
Lecture 6A

TCP and Flow / Congestion Control



TCP Problems

• The problem is that the network can delay, reorder, 
and lose packets
– Time-out/retransmission could introduce duplicates of 

data, acknowledgement, connect, close packets
• Worst case scenario: consider this bank transaction 

example
– (a) setup connection
– (b) transfer $100 
– (c) close connection 
– all messages are delayed and replayed.



TCP Basic Service

• full duplex data:
– bi-directional data flow in same 

connection
– MSS: maximum segment size

• connection-oriented: 
– handshaking (exchange of control 

msgs) initialize sender & receiver 
state before data exchange

• flow controlled:
– sender will not overwhelm receiver

• point-to-point:
– one sender, one receiver 

• reliable, in-order byte steam:
– no “message boundaries”

• pipelined:
– TCP congestion and flow control sets 

window size

• send & receive buffers
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TCP segment structure

source port # dest port #

32 bits

application
data 

(variable length)

sequence number
acknowledgement number

Receive window

Urg data pnterchecksum
FSRPAUhead

len
not

used

Options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept

counting
by bytes 
of data
(not segments!)

Internet
checksum

(as in UDP)

Two extra bits CWR 
and ECE used



Retransmission Ambiguity in TCP

• A segment is retransmitted if an ack is not received for that 
segment within the retransmission timeout (RTO) time.

• Unfortunately, we cannot distinguish by the ack whether or not it 
is for the initial segment or the retransmitted one!

A B A B

Note that the 
ACK in both 
cases will be 
exactly the 
same. This is a 
fundamental 
problem with 
the TCP 
retransmission 
scheme



TCP Round Trip Time and Timeout

Q: how to set TCP retransmission 
timeout (RTO)  value?

• longer than RTT
– note: RTT will vary

• too short: premature timeout
– unnecessary retransmissions

• too long: slow reaction to segment 
loss

Q: how to estimate RTT?
• SampleRTT: measured time from 

segment transmission until ACK receipt 
(Karn’s algorithm)
– ignore retransmissions, cumulatively 

ACKed segments
– Only count single transmission ACKs

•  SampleRTT will vary, want estimated 
RTT “smoother”

– use several recent measurements, not 
just current SampleRTT



TCP Round Trip Time and Timeout (cont)

EstimatedRTT’ = (1-x)*EstimatedRTT + x*SampleRTT

Exponential weighted moving average
influence of given sample decreases exponentially fast
typical value of x: 0.1

Setting the timeout
• Need EstimatedRTT plus “safety margin”
• Timeout is doubled every time a segment is timed out!
• When no timeout,  since large variation in EstimatedRTT implies that we 

need larger safety margin, we do the following:

Timeout’ = EstimatedRTT + 4*Deviation’

Deviation’ = (1-x)*Deviation +
             x*|SampleRTT-EstimatedRTT|



TCP Timeout Example

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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Modified three-way handshake:

client closes socket:

Step 1: client end system sends TCP FIN 
control segment to server 

Step 2: server receives FIN, replies with ACK. 
Sends FIN. 

TCP Connection Management: closing a connection

client server

close

close

closed
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Step 3: client receives FIN, replies with 
ACK. 

      Enters “time wait” - will respond with 
ACK to received FINs 

Step 4: server, receives ACK.  Connection 
closed. 

• Socket programming interface
 close() vs shutdown()

closed



Why does TCP close the connection this way?

• Saying goodbye is difficult!
• Consider A sending file to B. 

When A gets the last ACK for 
data, A sends FIN.

• Can A quit at this time? No, 
because B may not know that 
A knows that B got all data (in 
case FIN is lost). So, B might 
keep sending the last data 
ACK.

A B



Closing continued

• B ACKs this FIN by sending 
ACKFIN. 

• Can B quit at this time? No, because B 
does not know whether ACKFIN got 
through or not. 

• If not, A does not know that B knows 
that A knows that B got all the data. If 
A is not sure about this, A might keep 
on sending FIN.

A B



Closing continued

• So A sends ACKACKFIN. Can A quit 
at this time? Still no, because … (too 
long, you get it).

• The point is, if you have reason to send 
the last ACK, you have just as good 
reason to send last + 1 ACK, because 
the only way to make sure that the last 
ACK is received is to receive the ACK 
for that ACK, and you have to send an 
ACK to ACK that ACK because the 
other side is waiting for it.

• Conclusion: No protocol can make 
sure of graceful close of connection. 
So have to use timeout. If we do use 
timeout, better use it earlier than later.

A B



TCP connection closed
• Now, A enters the TIMEWAIT state because it is not sure its 

ACKACKFIN will be received or not. If not, it assumes that B 
will retransmit ACKFIN. If it does not receive ACKFIN for 
TIMEWAIT, it assumes that its ACKACKFIN got through 
and quit. However, it could happen that all the ACKACKFINs 
were lost. It could also happen that All B’s retransmit of 
ACKFIN were lost. So there is a (very slight) chance that B 
did not receive the final ACKACKFIN.

