begin with some definition.

Multicollision. For an integer $s \geq 2$, we say that (M_1, \ldots, M_s) is an s-multicollision of a hash function H if M_1, \ldots, M_s are distinct and $H(M_1) = \cdots = H(M_s)$. For any Merkle-Damgard hash function $H : \{0,1\}^* \rightarrow \{0,1\}^n$ and any integer $s \geq 2$, Joux showed how to find an s-multicollision of H in $O(N\log(s))$ time as follows. For simplicity, assume that s is a power of 2, and let $d = \log_2(s)$. Let h be the compression function of H, and assume that the hash H uses 0^n as the IV. We first use $O(N)$ time to find a collision (m_0, m_0^*) of $h(0^n, \cdot)$, and let $t_1 ← h(0^n, m_0)$. Next, use $O(N)$ time to find a collision (m_1, m_1^*) of $h(t_1, \cdot)$, and repeat this until we obtain (m_d, m_d^*). See Figure 5.3 for an illustration. Let S be the set of strings $y_1 \cdots y_d$ such that each $y_i \in \{m_i, m_i^*\}$. Note that $|S| = s$; let $S = (M_1, \ldots, M_s)$. In addition, note that (M_1, \ldots, M_s) is an s-multicollision of H. The total running time for finding the s-multicollision above is $O(dN) = O(N\log(s))$.

Attacking F. The crux of Joux’s attack is to first find an N-multicollision (M_1, \ldots, M_N) of G_1 using $O(N\log(N))$ time. Then, from the Birthday Paradox, it’s likely that there are some $i < j$ such that (M_i, M_j) is a collision of G_2, which we can find within $O(N)$ time. Hence $F(M_i) = G_1(M_i)||G_2(M_i) = G_1(M_j)||G_2(M_j) = F(M_j)$, and thus (M_i, M_j) is a collision of F.