Now, recall that \(F \) replace \(G \) middle games such that resulting in game \(G \) attacking \(F \). \(G \) have to start from some game \(A \) before we get into the proof, here are some remarks. In this kind of problems, we'll also a good PRF.

\[
\text{change from } f \text{ that } A \text{ as we shall see in our problem. In that case, we need to re-examine the adversary } A \text{ nothing. The change from past answers—if you repeat a prior query, you'll get the same prior answer—whereas the latter remembers nothing. The change from } f \text{ to $ may cost us a few games. Occasionally, the change might be problematic, as we shall see in our problem. In that case, we need to re-examine the adversary } A; \text{ often we can assume that } A \text{ belongs to a certain restricted class without loss of generality, but this restriction will smoothen the change from } f \text{ to $}. \text{ In our problem, we will assume that } A \text{ never repeats a prior query: the adversary can store the queries/answers it receives, and in both games } Real^A_F \text{ and } Rand^B_E, \text{ repeating a prior query will result in the same prior answer, which the adversary can retrieve from its storage without querying.}^1 \text{ Once we are in a game using $(), it'll be essentially the random game } Rand^B_E; \text{ one might need some equivalent transitions to make this explicit.}

In each game, we'll run \(A \) to produce a bit \(b' \)—we often write \(b' \leftrightarrow A^{Enc} \), meaning that the adversary \(A \) interacts with the oracle \(Enc \) and then outputs a bit \(b' \). The game then returns \((b' = 1) \). Why returns \((b' = 1) \)? For example, if \(G_0 \Rightarrow true \), it means that \(A \) outputs \(b' = 1 \) in the real game, in other words, \(Real^A_F \Rightarrow 1 \). Likewise, if \(G_t \Rightarrow true \), it means that \(A \) outputs \(b' = 1 \) in the random game, in other words, \(Rand^A_F \Rightarrow 1 \). Hence

\[
\Pr[G_0 \Rightarrow true] - \Pr[G_t \Rightarrow true] = \Pr[Real^A_F \Rightarrow 1] - \Pr[Rand^A_F \Rightarrow 1] = \text{Adv}^{prf}(A) .
\]

The proof. Let \(A \) be an efficient adversary attacking \(F \). Consider the following games \(G_0-G_4 \) in Figure 3.1. Game \(G_0 \) corresponds to the real game \(Real^A_F \), and game \(G_4 \) corresponds to the random game \(Rand^A_F \).

We now describe the game chain. Game \(G_1 \) is identical to game \(G_0 \), except that calls to \(E_K \) are replaced by

^1If we blindly impose this restriction, it may actually affect the complexity of \(A \), as it takes some additional cost (in both space and time) to store/retrieve the queries/answers. Thus the placement of the assumption needs to be handled with care.
Games G_0, G_1

$K \leftarrow \{0, 1\}^n$; $f \leftarrow \text{Func}(n)$; $b' \leftarrow A^{\text{Enc}}$

Return $(b' = 1)$

procedure $\text{ENC}(x)$

// For game G_0 only

Return $E_K(1||x)||E_K(0||x)$

// For game G_1 only

Return $f(1||x)||f(0||x)$

Game G_2, G_3

$b' \leftarrow A^{\text{Enc}}$

Return $(b' = 1)$

procedure $\text{ENC}(x)$

// For game G_2 only

$y_1 \leftarrow \{0, 1\}^n$; $y_2 \leftarrow \{0, 1\}^n$

Return $y_1||y_2$

// For game G_3 only

$y \leftarrow \{0, 1\}^{2n}$; Return y

Game G_4

$g \leftarrow \text{Func}(n - 1, 2n)$; $b' \leftarrow A^{\text{Enc}}$

Return $(b' = 1)$

procedure $\text{ENC}(x)$

Return $g(x)$

Figure 3.1: Games G_0–G_4. Here $	ext{Func}(n - 1, 2n)$ is the set of all functions $h : \{0, 1\}^{n-1} \rightarrow \{0, 1\}^{2n}$.

