Scribe 4: Rho Attack

Instructor: Viet Tung Hoang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Motivation. Let $H : \{0, 1\}^* \rightarrow \{0, 1\}^n$ be a hash function and let $N = 2^n$. Suppose that we want to find a collision of H. To speed up the running time, we want to run a collision-finding attack on every processor of a GPU. However, since those processors have a limited shared memory, it is crucial that the attack must use very little memory, preferably $O(1)$ memory. This rules out the naive birthday attack, since that requires $\Omega(\sqrt{N})$ memory.

The rho method. Consider the following process. Initially, we start with a random string $x_0 \leftarrow \{0, 1\}^n$, and then iterate $x_1 \leftarrow H(x_0), x_2 \leftarrow H(x_1)$, and so on. Since these strings take value from a finite set $\{0, 1\}^n$, eventually there must be $i < j$ such that $x_i = x_j$. But then $x_{i+1} = H(x_i)$ and $x_{j+1} = H(x_j)$ must be the same. In addition, $x_{i+1} = H(x_{i+1})$ and $x_{j+2} = H(x_{j+1})$ must also be the same, and so on. In other words, for every $k \geq 0$, we must have $x_{i+k} = x_{j+k}$. See Figure 4.1 for an illustration. Pictorially, the sequence x_0, x_1, \cdots form a rho shape: it takes us some r steps to enter a cycle of length ℓ, where $r = 3$ and $\ell = 6$ in the example of Figure 4.1. If $r \geq 1$ then x_{r-1} and $x_{r+\ell-1}$ form a collision of H, since $x_{r-1} \neq x_{r+\ell-1}$, yet $H(x_{r-1}) = x_r = H(x_{r+\ell-1}).$

![Figure 4.1: Illustration of the rho shape. Here $x_3 = x_9$, and thus $x_{3+k} = x_{9+k}$ for every $k \geq 0$.](image)

Note that the rho method above may fail to generate a collision if $r = 0$, as illustrated in Figure 4.2. In this case, the rho shape degenerates into a cycle.

Note that if we model H as a random oracle then x_0, x_1, \cdots can be modeled as independent, uniformly random strings (until repetition happens at step $L = r + \ell$). Then with high probability, the repetition will happen within $\sqrt{2N}$ steps—recall the Birthday Paradox—and thus it’s very likely that $L = O(\sqrt{N})$.

Now, we want to use the rho method above to find a collision. However, there are several daunting obstacles.
Figure 4.2: A degenerate case where the rho method fails to generate a collision.

First, recall that we have only $O(1)$ memory, so we can only store just a few strings x_i in memory at a time. Moreover, we don’t want to run $\Theta(\sqrt{N})$ steps. Since collision happens after L steps, we want to terminate after $O(L)$ steps, although we don’t know what L is. The attack consists of two steps: (i) detecting the presence of a cycle, and (ii) finding collision, both using $O(1)$ memory and $O(L)$ time.

Floyd’s cycle detection. Note that for each choice of x_0, there is a unique number $m \leq L$ such that $x_{2m} = m$. (For the example in Figure 4.1, $m = 6$.) To see why, note that $x_{2m} = m$ if and only if (i) $m \geq r$ (meaning that you should at least enter the cycle to have repetition), and (2) m is a multiple of ℓ (meaning that the gap m between the two positions x_m and x_{2m} should be a multiple of the cycle length). However, there is exactly one number among ℓ consecutive numbers $r, r+1, \ldots, L = r + \ell - 1$ that is divisible by ℓ.

Floyd’s algorithm aims to find x_m from x_0 after $O(L)$ steps, using $O(1)$ memory. To have an intuition of the algorithm, imagine a running race between a hare and a tortoise along the rho shape, both starting at the initial point x_0. At each iteration the hare can run 2 steps, whereas the tortoise can only run 1 step. So at the k-th iteration, the tortoise is at position x_k, whereas the hare is at position $y_k = x_{2k}$. Hence the next time the two animals meet, this is at position $x_m = x_{2m}$.

Formally, given x_0, the algorithm initializes $y_0 \leftarrow x_0$ and proceeds as follows. At each step k, the algorithm will keep track of just two strings (x_k, y_k), and terminate if $x_k = y_k$. To move from step k to step $k + 1$, we compute $x_{k+1} \leftarrow H(x_k)$ and $y_{k+1} = H(H(y_k))$. Note that $y_k = x_{2k}$ for every $k \geq 0$. Hence the memory usage is just $O(1)$ and the algorithm stops at step m, returning x_m.

Collision finding. Now, from (x_0, x_m), we want to find the collision (x_{r-1}, x_{t+r-1}) using $O(1)$ memory and $O(L)$ time. (In Figure 4.1, it means that we want to find (x_2, x_8) from (x_0, x_6).)

To have an intuition of our method, imagine that we have two tortoises at positions x_0 and x_m, running along the rho shape. At each iteration, each tortoise can only move one step, so at the first iteration, they will be at positions x_1 and x_{m+1} respectively, and so on. We claim that when the two tortoises first meet, they will be at the position x_r. (In Figure 4.1, you can see that at the third iteration, the two tortoises will meet at x_3.) To see why, note that at the r-th iteration, the two tortoises will be at positions x_r and x_{m+r} respectively. Since m is a multiple of ℓ, this means that the position x_{m+r} is the same as x_r. So intuitively, to find the collision, we just need to keep track of the tortoises’ current positions, and stop them right before they hit each other.
Formally, in iteration k, we keep track of (x_k, x_{m+k}) and terminate if $H(x_k) = H(x_{m+k})$, and thus the memory usage is $O(1)$. To move from iteration k to iteration $k+1$, we update $x_{k+1} \leftarrow H(x_k)$ and $x_{m+k+1} \leftarrow H(x_{m+k})$. Thus we will terminate after r steps, and the running time is $O(L)$.

Remark. It is instructive to see what happens when we apply the algorithms above in the degenerate case, where the rho method generates a cycle, instead of a rho shape. In that case, $r = 0$ and $m = \ell$. (In the example of Figure 4.2, we have $m = \ell = 6$.) When we apply the Floyd’s algorithm, we’ll get back $x_m = x_0$. Thus when we try to find a collision, our two tortoises will start from the same position x_0, and we’ll terminate immediately, since they will surely hit each other in the next iteration.