Lecture 8: Intro to Asymmetric Crypto

Viet Tung Hoang
Agenda

1. Motivation: Key Exchange
2. Number Theory Basics
3. Diffie-Hellman Assumptions
Secret Key Exchange

Alice and Bob:
- Initially share no information
- Communicate in the presence of Eve

Goal: Derive a common secret key K that Eve knows nothing about.
Secret Key Exchange

Key exchange is a very important problem
You use it several times every day

How to build a secret-key exchange protocol?
Symmetric crypto existed for thousands of years, but nobody figured out how to build one.

In 1976, Diffie and Hellman proposed one
Basic Diffie-Hellman Key Exchange

Public param: a large prime p, a number g called a primitive root $\mod p$.

Let $S = \{0, 1, \ldots, p - 2\}$

In practice, means 2048-bit

$x \leftarrow S$
$X \leftarrow g^x \mod p$

$y \leftarrow S$
$Y \leftarrow g^y \mod p$

$K \leftarrow Y^x \mod p$

Question: Why do Alice and Bob have the same key?

$K \leftarrow X^y \mod p$
DH Key Exchange: Questions

What does it mean to be a primitive root mod p?
Why can’t Eve compute the secret key?

...
1. Motivation: Key Exchange

2. Number Theory Basics

3. Diffie-Hellman Assumptions
Some Notation

For $n \in \{1, 2, 3, \ldots\}$, define

$$\mathbb{Z}_n = \{0, 1, \ldots, n - 1\}$$

$$\mathbb{Z}_n^* = \{t \in \mathbb{Z}_n \mid \gcd(t, n) = 1\} \quad \varphi(n) = |\mathbb{Z}_n^*|$$

Example: $n = 14$

$$\mathbb{Z}_{14} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$$

$$\mathbb{Z}_{14}^* = \{1, 3, 5, 9, 11, 13\} \quad \varphi(14) = 6$$

Example: prime p

$$\mathbb{Z}_p^* = \{1, 2, \ldots, p - 1\} \quad \varphi(p) = p - 1$$
An Observation

Consider a number \(g \in \mathbb{Z}_n^* \)
Rho Attack In Disguise

\[H(x) = x \cdot g \mod n \]

\[x_1 = H(x_0) \]

\[x_2 = H(x_1) \]

\[x_0 = 1 \]

Find a collision of this hash on domain \(\mathbb{Z}^*_n \)
Collision Doesn’t Exist \rightarrow Rho Shape is a Circle
An Observation

Consider $n = 14$

$\varphi(14) = 6$

Cycle length = 6

$3^0 \mod 14 = 1$

$3^1 \mod 14 = 3$

$3^2 \mod 14 = 9$

$3^3 \mod 14 = 13$

$3^4 \mod 14 = 11$

$3^5 \mod 14 = 5$
An Observation

Consider \(n = 14 \)

\[\varphi(14) = 6 \]

Cycle length = 3

\[9^0 \mod 14 = 1 \]

\[9^1 \mod 14 = 9 \]

\[9^2 \mod 14 = 11 \]
The Common Trait

Cycle length varies, but is always a divisor of \(\varphi(n) \)

Walking \(\varphi(n) \) steps in the cycle will always lead to the starting point
Restating in Algebraic Form

Euler’s Theorem: For any $g \in \mathbb{Z}_n^*$,

$$g^{\varphi(n)} \equiv 1 \pmod{n}$$

Fermat’s Little Theorem: For any prime p and any $g \in \mathbb{Z}_p^*$,

$$g^{p-1} \equiv 1 \pmod{p}$$
Generators and Cyclic Groups

Define \(\langle g \rangle_n = \{g^i \mod n \mid i = 0, 1, 2, \ldots \} \) as the cyclic group \(\mod n \) generated by \(g \)
Examples

\[n = 12, g = 11, \langle g \rangle_n = \{1, 11\} \]
Examples

\[n = 5, g = 2, \langle g \rangle_n = \{1, 2, 3, 4\} \]
Primitive Roots

If the cycle length is \(\varphi(n) \) then we say that \(g \) is a **primitive root** mod \(n \)

Theorem: For any prime \(p \), there **exist** primitive roots mod \(p \)

