Digital Signature

Viet Tung Hoang

The slides are loosely based on those of Prof. Mihir Bellare, UC San Diego.
1. High-level Overview

2. Building Signature Scheme
The Need For Signing Is Ubiquitous
How To Sign Electronically?

Problem: A digitized signature is easily copied → forgery

Lots of apps to digitize signatures
Digital Signature Scheme: Syntax

Key Gen

\[\mathcal{K} \xrightarrow{\$} (pk, sk) \]

Sign

\[M \xrightarrow{\$} \sigma \]

\[sk \]

Verify

\[\sigma, M \xrightarrow{\$} 0/1 \]

\[pk \]
Digital Signature versus MAC

MAC
- Verifier needs to share a secret key with signer
- Verifier can impersonate signer

Digital Signature
- Verifier needs no secret
- Verifier cannot impersonate signer
Digital Signature: Unforgeability Security

- Similar to MAC security
- **Difference**: The adversary is given the public key

Again, digital signature doesn’t directly thwart replay attack.
Agenda

1. High-level Overview

2. Building Signature Scheme
A Bad Scheme: Plain RSA Signature

Key generation: Like RSA encryption

Sign:
- To sign a message, “decrypt” it:

Verify:
- To verify a signature, “encrypt” it and compare with the message
Issues with Plain RSA Signature

- **Feasibility**: Can sign only short messages

- **Security**: Can easily break unforgeability security

No sign query needed!

\[pk = (n, e) \]

\[(M', \sigma') = (x^e \mod n, x) \]
Exercise: Forging Plain RSA For Targeted Msg

Goal: The forged message must be a *specific* one
Hash-then-Sign Paradigm

Plain RSA Signature \rightarrow Full Domain Hash (FDH)

Key generation: Like Plain RSA

Sign: To sign message M

\[
H : \{0, 1\}^* \rightarrow \mathbb{Z}_N
\]
Security Requirement for Hash Function

The hash must be collision-resistant

Question: Given a collision of the hash, break security of signature scheme

For the proof to go through, the hash has to be modeled as a random oracle
A Common Wrong Way to Hash

2048-bit string Y, viewed as a number in \mathbb{Z}_N

Broken by Desmedt and Odlyzko in 1985
How to Hash Properly

Use the first $m = \lceil \log_2(N) \rceil$ bits and take mod N
Hashing in PKCS#1

19 bytes to indicate what hash function and its output length

2 bytes padding

0001 FF FF ... FF 00 hash info

2048-bit string Y, viewed as a number in \mathbb{Z}_N
Verification in PKCS#1

Check if Y is an encoding of $\text{Hash}(x)$

- σ → Plain RSA Verification → 2048-bit Y → Encoding checking

- x

- Encoding check must be done carefully, otherwise there is an attack
Breaking PKCS#1 Signature With Bad Check
WarmUp: A Toy Example

k bits for hash function and its output length

0^*1 info

n-bit string Y

Plain RSA Signing
Bad Check of Encoding

Skip 0^*1; read the next k bits to know Hash and output length L
Bad Check of Encoding

Compare the next L bits with $\text{Hash}(x)$

$0^*1 \quad \text{info} \quad \text{Length depends on hash function}$

L bits

Allow some suffix

k bits
Attacking Toy Variant With Bad Check
An Illustration for $n = 16$ and $k = 1$

Forge signature for an arbitrary message x

<table>
<thead>
<tr>
<th>Correct encoding</th>
<th>0$^{13} \parallel 1$</th>
<th>info = 1</th>
<th>Hash(x) = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted encoding</td>
<td>001</td>
<td>info = 1</td>
<td>Hash(x) = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>011</td>
</tr>
</tbody>
</table>

$Y = 12,288$

Key idea: Suffix length $> 2n/3$
Attacking Toy Variant With Bad Check

Using $e = 3$ as verification key in RSA

\[
\sigma^3 \equiv Y \mod N
\]

Initial goal: Find signature σ such that $\sigma \leftarrow \text{PlainRSA-Sign}(Y)$

For $e = 3$ and $Y = 12288$: Find σ such that $\sigma^3 \equiv 12288 \mod N$

Attack: Approximate σ via $s = \lceil Y^{1/3} \rceil = 24$
Verifying The Forged Signature

- **Plain RSA Verification**
 - $s \rightarrow$ 16-bit Z \rightarrow Encoding checking

- **Targeted encoding**
 - info = 1
 - Hash(x) = 0
 - 0^{11}

- **Obtained encoding**
 - info = 1
 - Hash(x) = 0
 - 11000000000

\[Z = 24^3 \mod N = 13824 \]

Z passes the bad encoding checking $\rightarrow s = 24$ is a valid signature
Why It Works

Theorem: For any $Y < 2^n/3$ with $n \geq 16$, the number

\[Z \leftarrow (\lceil Y^{1/3} \rceil)^3 \text{ satisfies } 0 \leq Z - Y < 2^{2/3n} \]
Why It Works

\[0 \leq Z - Y < 2^{2n/3} \]

\[s^3 = Z \]
Attacking PKCS#1 Signature with Bad Check

Using $e = 3$ as verification key in RSA

Your Exercise