Adversary B^{func}

$b' \leftarrow A^{\text{Enc}}$

Return b'

procedure $\text{ENC}(x)$

$y_1 \leftarrow \text{FN}(1||x)$; $y_2 \leftarrow \text{FN}(0||x)$

Return $y_1||y_2$

Figure 3.2: Constructed adversary B attacking E from a given adversary A attacking F.

the corresponding calls to a truly random function $f \leftarrow \text{Func}(n)$. To bound the gap between G_0 and G_1, we construct an adversary B as in Figure 3.2. Specifically, adversary B runs A. Each time the latter queries x, the former queries $1||x$ and $0||x$ to its own oracle FN to get answers y_1 and y_2 respectively, and then gives $y_1||y_2$ back to A. Finally, when A terminates and outputs a bit b', adversary B also outputs the same bit. Note that the adversary B is about as efficient as A. Moreover, game Real_E^B corresponds to game G_0, and game Rand_E^B corresponds to game G_1, and thus

$$\Pr[\text{Real}_E^B \Rightarrow \text{true}] - \Pr[\text{Rand}_E^B \Rightarrow \text{true}] = \Pr[\text{Real}_E^B - \Pr[\text{Rand}_E^B] = \text{Adv}_E^{\text{prf}}(B).$$

We now bound the gap between G_1 and G_4. We claim that the gap between these two games is 0, for all (even computationally unbounded) adversaries A. We will now justify this claim. Since we consider computationally unbounded adversaries, without loss of generality, assume that the adversary A does not repeat a prior query. Note that if A makes q distinct queries to ENC, in game G_1, it will result in $2q$ distinct queries to f. Since $f \leftarrow \text{Func}(n)$, the $2q$ answers will be independent and uniformly random. Thus we can rewrite game G_1 as in game G_2, in which for each query $\text{ENC}(x)$, instead of calling $y_1 \leftarrow f(1||x)$ and $y_2 \leftarrow f(0||x)$, we sample y_1 and y_2 at random. As game G_2 is equivalent to game G_1,

$$\Pr[\text{Real}_E^B \Rightarrow \text{true}] = \Pr[\text{Real}_E^B \Rightarrow \text{true}] .$$

Game G_3 is a further simplification of G_2. Instead of sampling $y_1, y_2 \leftarrow \{0, 1\}^n$ and returning $y \leftarrow y_1||y_2$, we’ll pick $y \leftarrow \{0, 1\}^{2n}$. Hence

$$\Pr[\text{Real}_E^B \Rightarrow \text{true}] = \Pr[\text{Real}_E^B \Rightarrow \text{true}] .$$

In game G_4, we explicitly sample a truly random function $g : \{0, 1\}^{n-1} \rightarrow \{0, 1\}^{2n}$, and for each query $\text{ENC}(x)$, we return $g(x)$. Since A does not repeat prior queries, making q distinct queries to $g(x)$ will result in q independent, uniformly random answers. Hence games G_3 and G_4 are equivalent, and thus

$$\Pr[\text{Real}_E^B \Rightarrow \text{true}] = \Pr[\text{Real}_E^B \Rightarrow \text{true}] .$$

Hence $\Pr[\text{Real}_E^B \Rightarrow \text{true}] = \Pr[\text{Real}_E^B \Rightarrow \text{true}]$ as claimed. Summing up,

$$\text{Adv}_E^{\text{prf}}(A) = \Pr[\text{Real}_E^B \Rightarrow \text{true}] - \Pr[\text{Rand}_E^B \Rightarrow \text{true}]$$

$$= (\Pr[\text{Real}_E^B \Rightarrow \text{true}] - \Pr[\text{Real}_E^B \Rightarrow \text{true}] + (\Pr[\text{Real}_E^B \Rightarrow \text{true}] - \Pr[\text{Real}_E^B \Rightarrow \text{true}] = \text{Adv}_E^{\text{prf}}(B) .$$

Hence if E is a secure PRF then F is also a secure PRF.