BLOCKCIPHER

VIET TUNG HOANG

The slides are loosely based on those of Prof. Mihir Bellare, UC San Diego.
Agenda

1. Blockcipher and Key Recovery

2. A Bird’s-Eye View of Real Blockciphers
Blockcipher

efficiently invertible given the key

\[E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]
Blockcipher Usage

Random key K is known to both parties, but not given to adversary A
Key-Recovery Attack: Scenario

\[C_1 \leftarrow E_K(M_1) \quad \ldots \quad C_q \leftarrow E_K(M_q) \]

Guess \(K \)

\[M_1 \quad \ldots \quad M_q \]
Modeling Key-Recovery Attack

Game \(KR_E \)

procedure Initialize()
\(K \leftarrow \$ \mathcal{K} \)

procedure Enc(\(M \))
return \(E_K(M) \)

procedure Finalize(\(K' \))
return \((K' = K) \)

\[
Adv^\text{kr}_E(A) = \Pr[\text{KR}_E \Rightarrow 1]
\]

\[
Adv^\text{kr}_E(A) \approx 0 \text{ means } A \text{ is doing poorly}
\]
Practicing Key-Recovery Attack

\[E_K(M) = M \oplus K \]

\[E_K(M) = \pi(M \oplus K) \]

Public permutation

\[\pi, \pi^{-1} \text{ are public} \]
Agenda

1. Blockcipher and Key Recovery

2. A Bird’s-Eye View of Real Blockciphers
DES: Parameters and History

-Designed by IBM in 1974
-Used in ATM machines
-Replaced in 2001

M

E

K

C

64 bits

56 bits
Design of DES: Feistel Network

(One-round) $\text{Feistel}(K, \cdot)$

Inverse of Feistel

Question: How to invert?
Construction of DES

Key scheduler

56 bits

\(K \)

\(K_1 \) \(\ldots \) \(K_{16} \)

48 bits

Unkeyed processing

\(M \)

Process(\(\cdot \))

Feistel(\(K_1, \cdot \))

\(\ldots \)

Feistel(\(K_{16}, \cdot \))

Process\(^{-1}(\cdot)\)

\(C \)
Exhaustive Key Search Attack

For $K \in \mathcal{K}$ do

If $E_K(M_i) = C_i$ for every $i \in \{1, \ldots, d\}$ then return K

For $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$, if $d > k/n$ then $\text{Adv}^k_E(A) \approx 1$
Exhaustive Key Search Attack on DES

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Source</th>
<th>Attack time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>DESCHALL</td>
<td>96 days</td>
</tr>
<tr>
<td>1998</td>
<td>Distributed.net</td>
<td>41 days</td>
</tr>
<tr>
<td>1998</td>
<td>EFF</td>
<td>56 hours</td>
</tr>
<tr>
<td>1998</td>
<td>Distributed.net + EFF</td>
<td>22 hours</td>
</tr>
</tbody>
</table>
Incorrect Fix of DES: Double Encryption

112-bit key \rightarrow prohibitive for exhaustive key search

But there’s a more clever attack!
Meet-in-the-Middle Attack: Intuition

\[M \xrightarrow{E_{K_1}} E_{K_1}(M) \xrightarrow{E_{K_2}} E_{K_2}(C) \xrightarrow{E_{K_2}^{-1}} C \]
Meet-in-the-Middle Attack

Let L_1, \ldots, L_N be all possible DES keys

$$N = 2^{56}$$

Find L_i, L_j such that $E_{L_i}(M) = E_{L_j}^{-1}(C)$
How to implement in \textit{linear} time?
There are on average 2^{56} pairs of matching keys.
How to eliminate false positives?
The 3DES Constructions

3DES2

\[E_{K_1} \rightarrow E^{-1}_{K_2} \rightarrow E_{K_1} \]

3DES3

\[E_{K_1} \rightarrow E^{-1}_{K_2} \rightarrow E_{K_3} \]
Block Size Matters, Too

Birthday attack: $O(2^{n/2})$ time

Practical for DES/2DES/3DES

$n = 64$
State of the Art: AES

- NIST standard since 2001
- Best known key-recovery attack takes about 2^{126} time

$n = 128$

$k \in \{128, 192, 256\}$
Security Against Key Recovery Is Not Enough

A Bad Example: Consider the following $E : \{0, 1\}^{128} \times \{0, 1\}^{256} \rightarrow \{0, 1\}^{256}$

$$E_K(M_1 M_2) = AES_K(M_1) || M_2$$

As secure against key recovery as AES

Send half of the message in the clear!
So What Is a Good Blockcipher?

<table>
<thead>
<tr>
<th>Possible Properties</th>
<th>Necessary</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security against key recovery</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hard to find M given $C \leftarrow E_K(M)$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Want: a single “master” property that is sufficient to ensure security of common usage of blockcipher.