The slides are loosely based on those of Prof. Mihir Bellare, UC San Diego.
Agenda

1. Blockcipher and Key Recovery

2. A Bird’s-Eye View of Real Blockciphers
Blockcipher

efficiently invertible given the key

$E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$

Key space Domain
Random key K is known to both parties, but not given to adversary A
Key-Recovery Attack: Scenario

\[C_1 \leftarrow E_K(M_1) \quad \ldots \quad C_q \leftarrow E_K(M_q) \]

Guess \(K \)
Modeling Key-Recovery Attack

Game \(KR_E \)

procedure Initialize()

\[K \leftarrow \mathcal{K} \]

procedure Enc(M)

\[\text{return } E_K(M) \]

procedure Finalize(K')

\[\text{return } (K' = K) \]

Multiple **chosen-plaintext** queries

\[
\text{Adv}^{kr}_E(A) = \Pr[\text{KR}_E \Rightarrow 1]
\]

\[\text{Adv}^{kr}_E(A) \approx 0 \text{ means } A \text{ is doing poorly} \]
Practicing Key-Recovery Attack

\[E_K(M) = M \oplus K \]

\[E_K(M) = \pi(M \oplus K) \]

Public permutation

\(\pi, \pi^{-1} \) are public
1. Blockcipher and Key Recovery

2. A Bird’s-Eye View of Real Blockciphers
DES: Parameters and History

- Designed by IBM in 1974
- Used in ATM machines
- Replaced in 2001
Design of DES: Feistel Network

(One-round) $\text{Feistel}(K, \cdot)$

Inverse of Feistel

Question: How to invert?
Construction of DES

Key scheduler

K → K_1 → ... → K_{16}

56 bits

48 bits

M → Process(\cdot) → Feistel(K_1,\cdot) → ... → Feistel(K_{16},\cdot) → Process$^{-1}$(\cdot) → C

Unkeyed processing
Exhaustive Key Search Attack

For \(K \in \mathcal{K} \) do

If \(E_K(M_i) = C_i \) for every \(i \in \{1, \ldots, d\} \) then return \(K \)

For \(E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \), if \(d > k/n \) then \(\text{Adv}^{kr}_E(A) \approx 1 \)
Exhaustive Key Search Attack on DES

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Source</th>
<th>Attack time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>DESCHALL</td>
<td>96 days</td>
</tr>
<tr>
<td>1998</td>
<td>Distributed.NET</td>
<td>41 days</td>
</tr>
<tr>
<td>1998</td>
<td>EFF</td>
<td>56 hours</td>
</tr>
<tr>
<td>1998</td>
<td>Distributed.NET + EFF</td>
<td>22 hours</td>
</tr>
</tbody>
</table>
Incorrect Fix of DES: Double Encryption

112-bit key → prohibitive for exhaustive key search

But there’s a more clever attack!
Meet-in-the-Middle Attack

\[
M \xrightarrow{E_{K_1}} \quad E_{K_2} \xrightarrow{} C
\]

\[
E_{K_1}(M) \quad \text{and} \quad E_{K_2}^{-1}(C)
\]
Meet-in-the-Middle Attack

Let L_1, \ldots, L_N be all possible DES keys

$$N = 2^{56}$$

<table>
<thead>
<tr>
<th>L_1</th>
<th>$E_{L_1}(M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>L_i</td>
<td>$E_{L_i}(M)$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>L_N</td>
<td>$E_{L_N}(M)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$E_{L_1}^{-1}(C)$</th>
<th>L_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$E_{L_i}^{-1}(C)$</td>
<td>L_j</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$E_{L_N}^{-1}(C)$</td>
<td>L_N</td>
</tr>
</tbody>
</table>

Find L_i, L_j such that $E_{L_i}(M) = E_{L_j}^{-1}(C)$

Can use further testing with Enc to eliminate false positives

By using hashing, can find the matching in $O(N)$ time
The 3DES Constructions

3DES2

3DES3
Block Size Matters, Too

Birthday attack: $O(2^{n/2})$ time

Distinguish outputs from random

Practical for DES/2DES/3DES

$n = 64$
State of the Art: AES

- NIST standard since 2001
- Best known key-recovery attack takes about 2^{126} time

$k \in \{128, 192, 256\}$
Security Against Key Recovery Is Not Enough

A Bad Example: Consider the following $E : \{0, 1\}^{128} \times \{0, 1\}^{256} \rightarrow \{0, 1\}^{256}$

$E_K(M_1 M_2) = \text{AES}_K(M_1) \| M_2$

As secure against key recovery as AES

Send half of the message in the clear!
So What Is a Good Blockcipher?

<table>
<thead>
<tr>
<th>Possible Properties</th>
<th>Necessary</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security against key recovery</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hard to find M given $C \leftarrow E_K(M)$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Want: a single “master” property that is sufficient to ensure security of common usage of blockcipher.