Exercise: Find all primitive roots of 7
Legendre symbol: For a prime p and $a \in \mathbb{Z}_p^*$, define
\[
\left(\frac{a}{p} \right) = \begin{cases}
1 & \text{if there is some integer } t \text{ such that } a \equiv t^2 \pmod{p} \\
-1 & \text{otherwise}
\end{cases}
\]

Example: \(\left(\frac{2}{7} \right) = 1 \) because \(2 = 3^2 \pmod{7} \)

Quadratic Residue group: For a prime p, define \(QR_p = \left\{ a : \left(\frac{a}{p} \right) = 1 \right\} \)

Example: \(QR_7 = \{1, 2, 4\} \)
In Cyclic View, Sign Alternates

Theorem: If g is a primitive root mod p then

$$\left(g^t \mod p \right) = \text{parity}(t) = \begin{cases} 1 & \text{if } t \text{ even} \\ -1 & \text{if } t \text{ odd} \end{cases}$$

QR_p is a cyclic group generated by g^2
Fast Computation of Legendre Symbol

Legendre’s Theorem: \[
\left(\frac{a}{p} \right) = a^{(p-1)/2} \mod p
\]

Take \(O(\log(p)) \) multiplications if we use repeated squaring
Proof Sketch of Legendre’s Theorem

Consider a primitive root g

What’s the relative position of $X = g^{(p-1)/2} \mod p$?
It’s at the Antithesis of the Origin

Why? We need to walk half the cycle length to go from the origin to X
Generalize It Further

Consider a primitive root g

What’s the relative position of $Y = g^{(p-1)t/2} \mod p$?
The Common Trait

If t is odd

Why? We need to walk $t/2$ cycles to go from the origin to Y

If t is even
Restating in Algebraic Way

If t is odd

$$Y = g^{t(p-1)/2} \mod p = \text{parity}(t)$$

If t is even
Restating in Algebraic Way

\[g^{t(p-1)/2} \mod p = \text{parity}(t) \]

Let \(a = g^t \mod p \)

\[a^{(p-1)/2} \mod p = \text{parity}(t) \]

\[\left(\frac{a}{p} \right) = \text{parity}(t) \]

\[a^{(p-1)/2} \mod p = \left(\frac{a}{p} \right) \]
Agenda

1. Motivation: Key Exchange

2. Number Theory Basics

3. Diffie-Hellman Assumptions
Review of DH Key Exchange

\[G = \{ g^i \mid i \in S \} \]

Public param: a large cyclic group \(G \) generated by \(g \)

Let \(S = \{ 0, 1, \ldots, |G| - 1 \} \)
The DH key exchange is secure if the DDH assumption holds.
The DDH assumption does **not** hold for \(\mathbb{Z}_p^* \).

Reason: Given \(X = g^x \mod p, Y = g^y \mod p \), can efficiently compute the Legendre symbol \(\left(\frac{K}{p} \right) \) of the real key \(K = g^{xy} \mod p \).

How: \(\left(\frac{K}{p} \right) = \text{parity}(xy), \left(\frac{X}{p} \right) = \text{parity}(x), \left(\frac{Y}{p} \right) = \text{parity}(y) \)

Which group should we use for DH key exchange?

Answer: \(QR_p \) where \(p \) is a large "safe" prime

\(|QR_p| = (p - 1)/2 \) is also a prime
Strengthening DH Key Exchange

Same as before, but use a hash H at the end

Public param: a large cyclic group \mathbb{G} whose generator is g

$x \leftarrow \{0, 1, \ldots, |\mathbb{G}| - 1\}$

$X \leftarrow g^x$

$Y \leftarrow g^y$

$Z \leftarrow Y^x$

$Z \leftarrow X^y$

$K \leftarrow H(Z)$

$K \leftarrow H(Z)$
Computational DH Assumption

is believed to hold for \mathbb{Z}_p^*

Real

$x, y \leftarrow \{0, 1, \ldots, |G| - 1\}; \quad X \leftarrow g^x, Y \leftarrow g^y, Z \leftarrow g^{xy}$

A tries to guess Z

The strengthened DH key exchange is secure if the CDH assumption holds, and the hash H is modeled as a random oracle.