Intro to Asymmetric Crypto

Viet Tung Hoang
Agenda

1. Motivation: Key Exchange
2. Number Theory Basics
3. Diffie-Hellman Assumptions
Secret Key Exchange

Alice and Bob:
- Initially share no information
- Communicate in the presence of Eve

Goal: Derive a common secret key K that Eve knows nothing about
Secret-Key Exchange

Key exchange is a very important problem
You use it several times every day

Big Question: How to build a key exchange?
Basic Diffie-Hellman Key Exchange

In practice, means 2048-bit

Public param: a large prime p, a number g called a primitive root mod p.

Let $S = \{0, 1, \ldots, p - 2\}$

Question: Why do Alice and Bob have the same key?

$X \leftarrow g^x \mod p$

$Y \leftarrow g^y \mod p$

$K \leftarrow Y^x \mod p$

$K \leftarrow X^y \mod p$
DH Key Exchange: Questions

What does it mean to be a primitive root mod p?
Why can’t Eve compute the secret key?

…
1. Motivation: Key Exchange

2. Number Theory Basics

3. Diffie-Hellman Assumptions
Some Notation

For \(n \in \{1, 2, 3, \ldots \} \), define

\[
\mathbb{Z}_n = \{0, 1, \ldots, n - 1\}
\]

\[
\mathbb{Z}_n^* = \{t \in \mathbb{Z}_n \mid \gcd(t, n) = 1\} \quad \varphi(n) = |\mathbb{Z}_n^*|
\]

Example: \(n = 14 \)

\[
\mathbb{Z}_{14} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}
\]

\[
\mathbb{Z}_{14}^* = \{1, 3, 5, 9, 11, 13\} \quad \varphi(14) = 6
\]

Example: prime \(p \)

\[
\mathbb{Z}_p^* = \{1, 2, \ldots, p - 1\} \quad \varphi(p) = p - 1
\]
An Observation

Consider a number $g \in \mathbb{Z}_n^*$.

![Diagram showing the operations g, $g^2 \mod n$, $g^3 \mod n$, and an ellipsis for repetition.](image)
Rho Attack In Disguise

\[H(x) = x \cdot g \mod n \]

\[
x_1 = H(x_0)
\]

\[
x_2 = H(x_1)
\]

\[
x_0 = 1
\]

...

Question: Find a collision of this hash on domain \(\mathbb{Z}_n^* \).
Collision Doesn’t Exist ➞ Rho Shape is a Circle

\[g^1 \rightarrow g^2 \mod n \rightarrow g^3 \mod n \]
An Observation

Consider $n = 14$

$\varphi(14) = 6$
Cycle length = 6

$3^1 \mod 14 = 3$
$3^2 \mod 14 = 9$
$3^0 \mod 14 = 1$
$3^3 \mod 14 = 13$
$3^5 \mod 14 = 5$
$3^4 \mod 14 = 11$
An Observation

Consider $n = 14$

$\varphi(14) = 6$

Cycle length = 3

$9^0 \mod 14 = 1$

$9^1 \mod 14 = 9$

$9^2 \mod 14 = 11$
The Common Trait

Cycle length varies, but is always a divisor of $\varphi(n)$

Walking $\varphi(n)$ steps in the cycle will always lead to the starting point

![Diagram showing the cycle with steps 1, g, g^2, and g^3.]
Restating in Algebraic Form

Euler’s Theorem: For any \(g \in \mathbb{Z}_n^* \),

\[g^\varphi(n) \equiv 1 \pmod{n} \]

Fermat’s Little Theorem: For any prime \(p \) and any \(g \in \mathbb{Z}_p^* \),

\[g^{p-1} \equiv 1 \pmod{p} \]
Generators and Cyclic Groups

Define \(\langle g \rangle_n = \{g^i \mod n \mid i = 0, 1, 2, \ldots\} \) as the cyclic group \(\mod n \) generated by \(g \)
Examples

\[n = 12, \, g = 11, \langle g \rangle_n = \{1, 11\} \]
Examples

\[n = 5, \ g = 2, \ \langle g \rangle_n = \{1, 2, 3, 4\} \]
Primitive Roots

If the cycle length is $\varphi(n)$ then we say that g is a primitive root mod n.

Theorem: For any prime p, there exist primitive roots mod p.

Exercise: Find all primitive roots of 7.
Agenda

1. Motivation: Key Exchange

2. Number Theory Basics

3. Diffie-Hellman Assumptions
Review of DH Key Exchange

\[\mathbb{G} = \{ g^i \mid i \in S \} \]

Public param: a large cyclic group \(\mathbb{G} \) generated by \(g \)

Let \(S = \{0, 1, \ldots, |\mathbb{G}| - 1\} \)

\[
\begin{align*}
x &\leftarrow_S S \\
X &\leftarrow g^x
\end{align*}
\]

\[
\begin{align*}
y &\leftarrow_S S \\
Y &\leftarrow g^y
\end{align*}
\]

\[
\begin{align*}
K &\leftarrow Y^x \\
K &\leftarrow X^y
\end{align*}
\]
Decisional DH Assumption

\[x, y \leftarrow \$ \{0, 1, \ldots, |G| - 1\} \]

Rand

\[X \leftarrow g^x, Y \leftarrow g^y, K \leftarrow \$ G \]

Real

\[X \leftarrow g^x, Y \leftarrow g^y, K \leftarrow g^{xy} \]

The DH key exchange is secure if DDH holds.
Caveat

DDH does not hold for \mathbb{Z}_p^*

Can break it with advantage 1/2
Strengthening DH Key Exchange

Same as before, but use a hash H at the end

Public param: a large cyclic group \mathbb{G} whose generator is g

$x \leftarrow \{0, 1, \ldots, |\mathbb{G}| - 1\}$

$X \leftarrow g^x$

$Y \leftarrow g^y$

$Z \leftarrow Y^x$

$K \leftarrow H(Z)$

$Z \leftarrow X^y$

$K \leftarrow H(Z)$
The strengthened DH key exchange is secure if CDH holds, and H is modeled as a random oracle.