1. Blockcipher and Key Recovery

2. A Bird’s-Eye View of Real Blockciphers
Blockcipher

\[E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]

Key space Domain

efficiently invertible given the key
Blockcipher Usage

Random key K is known to both parties, but not given to adversary A
Key-Recovery Attack: Scenario

$C_1 \leftarrow E_K(M_1)$... $C_q \leftarrow E_K(M_q)$

Guess K
Modeling Key-Recovery Attack

Game KR_E

procedure Initialize()

\[K \leftrightarrow \mathcal{K} \]

procedure $Enc(M)$

\[\text{return } E_K(M) \]

procedure Finalize(K')

\[\text{return } (K' = K) \]

\[\text{Adv}_{E}^{kr}(A) = \Pr[KR_E \Rightarrow 1] \]

\[\text{Adv}_{E}^{kr}(A) \approx 0 \text{ means } A \text{ is doing poorly} \]
Practicing Key-Recovery Attack

\[E_K(M) = M \oplus K \]

\[E_K(M) = \pi(M \oplus K) \]

Public permutation

\(\pi, \pi^{-1} \) are public
1. Blockcipher and Key Recovery

2. A Bird’s-Eye View of Real Blockciphers
DES: Parameters and History

- Designed by IBM in 1974
- Used in ATM machines
- Replaced in 2001
Design of DES: Feistel Network

(One-round) Feistel(K, \cdot)

Inverse of Feistel

Question: How to invert?
Construction of DES

56 bits

K

Key scheduler

K_1 ... K_{16}

48 bits

M

Unkeyed processing

Process(\cdot)

Feistel(K_1, \cdot)

...

Feistel(K_{16}, \cdot)

Process$^{-1}$(.$)

C
Exhaustive Key Search Attack

For $K \in \mathcal{K}$ do

If $E_K(M_i) = C_i$ for every $i \in \{1, \ldots, d\}$ then return K

For $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$, if $d > k/n$ then $\text{Adv}^\text{kr}_E(A) \approx 1$
Exhaustive Key Search Attack on DES

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Source</th>
<th>Attack time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>DESCHALL</td>
<td>96 days</td>
</tr>
<tr>
<td>1998</td>
<td>Distributed.NET</td>
<td>41 days</td>
</tr>
<tr>
<td>1998</td>
<td>EFF</td>
<td>56 hours</td>
</tr>
<tr>
<td>1998</td>
<td>Distributed.NET + EFF</td>
<td>22 hours</td>
</tr>
</tbody>
</table>
Incorrect Fix of DES: Double Encryption

112-bit key → prohibitive for exhaustive key search

But there’s a more clever attack!
Meet-in-the-Middle Attack

M $\xrightarrow{E_{K_1}}$ E_{K_2} \xrightarrow{C}

$E_{K_1}(M)$ $\xleftarrow{E_{K_2}^{-1}(C)}$
Meet-in-the-Middle Attack

Let L_1, \ldots, L_N be all possible DES keys

$$N = 2^{56}$$

Find L_i, L_j such that $E_{L_i}(M) = E_{L_j}^{-1}(C)$

Can use further testing with Enc to eliminate false positives

By using hashing, can find the matching in $O(N)$ time
The 3DES Constructions

3DES2

3DES3

E_{K_1} $E^{-1}_{K_2}$ E_{K_1}

E_{K_1} $E^{-1}_{K_2}$ E_{K_3}
Block Size Matters, Too

Birthday attack: $O(2^{n/2})$ time

Distinguish outputs from random

Practical for DES/2DES/3DES

k bits

n bits

C

E

M

K
State of the Art: AES

- NIST standard since 2001
- Best known key-recovery attack takes about 2^{126} time

$k \in \{128, 192, 256\}$
Security Against Key Recovery Is Not Enough

A Bad Example: Consider the following $E : \{0, 1\}^{128} \times \{0, 1\}^{256} \rightarrow \{0, 1\}^{256}$

$$E_K(M_1 M_2) = AES_K(M_1) || M_2$$

As secure against key recovery as AES

Send half of the message in the clear!
So What Is a Good Blockcipher?

<table>
<thead>
<tr>
<th>Possible Properties</th>
<th>Necessary</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security against key recovery</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hard to find M given $C \leftarrow E_K(M)$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Want: a single “master” property that is sufficient to ensure security of common usage of blockcipher.