Recall that your solution must be typed via LaTeX. Also, remember that this is a group assignment; group size must be 2.

Deliverables: Submit to Canvas two PDF files: a writeup for the homework solution, and a report for how you discovered the solutions. Both files should contain the names of all group members.

1. (70 points) We are given a directed graph $G = (V, E)$ on which each edge $(u, v) \in E$ has an associated value $r(u,v)$, which is a real number in the range $0 \leq r(u,v) \leq 1$ that represents the reliability of a communication channel from vertex u to vertex v. We interpret $r(u,v)$ as the probability that the channel from u to v will not fail, and we assume that these probabilities are independent. That is, for a path $P = v_1 \rightarrow \cdots \rightarrow v_k$, the probability that the communication won’t fail if we send data along this path is exactly
 \[r(v_1,v_2)r(v_2,v_3)\cdots r(v_{k-1},v_k) . \]

 Give an efficient algorithm that, for two given nodes s and t, finds the most reliable path from s to t. Analyze the running time of your algorithm.

 [We expect an informal English description of your algorithm. You need to justify its correctness and running time.]

 Hint: The key idea is to use Dijkstra’s algorithm; however, of course you can’t apply Dijkstra’s directly here. It’s tempting to modify Dijkstra’s algorithm to fit your problem, but this is bad because proving the correctness of your algorithm is not easy. A good approach is to convert your (G, r) into another weighted graph, and run Dijkstra’s algorithm on it.

2. (70 points) We are given a directed graph $G = (V, E)$ on which each edge $(u, v) \in E$ has an associated capacity $c(u,v) \geq 0$ that represents the rate of data that we can send in the link (u,v). The graph has $n = |V|$ nodes and $m = |E|$ edges, and assume that $m \geq n$. Let s and t be two nodes in the graph. For a path $s = u_0 \rightarrow u_1 \cdots \rightarrow u_k = t$, its bottleneck is
 \[\min\{c(u_0,u_1),\ldots,c(u_{k-1},u_k)\} . \]

 Informally, the bottleneck of a path is the limitation of the rate of data that you can send along that path.

 a) (35 points) Give an algorithm of $O(m + n)$ time that, given a number $B \geq 0$, finds a path from s to t whose bottleneck is at least B. If many such paths exist, you only need to find one.

 [We expect an informal English description of your algorithm. You need to justify its correctness and running time.]

 b) (35 points) Using part (a), design an $O(m \log(n))$ algorithm that finds the widest path from s to t, meaning a path from s to t of the largest bottleneck possible. (Note: Recall that $m = O(n^2)$, so $\log_2(m) = O(\log(n))$.)

 [We expect an informal English description of your algorithm. You need to justify its correctness and running time.]
3. (70 points) Let $G = (V, E, w)$ be a connected, weighted undirected graph. Assume that the weights are strictly positive. A set $F \subseteq E$ of edges is called a feedback-edge set if every cycle of G has at least one edge in F. Design an efficient algorithm to find a minimum-weight feedback-edge set. Analyze the running time of your algorithm.

[We expect an informal English description of your algorithm. You need to justify its correctness.]

Hint: For a feedback-edge set F, the complement feedback graph G_F is the subgraph of G with the same node set V, but edge set $E \setminus F$. That is, G_F is obtained by deleting edges of F in G. In order to pick a feedback-edge set F of minimum weight, we need to find a complement feedback graph G_F of maximum weight.