Scribe 2: Game-based proofs

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

A problem. Let $E : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a good blockcipher, meaning it is a good PRF. Let $F : \{0,1\}^k \times \{0,1\}^{n-1} \to \{0,1\}^{2n}$ be defined by $F_K(x) = E_K(1\|x) \oplus E_K(0\|x)$. We want to prove that F is also a good PRF.

Some comments. Before we get into the proof, here are some remarks. In this kind of problems, we’ll have to start from some game G_0, and then hop through a sequence of games $G_1 \to \cdots \to G_t$. The starting game G_0 and the terminal game G_t will be the games in the definition in which we want to distinguish. For example, here since we are attacking the PRF security of F, and G_0 is the real game Real_F^A and G_t is the random game Rand_F^A. Our tasks are: (1) find the middle games G_1, \ldots, G_{t-1}, and (2) bound the gaps between the games.

Now, recall that F is built on top of E, so one should write game G_0 in terms of E, not F. We then try to replace E_K by a random function $f \leftarrow \text{Func}(n)$, where Func is the set of all functions $g : \{0,1\}^n \to \{0,1\}^n$, resulting in game G_1. To account for the gap between G_0 and G_1, we’ll build an adversary B attacking E, such that G_0 becomes Real_E^B, and G_1 becomes Rand_E^B. Thus $\Pr[G_0 \Rightarrow \text{true}] - \Pr[G_1 \Rightarrow \text{true}] \leq \text{Adv}_{E}^{\text{prf}}(B)$.

Next, we try to replace $f(\cdot)$ by the function $\$ (\cdot)$, namely the function that always returns a fresh n-bit random string on each input. Recall that the key difference between f and $\$ is that the former remembers the past answers—if you repeat a prior query, you’ll get the same prior answer—whereas the latter remembers nothing. The change from f to $\$ may cost us a few games. Occasionally, the change might be problematic, as we shall see in our problem. In that case, we need to re-examine the adversary A; often we can assume that A belongs to a certain restricted class without loss of generality, but this restriction will smoothen the change from f to $\$$. In our problem, we will assume that A never repeats a prior query: the adversary can store the queries/answers it receives, and in both games Real_E^A and Rand_E^A, repeating a prior query will result in the same prior answer, which the adversary can retrieve from its storage without querying. Once we are in a game using $\$ (\cdot)$, it’ll be essentially the random game Rand_E^B; one might need some equivalent transitions to make this explicit.

In each game, we’ll run A to produce a bit b'—we often write $b' \leftarrow A^{\text{ENC}}$, meaning that the adversary A interacts with the oracle ENC and then outputs a bit b'. The game then returns $b' = 1$). Why returns $(b' = 1)$? For example, if $G_0 \Rightarrow \text{true}$, it means that A outputs $b' = 1$ in the real game, in other words, $\text{Real}_F^A \Rightarrow 1$. Likewise, if $G_t \Rightarrow \text{true}$, it means that A outputs $b' = 1$ in the random game, in other words, $\text{Rand}_F^A \Rightarrow 1$. Hence

$$\Pr[G_0 \Rightarrow \text{true}] - \Pr[G_t \Rightarrow \text{true}] = \Pr[\text{Real}_F^A \Rightarrow 1] - \Pr[\text{Rand}_F^A \Rightarrow 1] = \text{Adv}_{F}^{\text{prf}}(A) .$$

The proof. Let A be an efficient adversary attacking F. Consider the following games G_0–G_4 in Figure 3.1. Game G_0 corresponds to the real game Real_F^A, and game G_4 corresponds to the random game Rand_F^A.

We now describe the game chain. Game G_1 is identical to game G_0, except that calls to E_K are replaced by

If we blindly impose this restriction, it may actually affect the complexity of A, as it takes some additional cost (in both space and time) to store/retrieve the queries/answers. Thus the placement of the assumption needs to be handled with care.
Lecture 2: Game-based proofs

Figure 2.1: Games G_0–G_4. Here $\text{Func}(n - 1, 2n)$ is the set of all functions $h : \{0,1\}^{n-1} \rightarrow \{0,1\}^{2n}$.

