
1

CNT 4504 Computer Networks March 28, 2025

Programming Assignment 1

Toal points: 50

Due Date: April 17th, 2025, 11:59 PM

In this assignment, you will create a two-player Connect 4 game that runs over the network. One
machine will act as the server, and another will act as the client. The client moves first. Once a
move is made, the server makes the next move, and so forth. The game continues until either a
player wins (four pieces in a row) or the board is full (tie).

You are provided with two skeleton C++ files:

• server_skeleton.cpp – Contains all the game logic (initializing the board, dropping
pieces, checking for wins/ties, printing the board) plus placeholders for the server-side
network logic.

• client_skeleton.cpp – Contains all the logic needed for the client’s user interaction and
placeholders for the client-side network logic.

Your task is to implement the socket programming portions so that:

• The server program:
o Creates a listening socket on a specified port.
o Accepts incoming client connections.
o After accepting a connection, handles the moves by reading/writing data to the

client.
o Closes the connection when the game ends (win/tie).
o Waits for the next client connection, repeating indefinitely.

• The client program:
o Connects to the server at the specified hostname/IP and port.
o Receives the board state and commands from the server.
o Sends the user’s moves (the column in which to drop a piece) back to the server.
o Displays the result when the game ends and then closes.

Detailed Notes on Each Required Socket Call

Below is a concise list of what functions you should use, why, and their parameters. You will
place these calls in the TODO sections of server_skeleton.cpp and client_skeleton.cpp:

• socket(domain, type, protocol)
o What it does: Creates an endpoint for network communication.
o Typical usage: int sock = socket(AF_INET, SOCK_STREAM, 0);

2

o Why: We want an IPv4 stream-based (TCP) socket.
o Parameters:

 domain = AF_INET (IPv4)
 type = SOCK_STREAM (TCP)
 protocol = 0 (auto-select for TCP)

• bind(sockfd, (struct sockaddr*)&addr, sizeof(addr)) (server side)
o What it does: Assigns a local protocol address (IP + port) to the socket.
o Why: So that the operating system knows on which port your server is listening.
o Parameters:

 sockfd is your socket file descriptor.
 (struct sockaddr*)&addr is the pointer to a sockaddr_in struct

containing sin_family = AF_INET, sin_port = <your port>,
sin_addr.s_addr = INADDR_ANY (for “any local address”).

 sizeof(addr) is the size of that structure.
• listen(sockfd, backlog) (server side)

o What it does: Tells the socket to go into listening mode for incoming connection
requests.

o Why: In a TCP server, you must first bind to a port, then instruct the OS to queue
connection requests.

o Parameters:
 sockfd is your bound socket descriptor.
 backlog is how many pending connections the OS should queue.

• accept(sockfd, (struct sockaddr*)&client_addr, &client_len) (server side)
o What it does: Blocks until a client attempts to connect, then returns a new socket

descriptor for data exchange with that client.
o Why: Accepting a connection is how you retrieve an actual data channel for a

single client.
o Parameters:

 sockfd is the “listening” socket.
 (struct sockaddr*)&client_addr is a pointer to a structure that will be

filled with the client’s address.
 &client_len is the size of that address structure.

• connect(sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr))
(client side)

o What it does: Initiates a connection to a server.
o Why: The client must connect to the server’s IP + port.
o Parameters:

 sockfd is your newly created client socket.
 (struct sockaddr*)&server_addr is the server’s IP/port.
 sizeof(server_addr) is the size of that structure.

• recv(sockfd, buffer, bufsize, flags)
o What it does: Reads data from the socket into buffer.
o Why: You use recv() to get messages (board states, commands, etc.) from the

other side.
o Parameters:

3

 sockfd is the connected socket (from accept() on the server side or
connect() on the client side).

 buffer is where you want to store the incoming bytes.
 bufsize is how many bytes max you can store in buffer.
 flags can usually be 0 for a blocking read.

• send(sockfd, buffer, bufsize, flags)
o What it does: Writes data in buffer out over the connected socket.
o Why: You use send() to send messages (board updates, commands, etc.) to the

other side.
o Parameters:

 sockfd is the connected socket.
 buffer is the data you want to send.
 bufsize is how many bytes you want to send from that buffer.
 flags can usually be 0 for a standard blocking send.

• close(sockfd)
o What it does: Closes the socket. No further data can be sent or received on this

file descriptor.
o Why: When a game finishes or you’re shutting down the server, you must close.
o Parameters:

 sockfd is the socket you want to close.

Environment and Execution Details

Important: Your programs must compile and run on one of the school servers listed below. For
example, if the server is running on linprog7.cs.fsu.edu with port 55000, then the client should
be run with the parameters:
128.186.120.191 55000

The available school servers are:

• linprog8.cs.fsu.edu
Address: 128.186.120.192

• linprog5.cs.fsu.edu
Address: 128.186.120.189

• linprog2.cs.fsu.edu
Address: 128.186.120.158

• linprog6.cs.fsu.edu
Address: 128.186.120.190

• linprog4.cs.fsu.edu
Address: 128.186.120.181

• linprog1.cs.fsu.edu
Address: 128.186.120.188

• linprog3.cs.fsu.edu
Address: 128.186.120.186

4

• linprog7.cs.fsu.edu
Address: 128.186.120.191

What to Turn In

1. Completed server.cpp:
o All networking TODO parts filled in.
o Must compile and run correctly on your system.
o Must allow multiple consecutive client connections (one game ends, wait for the

next connection).
2. Completed client.cpp:

o All networking TODO parts filled in.
o Must compile and run correctly, connecting to the server, playing a game, and

then exiting.
3. A project report:

o That includes a summary of the commands and arguments you used for each
executable, any issues and difficulties, and the description of your testing of your
program.

Compilation and Testing

Your two C++ files must pass the following compilation commands on the FSU linprog servers:

• Compile the server:
g++ -o server Server.cpp

• Compile the client:
g++ -o client Client.cpp

You must be able to play the game using two terminal windows, one running the server
executable and one running the client executable.

Grading Criteria (approximate)

• (40%) Correctness of socket calls (creation, binding, listening, acceptance, connecting,
etc.).

• (30%) Proper reading/writing of data (adhering to the simple text-based protocol).
• (10%) Proper error handling (checking return values of system calls).
• (10%) Code readability and comments.
• (10%) Ability to handle multiple games in sequence on the server side.

Note: A program that cannot compile will receive no more than 15 points. Make sure your code
compiles on one of the school servers before submission.

	CNT 4504 Computer Networks March 28, 2025
	Programming Assignment 1
	Toal points: 50
	Due Date: April 17th, 2025, 11:59 PM
	Detailed Notes on Each Required Socket Call
	Environment and Execution Details
	What to Turn In
	Compilation and Testing
	Grading Criteria (approximate)

