1. (60 points) Recall that when we run Randomized Quicksort on an array $A[1:n]$, we pick a uniformly random element of the array as the pivot, and the running time for pivot sampling plus the partitioning is $n+1$. Let X_n denote the random variable for the running time of Randomized Quicksort on an array $A[1:n]$. Let $f_n(z)$ denote the probability generating function of X_n. Prove that for every $n \geq 1$,

$$f_n(z) = \frac{1}{n} \sum_{r=0}^{n-1} z^{n+1} f_r(z) f_{n-r-1}(z).$$

Hint: A common mistake is to claim that

$$X_n = n + 1 + \frac{2}{n} \sum_{r=0}^{n-1} T_r,$$

where each T_r has the same distribution as X_r. This is wrong. Instead, let S be the random variable for the size of the left subarray when we quicksort an array of n elements. Then

$$\Pr[X_n = k] = \sum_{r=0}^{n-1} \Pr[X_n = k, S = r] = \sum_{r=0}^{n-1} \Pr[Y_r + Z_r = k - (n + 1), S = r],$$

where Y_r and Z_r are independent random variables of the same distribution as X_r and X_{n-r-1} respectively, and they are also independent of S. Intuitively, Y_r and Z_r are the cost of quicksorting the left and right subarrays on $A[1:n]$, if you can magically manage to find a pivot such that the left size is r and the right size is $n - r - 1$.

2. (50 points) A certain grocery store issues coupons of n colors, and a collector wishes to obtain coupons of all colors. Each time the collector buys a product, he will receive a coupon of uniformly random color. The collector will keep buying until he gets all the n colors. Let X be the random variable for number of purchases of the collector. Give an explicit form of the probability generating function $G_X(z)$.