Review: Algorithm Analysis

Viet Tung Hoang
1. Overview

2. Asymptotic order of growth
Running Time Matters

Time

Centuries

Years

Days

Hours

Minutes

Seconds

3

Seconds

Minutes

Hours

Days

Years

Centuries

10

10^2

10^3

10^4

10^5

10^6

n

$n!$

n^2

n^3

$n \log(n)$

n

Practical

Prohibitive
Type of Analysis: Worst-case

Running time guarantees for any input of size n - Draconian view, but generally captures efficiency in practice

Exception: Some exponential-time algorithms are used widely in practice because the worst-case instances seem to be rare

Simplex algorithm Linux grep K-means algorithm
Digression: Amortized Analysis

Worst-case running time of a **sequence** of \(n \) tasks

Example: Implementing a \(k \)-bit counter, starting from 0. Cost is measured by the number of bit flips

<table>
<thead>
<tr>
<th># increments, (n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total flips</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

But for a sequence of \(n \) increments from 0, cost at most \(2n \) flips for any choice of \(k \)

An increment may cost \(k \) flips \(\Rightarrow \) \(nk \) flips for \(n \) increments
Amortized Analysis on Counters

Total number of flips is at most:

\[n + \frac{n}{2} + \frac{n}{2^2} + \frac{n}{2^3} + \cdots \leq 2n \]

n/4 flips n/2 flips n flips
Agenda

1. Overview

2. Asymptotic order of growth
Asymptotic Behavior

How to analyze running time?

- **Want**: a *simple* analysis, independent of programming language, architecture, etc

Main idea: focus on how running time scale with n (input size)

Informally, only focus on the behavior when n is *large enough*
An Illustration: Insertion Sort vs Merge Sort

A slick implementation of **Insertion Sort**: n^2 steps

A poor implementation of **Merge Sort**: $100n \log_2(n)$ steps

Merge Sort still wins in the long run
Big-Oh Notation

Upper bounds. \(T(n) \in O(f(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that \(T(n) \leq c \cdot f(n) \) for all \(n \geq n_0 \)

Example: \(T(n) = 32n^2 + 17n + 1 \)

\[
\begin{align*}
 n_0 &= 1 \\
 c &= 50 \\
 T(n) &= O(n^2)
\end{align*}
\]

Theorem: If \(\lim_{n \to \infty} \frac{T(n)}{f(n)} \to a \geq 0 \) then \(T(n) \in O(f(n)) \)
A Usage Example: Selection Sort

- Maintain a sorted left half and a right unsorted one
- Loop: Swap the min of right half with its first element, and extend the left half

Round 1: 36 13 20 25 15 4 51 33 64 22 84 8

Round 2: 4 13 20 25 15 36 51 33 64 22 84 8

... 4 8 20 25 15 36 51 33 64 22 84 13

Total n rounds, and $O(n^2)$ time
Big-Omega Notation

Lower bounds. \(T(n) \in \Omega(f(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that \(T(n) \geq c \cdot f(n) \) for all \(n \geq n_0 \)

Example: \(T(n) = 32n^3 + 17n + 1 \)

\[n_0 = 1 \quad c = 32 \]

\(T(n) = \Omega(n^2) \)

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{T(n)} \to a \geq 0 \) then \(T(n) \in \Omega(f(n)) \)
A Usage Example: Comparison-based Sort

Want: Sort these coins based on their weights using a scale

Rules:
- Can only weigh two coins A and B at a time
- Can only tell whether A is heavier than B, but not how much
A Usage Example: Comparison-based Sort

Comparison-based Sort:
-Determine order based on **pairwise comparison** of elements, not actual value

<table>
<thead>
<tr>
<th>Comparison-based</th>
<th>Not comparison-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge Sort, Quick Sort</td>
<td>Counting Sort</td>
</tr>
<tr>
<td>Heap Sort, Insertion Sort</td>
<td>Radix Sort</td>
</tr>
<tr>
<td>Selection Sort, Bubble Sort</td>
<td>Bucket Sort</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Need extra assumption on the elements

Theorem: Any comparison-based sort algorithm must use \(\Omega(n \log_2(n)) \) comparisons
Big-Theta Notation

Tight bounds. $T(n) \in \Theta(f(n))$ if there exist constants $c_1, c_2 > 0$ and $n_0 \geq 0$ such that $c_1 \cdot f(n) \leq T(n) \leq c_2 \cdot f(n)$ for all $n \geq n_0$

Example: $T(n) = 32n^2 + 17n + 1$

\[
\begin{align*}
n_0 &= 1 \\
c_1 &= 32, c_2 = 50 \\
T(n) &= \Theta(n^2)
\end{align*}
\]

Theorem: If $\lim_{n \to \infty} \frac{T(n)}{f(n)} \to a > 0$ then $T(n) \in \Theta(f(n))$
A Usage Example: Selection Sort, Again

- Recall: Selection Sort takes $O(n^2)$ time for any input.
- Selection Sort takes $\Omega(n^2)$ time for finding the min elements alone.

<table>
<thead>
<tr>
<th>Round 1:</th>
<th>36</th>
<th>33</th>
<th>40</th>
<th>15</th>
<th>22</th>
<th>9</th>
<th>7</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
</table>

$\geq n$ steps

<table>
<thead>
<tr>
<th>Round 2:</th>
<th>1</th>
<th>33</th>
<th>40</th>
<th>15</th>
<th>22</th>
<th>9</th>
<th>7</th>
<th>2</th>
<th>36</th>
</tr>
</thead>
</table>

$\geq n - 1$ steps

... | 1 | 2 | 40 | 15 | 22 | 9 | 7 | 33 | 36 |

Running time $\geq n + (n - 1) + \cdots + 1 = \frac{n(n + 1)}{2} = \Omega(n^2)$

Conclusion: Selection Sort takes $\Theta(n^2)$ time.
Asymptotic Bounds for Common Functions

Polynomials:

\[f(n) = a_0 + a_1 n + a_2 n^2 + \cdots + a_d n^d \text{ with } a_d > 0 \]

\[f(n) = \Theta(n^d) \]

Rule: Pick the term of highest order

Log:

\[\log_a(n) \in \Theta\left(\log_b(n)\right) \] for any constants \(a, b > 0 \)

Write \(O(\log(n)) \) without specifying the base
Asymptotic Bounds for Common Functions

Exponential

\[a^n \text{ with } a > 1 \]

\[a^n \in \Omega(n^c) \]

Polynomial

\[n^c \text{ with } c > 0 \]

Log

\[\log(n) \]

\[\log(n) \in O(n^c) \]