Blockcipher

Viet Tung Hoang

The slides are loosely based on those of Prof. Mihir Bellare, UC San Diego.
Agenda

1. Blockcipher and Key Recovery

2. A Bird’s-Eye View of Real Blockciphers
Blockcipher

$E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$

Key space Domain

efficiently invertible given the key

$K \rightarrow E \rightarrow C \leftarrow \neg\neg E^{-1} \rightarrow M$

$M \rightarrow E \rightarrow C \leftarrow \neg\neg E^{-1} \rightarrow M$
Random key K is known to both parties, but not given to adversary A.

\[C_1 \leftarrow E_K(M_1) \quad \ldots \quad C_q \leftarrow E_K(M_q) \]
Key-Recovery Attack: Scenario

\[C_1 \leftarrow E_K(M_1) \quad \ldots \quad C_q \leftarrow E_K(M_q) \]

Guess \(K \)
Modeling Key-Recovery Attack

Game KR_E

procedure Initialize() **procedure** Enc(M) **procedure** Finalize(K')

$K \leftarrow \mathcal{K}$ return $E_K(M)$ return $(K' = K)$

$$ Adv_{KR_E}^{kr}(A) = \Pr[KR_E \Rightarrow 1] $$

$Adv_{KR_E}^{kr}(A) \approx 0$ means A is doing poorly
Practicing Key-Recovery Attack

\[E_K(M) = M \oplus K \]

\[E_K(M) = \pi(M \oplus K) \]

\(M \)

\(K \)

\(C \)

\(\pi \)

\(\pi, \pi^{-1} \) are public

Public permutation
Agenda

1. Blockcipher and Key Recovery

2. A Bird’s-Eye View of Real Blockciphers
DES: Parameters and History

- Designed by IBM in 1974
- Used in ATM machines
- Replaced in 2001

- 64 bits
- 56 bits

\[M \rightarrow E \rightarrow C \]
Design of DES: Feistel Network

(One-round) Feistel(K, \cdot)

Inverse of Feistel

Question: How to invert?
Construction of DES

- **Key scheduler**
 - 56 bits
 - K
 - K_1 \ldots K_{16}
 - 48 bits

- **Process(\cdot)**
- **Feistel(K_1, \cdot)**
- **Feistel(K_{16}, \cdot)**
- **Process$^{-1}$(\cdot)**

- Input: M
- Output: C

Unkeyed processing
Exhaustive Key Search Attack

For $K \in \mathcal{K}$ do

If $E_K(M_i) = C_i$ for every $i \in \{1, \ldots, d\}$ then return K

For $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$, if $d > k/n$ then $\text{Adv}^k_E(A) \approx 1$
Exhaustive Key Search Attack on DES

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Source</th>
<th>Attack time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>DESCHALL</td>
<td>96 days</td>
</tr>
<tr>
<td>1998</td>
<td>Distributed.net</td>
<td>41 days</td>
</tr>
<tr>
<td>1998</td>
<td>EFF</td>
<td>56 hours</td>
</tr>
<tr>
<td>1998</td>
<td>Distributed.net + EFF</td>
<td>22 hours</td>
</tr>
</tbody>
</table>
Incorrect Fix of DES: Double Encryption

112-bit key \(\rightarrow\) prohibitive for exhaustive key search

But there’s a more clever attack!
Meet-in-the-Middle Attack: Intuition

\[M \xrightarrow{E_{K_1}} E_{K_2} \xrightarrow{E_{K_2}^{-1}} C \]
Meet-in-the-Middle Attack

Let L_1, \ldots, L_N be all possible DES keys

\[N = 2^{56} \]

Find L_i, L_j such that

\[E_{L_i}(M) = E_{L_j}^{-1}(C) \]
How to implement in linear time?
There are on average 2^{48} pairs of matching keys.
How to eliminate false positives?
The 3DES Constructions

3DES2

\[E_{K_1} \rightarrow E_{K_2}^{-1} \rightarrow E_{K_1} \]

3DES3

\[E_{K_1} \rightarrow E_{K_2}^{-1} \rightarrow E_{K_3} \]
Block Size Matters, Too

Birthday attack: $O(2^{n/2})$ time

Practical for DES/2DES/3DES

$n = 64$
State of the Art: AES

- NIST standard since 2001
- Best known key-recovery attack takes about 2^{126} time

$k \in \{128, 192, 256\}$
Security Against Key Recovery Is Not Enough

A Bad Example: Consider the following $E : \{0,1\}^{128} \times \{0,1\}^{256} \rightarrow \{0,1\}^{256}$

$$E_K(M_1 M_2) = AES_K(M_1)\|M_2$$

As secure against key recovery as AES

Send half of the message in the clear!
So What Is a Good Blockcipher?

<table>
<thead>
<tr>
<th>Possible Properties</th>
<th>Necessary</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security against key recovery</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hard to find (M) given (C \leftarrow E_K(M))</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Want: a single “master” property that is sufficient to ensure security of common usage of blockcipher.