Pseudorandom Function

Viet Tung Hoang

The slides are loosely based on those of Prof. Mihir Bellare, UC San Diego.
Agenda

1. Defining PRF Security

2. Birthday Attack
Recall

<table>
<thead>
<tr>
<th>Possible Properties</th>
<th>Necessary</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security against key recovery</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hard to find (M) given (C \leftarrow E_K(M))</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Want: a single “master” property that is sufficient to ensure security of common usage of blockcipher.
An Analogy: Turing Test

What does it mean for a machine to be “intelligent”?

<table>
<thead>
<tr>
<th>Possible Answers</th>
<th>But no such list is satisfactory</th>
</tr>
</thead>
<tbody>
<tr>
<td>It can be happy</td>
<td></td>
</tr>
<tr>
<td>It recognizes pictures</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
An Analogy: Turing Test

Man (0) or Machine (1)?
Real versus Ideal

<table>
<thead>
<tr>
<th>Notion</th>
<th>Real object</th>
<th>Ideal object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF</td>
<td>E_K</td>
<td>Random function</td>
</tr>
</tbody>
</table>
Informal View of PRF Security

\[E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]

Adversary doesn’t know \(K \) or \(f \)

Sample random \(f : \{0, 1\}^n \rightarrow \{0, 1\}^n \)

\(K \leftarrow \mathcal{K} \)
Defining Random Function: Lazy Sampling

Want: a random function \(f : \{0, 1\}^n \rightarrow \{0, 1\}^m \)

Pick a fresh random answer for a new query, and remember the answer
Defining Random Function: Lazy Sampling

Want: a random function $f : \{0, 1\}^n \to \{0, 1\}^m$

Pick a fresh random answer for a new query, and remember the answer
Defining Random Function: Lazy Sampling

Want: a random function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$

Pick a fresh random answer for a new query, and remember the answer
Defining Random Function: Lazy Sampling

Want: a random function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$

Pick a fresh random answer for a new query, and remember the answer
Want: a random function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$
Putting Things in Code

Game \(\text{Real}_E \)

procedure Initialize()

\(K \leftarrow \mathcal{K} \)

procedure \(\text{Fn}(M) \)

return \(E_K(M) \)

Game \(\text{Rand}_E \)

string array \(T = \{} \) // Global variable

procedure \(\text{Fn}(M) \)

If \(T[M] = \perp \) then \(T[M] \leftarrow \{0, 1\}^n \)

return \(T[M] \)

\[\text{Adv}^{\text{prf}}_E(A) = \Pr[\text{Real}_E^A \Rightarrow 1] - \Pr[\text{Rand}_E^A \Rightarrow 1] \]
Exercise: PRF Attacks

\[E_K(M) = M \oplus K \]

\[E_K(M) = \pi(M \oplus K) \]

\(\pi, \pi^{-1} \) are public
Easy to Break PRF Security After Key Recovery

KR attack

new msg, not used in KR attack

$E_K(M) \overset{?}{=} C$

Yes No

1 0
PRF Security

Key Recovery Security
Exercise: PRF Attacks

\[E_K(M) = \text{AES}_K(M) \parallel \text{AES}_K(\overline{M}) \]

Two-round Feistel
Agenda

1. Defining PRF Security

2. Birthday Attack
Birthday Problem

$y_1, \ldots, y_q \rightarrow \{1, \ldots, N\}$

$C(N, q) = \Pr[y_1, \ldots, y_q \text{ not distinct}]$

Fact: For $q \leq \sqrt{2N}$,

$$\frac{q(q - 1)}{4N} \leq C(N, q) \leq \frac{q(q - 1)}{2N}$$
Birthday Attack on PRF Security

distinct M_1, \ldots, M_q

E_K

distinct C_1, \ldots, C_q

distinct M_1, \ldots, M_q

f

random C_1, \ldots, C_q
Birthday Attack on PRF Security

\[E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]

A \rightarrow \text{distinct } M_1, \ldots, M_q \rightarrow \text{Fn} \leftarrow A

Output 1 if \(C_1, \ldots, C_q \) are distinct

\[\text{Adv}^\text{prf}_E (A) = C(2^n, q) \approx \frac{q^2}{2^n} \]

\begin{tabular}{|c|c|c|c|}
\hline
\text{Blockcipher} & \(n \) & \(2^{n/2} \) & \text{Status} \\
\hline
DES, 2DES, 3DES & 64 & \(2^{32} \) & Insecure \\
\hline
AES & 128 & \(2^{64} \) & Secure \\
\hline
\end{tabular}