DIGITAL SIGNATURE

VIET TUNG HOANG

The slides are loosely based on those of Prof. Mihir Bellare, UC San Diego.
1. High-level Overview

2. Building Signature Scheme
The Need For Signing Is Ubiquitous
How To Sign Electronically?

Problem: A digitized signature is easily copied → forgery

Lots of apps to digitize signatures
Digital Signature Scheme: Syntax

Key Gen

\[\mathcal{K} \rightarrow pk \rightarrow sk \]

Sign

\[M \rightarrow \text{Sign} \rightarrow \sigma \rightarrow sk \rightarrow \text{Ver} \rightarrow 0/1 \]

Verify

\[\sigma \rightarrow M \rightarrow \text{Ver} \rightarrow pk \]
Digital Signature versus MAC

MAC
- Verifier needs to share a secret key with signer
- Verifier can impersonate signer

Digital Signature
- Verifier needs no secret
- Verifier cannot impersonate signer
Digital Signature: Unforgeability Security

- Similar to MAC security

- **Difference**: The adversary is given the public key

Again, digital signature doesn’t directly thwart replay attack.
Agenda

1. High-level Overview

2. Building Signature Scheme
A Bad Scheme: Plain RSA Signature

Key generation: Like RSA encryption

Sign:
- To sign a message, “decrypt” it:

Verify:
- To verify a signature, “encrypt” it and compare with the message
Issues with Plain RSA Signature

- **Feasibility**: Can sign only short messages

- **Security**: Can easily break unforgeability security

No sign query needed!

\[pk = (n, e) \]

\[(M', \sigma') = (x^e \mod n, x) \]
Exercise: Forging Plain RSA For Targeted Msg

Goal: The forged message must be a *specific* one.
Hash-then-Sign Paradigm

Plain RSA Signature → Full Domain Hash (FDH)

Key generation: Like Plain RSA

Sign: To sign message M

\[H : \{0, 1\}^* \rightarrow \mathbb{Z}_N \]
Security Requirement for Hash Function

The hash must be collision-resistant

Question: Given a collision of the hash, break security of signature scheme

For the proof to go through, the hash has to be modeled as a random oracle
A Common Wrong Way to Hash

Broken by Desmedt and Odlyzko in 1985
How to Hash Properly

Use the first $m = \lfloor \log_2(N) \rfloor$ bits and take mod N
Hashing in PKCS#1

19 bytes to indicate what hash function and its output length

2 bytes padding

2048-bit string Y, viewed as a number in \mathbb{Z}_N
Verification in PKCS#1

Check if Y is an encoding of $\text{Hash}(x)$

- σ → Plain RSA Verification → Y → Encoding checking

- x

- 2 bytes: 0001
- 19 bytes: FF FF ... FF 00
- hash info
- $\text{Hash}(x)$

Length depends on hash

Encoding check must be done carefully, otherwise there is an attack
Breaking PKCS#1 Signature With Bad Check

WarmUp: A Toy Example

k bits for hash function and its output length

n-bit string Y
Bad Check of Encoding

Skip 0^*1; read the next k bits to know Hash and output length L

Current reading location

0^*1 info

k bits Length depends on hash function
Bad Check of Encoding

Compare the next L bits with $\text{Hash}(x)$

- Length depends on hash function
- Allow some suffix
- 0^*1 info
- 2 bits
- L bits
- Length depends on hash function
Attacking Toy Variant With Bad Check
An Illustration for $n = 16$ and $k = 1$

Forge signature for an arbitrary message x

Correct encoding

| 013$\parallel$$1 | info = 1 | Hash$(x) = 0$ |

Targeted encoding

| 001 | info = 1 | Hash$(x) = 0$ | 011 |

$Y = 12,288$

Key idea: Suffix length $> 2n/3$
Attacking Toy Variant With Bad Check

Using \(e = 3 \) as verification key in RSA

\[
\sigma^3 \equiv Y \mod N
\]

Initial goal: Find signature \(\sigma \) such that \(\sigma \leftarrow \text{PlainRSA-Sign}(Y) \)

For \(e = 3 \) and \(Y = 12288 \): Find \(\sigma \) such that \(\sigma^3 \equiv 12288 \mod N \)

Attack: Approximate \(\sigma \) via \(s = \lceil Y^{1/3} \rceil = 24 \)
Verifying The Forged Signature

Targeted encoding:
- Targeted encoding: 001
- info = 1
- Hash(x) = 0
- Result: 011

Obtained encoding:
- Obtained encoding: 001
- info = 1
- Hash(x) = 0
- Result: 11000000000

\[Z = 24^3 \mod N = 13824 \]

Z passes the bad encoding checking \(\rightarrow s = 24 \) is a valid signature
Why It Works

\[s = \lceil Y^{1/3} \rceil \quad \Rightarrow \quad \text{Plain RSA Verification} \quad \Rightarrow \quad Z = s^3 \]

Theorem: For any \(Y < 2^n/3 \) with \(n \geq 16 \), the number

\[Z \leftarrow (\lceil Y^{1/3} \rceil)^3 \]

satisfies \(0 \leq Z - Y < 2^{2/3n} \)
Why It Works

0×1 \hspace{1cm} \text{info} \hspace{1cm} \text{oo...oo} \hspace{1cm} \text{Suffix length} \geq 2n/3$

$0 \leq Z - Y < 2^{2n/3}$

0×1 \hspace{1cm} \text{info} \hspace{1cm} \text{Z - Y}$

$s^3 = Z$
Attacking PKCS#1 Signature with Bad Check

Using $e = 3$ as verification key in RSA

Your Exercise