Review I: Algorithm Analysis

Viet Tung Hoang

The slides are loosely based on those of Dr Kevin Wayne, Princeton University and Prof. Mary Wootters, Stanford University.
Running Time Matters

- Time:
 - Centuries
 - Years
 - Days
 - Hours
 - Minutes
 - Seconds

- Groves:
 - $n!$
 - n^3
 - n^2

- Time scale:
 - 10^{10} seconds
 - 10^{15} minutes
 - 10^5 hours
 - 10^6 days
 - 10^7 centuries

- Practical:
 - n
 - $n \log(n)$

- Prohibitive:
 - n^3
Asymptotic Behavior

How to analyze running time?

- **Want:** a *simple* analysis, independent of programming language, architecture, etc

Main idea: focus on how running time scale with n (input size)

Informally, only focus on the behavior when n is **large enough**
An Illustration: Insertion Sort vs Merge Sort

A slick implementation of Insertion Sort: n^2 steps

A poor implementation of Merge Sort: $100n \log_2(n)$ steps

Merge Sort still wins in the long run
Big-Oh Notation

Upper bounds. $T(n) \in O(f(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that $T(n) \leq c \cdot f(n)$ for all $n \geq n_0$

Example:

$$T(n) = 32n^2 + 17n + 1$$

$$n_0 = 1 \quad c = 50$$

$$T(n) = O(n^2)$$
A Usage Example: Selection Sort

- Maintain a sorted left half and a right unsorted one

- Loop: Swap the min of right half with its first element, and extend the left half

\[\begin{align*}
\text{Round 1:} & \quad 36 & 13 & 20 & 25 & 15 & 4 & 51 & 33 & 64 & 22 & 84 & 8 \\
\text{Round 2:} & \quad 4 & 13 & 20 & 25 & 15 & 36 & 51 & 33 & 64 & 22 & 84 & 8 \\
\text{...} & \quad 4 & 8 & 20 & 25 & 15 & 36 & 51 & 33 & 64 & 22 & 84 & 13
\end{align*} \]

Sorted | **Unsorted**

\[O(n) \text{ time} \]

Total \(n \) rounds, and \(O(n^2) \) time
Big-Omega Notation

Lower bounds. $T(n) \in \Omega(f(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that $T(n) \geq c \cdot f(n)$ for all $n \geq n_0$

Example: $T(n) = 32n^3 + 17n + 1$

$n_0 = 1 \quad c = 32$

$T(n) = \Omega(n^2)$
A Usage Example: Comparison-based Sort

Want: Sort these coins based on their weights using a scale

Rules:
- Can only weigh two coins A and B at a time
- Can only tell whether A is heavier than B, but not how much
A Usage Example: Comparison-based Sort

Comparison-based Sort:
-Determine order based on *pairwise comparison* of elements, not actual value

<table>
<thead>
<tr>
<th>Comparison-based</th>
<th>Not comparison-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge Sort, Quick Sort</td>
<td>Counting Sort</td>
</tr>
<tr>
<td>Heap Sort, Insertion Sort</td>
<td>Radix Sort</td>
</tr>
<tr>
<td>Selection Sort, Bubble Sort</td>
<td>Bucket Sort</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Need extra assumption on the elements

Theorem: Any comparison-based sort algorithm must use $\Omega(n \log_2(n))$ comparisons
Big-Theta Notation

Tight bounds. \(T(n) \in \Theta(f(n)) \) if there exist constants \(c_1, c_2 > 0 \) and \(n_0 \geq 0 \) such that \(c_1 \cdot f(n) \leq T(n) \leq c_2 \cdot f(n) \) for all \(n \geq n_0 \)

Example: \(T(n) = 32n^2 + 17n + 1 \)

\[
\begin{align*}
n_0 &= 1 \\
\quad c_1 &= 32, \quad c_2 = 50
\end{align*}
\]

\(T(n) = \Theta(n^2) \)
A Usage Example: Selection Sort, Again

- Recall: Selection Sort takes $O(n^2)$ time for any input.
- Selection Sort takes $\Omega(n^2)$ time for finding the min elements alone.

Round 1:

| 36 | 33 | 40 | 15 | 22 | 9 | 7 | 2 | 1 |

$\geq n$ steps

Round 2:

| 1 | 33 | 40 | 15 | 22 | 9 | 7 | 2 | 36 |

$\geq n - 1$ steps

...

| 1 | 2 | 40 | 15 | 22 | 9 | 7 | 33 | 36 |

Running time $\geq n + (n - 1) + \cdots + 1 = \frac{n(n + 1)}{2} = \Omega(n^2)$

Conclusion: Selection Sort takes $\Theta(n^2)$ time
Asymptotic Bounds for Common Functions

Polynomials:

\[f(n) = a_0 + a_1 n + a_2 n^2 + \cdots + a_d n^d \text{ with } a_d > 0 \]

\[f(n) = \Theta(n^d) \]

Rule: Pick the term of highest order

Log:

\[\log_a(n) \in \Theta(\log_b(n)) \text{ for any constants } a, b > 0 \]

Write \(O(\log(n)) \) without specifying the base
Asymptotic Bounds for Common Functions

Exponential

\[a^n \text{ with } a > 1 \]

\[a^n \in \Omega(n^c) \]

Polynomial

\[n^c \text{ with } c > 0 \]

Log

\[\log(n) \]

\[\log(n) \in O(n^c) \]