<table>
<thead>
<tr>
<th>Procedure Enc(x)</th>
<th>Game G_2</th>
<th>Game G_3</th>
<th>Game G_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y \leftarrow \text{Func}(n)$; $b' \leftarrow A^{\text{Enc}}$</td>
<td>$y_1 \leftarrow {0,1}^n$; $y_2 \leftarrow {0,1}^n$</td>
<td>$g \leftarrow \text{Func}(n - 1, 2n)$; $b' \leftarrow A^{\text{Enc}}$</td>
<td>$y \leftarrow {0,1}^{2n}$; Return y</td>
</tr>
<tr>
<td>Return ($b' = 1$)</td>
<td>Return $y_1</td>
<td></td>
<td>y_2$</td>
</tr>
</tbody>
</table>

Figure 2.2: Constructed adversary B attacking E from a given adversary A attacking F.

the corresponding call to a truly random function $f \leftarrow \text{Func}(n)$. To bound the gap between G_0 and G_1, we construct an adversary B as in Figure 3.2. Specifically, adversary B runs A. Each time the latter queries x, the former queries $1||x$ and $0||x$ to its own oracle F_{N} to get answers y_1 and y_2 respectively, and then gives $y_1||y_2$ back to A. Finally, when A terminates and outputs a bit b', adversary B also outputs the same bit. Note that the adversary B is about as efficient as A. Moreover, game Real_E^B corresponds to game G_0, and game Rand_E^B corresponds to game G_1, and thus

$$\Pr[G_0 \Rightarrow \text{true}] - \Pr[G_1 \Rightarrow \text{true}] = \Pr[\text{Real}_E^B] - \Pr[\text{Rand}_E^B] = \text{Adv}_E^{\text{prf}}(B).$$

We now bound the gap between G_1 and G_4. We claim that the gap between these two games is 0, for all (even computationally unbounded) adversaries A. We will now justify this claim. Since we consider computationally unbounded adversaries, without loss of generality, assume that the adversary A does not repeat a prior query. Note that if A makes q distinct queries to Enc, in game G_1, it will result in $2q$ distinct queries to f. Since $f \leftarrow \text{Func}(n)$, the $2q$ answers will be independent and uniformly random. Thus we can rewrite game G_1 as in game G_2, in which for each query $\text{Enc}(x)$, instead of calling $y_1 \leftarrow f(1||x)$ and $y_2 \leftarrow f(0||x)$, we sample y_1 and y_2 at random. As game G_2 is equivalent to game G_1,

$$\Pr[G_2 \Rightarrow \text{true}] = \Pr[G_1 \Rightarrow \text{true}] .$$

Game G_3 is a further simplification of G_2. Instead of sampling $y_1, y_2 \leftarrow \{0,1\}^n$ and returning $y \leftarrow y_1||y_2$, we’ll pick $y \leftarrow \{0,1\}^{2n}$. Hence

$$\Pr[G_3 \Rightarrow \text{true}] = \Pr[G_2 \Rightarrow \text{true}] .$$

In game G_4, we explicitly sample a truly random function $g : \{0,1\}^{n-1} \rightarrow \{0,1\}^{2n}$, and for each query $\text{Enc}(x)$, we return $g(x)$. Since A does not repeat prior queries, making q distinct queries to $g(x)$ will result in q independent, uniformly random answers. Hence games G_3 and G_4 are equivalent, and thus

$$\Pr[G_4 \Rightarrow \text{true}] = \Pr[G_3 \Rightarrow \text{true}] .$$

Hence $\Pr[G_1 \Rightarrow \text{true}] = \Pr[G_4 \Rightarrow \text{true}]$ as claimed. Summing up,

$$\text{Adv}_E^{\text{prf}}(A) = \Pr[G_0 \Rightarrow \text{true}] - \Pr[G_4 \Rightarrow \text{true}]$$

$$= (\Pr[G_0 \Rightarrow \text{true}] - \Pr[G_1 \Rightarrow \text{true}]) + (\Pr[G_1 \Rightarrow \text{true}] - \Pr[G_4 \Rightarrow \text{true}]) = \text{Adv}_E^{\text{prf}}(B) .$$

Hence if E is a secure PRF then F is also a secure PRF.