• The approach adopted by TCP at least makes sure that A is 
sure that B receives FIN (A must receive ACKFIN.) 

• So TCP is still reliable for data transfer, because both sides 
know that the data has been transferred correctly in order.



TCP flow/congestion control

• Sometimes sender shouldn’t send a packet 
whenever its ready
– Flow control - Receiver not ready (e.g., buffers full)
– React to congestion

• Many unACK’ed packets, may mean long end-end delays, 
congested networks

• Network itself may provide sender with congestion indication

– Avoid congestion
• Sender transmits smoothly to avoid temporary network 

overloads



TCP Flow Control
receiver: explicitly informs 

sender of (dynamically 
changing) amount of free 
buffer space 
– RcvWindow field in 

TCP segment

sender: keeps the amount of 
transmitted, unACKed data 
less than most recently 
received RcvWindow

sender won’t overrun
receiver’s buffers by

transmitting too much,
 too fast

flow control

receiver buffering

RcvBuffer = size of TCP Receive Buffer

RcvWindow = amount of spare room in Buffer 



TCP Congestion Control – send window 

• To react to congestion, TCP has only one knob – the 
size of the send window
– Reduce or increase the size of the send window

• The size of the send window is determined by two 
things:
– The size of the receiver window the receiver indicated in 

the TCP segment
– The sender’s perception about the level of congestion in the 

network



TCP Congestion Control - approach

• Idea
– Each source determines network capacity for itself
– Uses implicit feedback, adaptive congestion window
– ACKs paced transmission (self-clocking)

• Challenge
– Determining the available capacity in the first place
– Adjusting to changes in the available capacity to achieve 

both efficiency  and fairness



Some details of congestion control

• Under TCP, congestion control is done by end systems (doing 
flow control) that attempt to determine the network capacity 
without any explicit feedback from the network. Any packet loss 
is assumed to be an indication of congestion since transmission 
errors are very rare in wired networks. A congestion window is 
maintained and adapted to the changes in the available capacity. 
This congestion window limits the number of bytes allowed in 
transit. 

• Since TCP does not have explicit feedback from the network, it 
is difficult to determine the available capacity precisely. The 
challenge faced by TCP is how to determine the available 
capacity in the first place when the connection is just established 
and also how to adapt to dynamically changing capacity.

• It should be noted that all things described here about TCP are 
done per each connection. 



What is Congestion?

• Informally: “too many sources sending too much data too 
fast for network to handle”

• Different from flow control, caused by the network not by 
the receiver

• How does the sender know whether there is congestion? 
Manifestations:
– Lost packets (buffer overflow at routers)
– Long delays (queuing in router buffers)



Causes/costs of congestion
• two senders, two 

receivers
• Bottleneck is channel 

capacity C  across 
middle links

• one router, infinite 
buffers 

• no retransmission

• large delays when 
congested

• maximum 
achievable 
throughput

unlimited shared output 
link buffers

Host A
λin : original data

Host B

λout



TCP Congestion Control

• Window-based, implicit,  end-end control
• Transmission rate limited by congestion window size, Congwin, over 

segments:

w segments, each with MSS (maximum segment size) in bytes sent in one RTT:

throughput = 
w * MSS 

RTT 
Bytes/sec

Congwin



TCP Congestion Control

• two “phases”
– slow start
– congestion avoidance

•  important variables:
– Congwin
– threshold: defines 

threshold between slow start 
phase and congestion avoidance 
phase

• “probing” for usable bandwidth: 
– ideally: transmit as fast as 

possible (Congwin as large as 
possible) without loss

– increase Congwin until loss 
(congestion)

– loss: decrease Congwin, then 
begin probing (increasing) 
again



TCP Slowstart

• exponential increase (per RTT) in 
window size (not so slow!)

• loss event: timeout (Tahoe TCP)

initialize: Congwin = 1
for (each segment ACKed)
      Congwin++
until (loss event OR
        CongWin > threshold)

Slowstart algorithm Host A

RT
T

Host B

time

Illustration of slow start: Congwin starts with 1 and after a round trip time it increases to 2, then 4 and 
so on. This exponential growth continues till there was any loss or the threshold is reached. After 
reaching threshold, we enter congestion avoidance phase. Loss may be detected either through a 
timeout or duplicate acks.



Why Slow Start?
• Objective

– Determine the available capacity in the first place

• Idea
– Begin with congestion window = 1 pkt
– Double congestion window each RTT

• Increment by 1 packet for each ack

• Exponential growth but slower than one blast
• Used when

– First starting connection
– Connection goes dead waiting for a timeout

Note: slow start is essentially used to figure the available capacity in the network when the 
connection is established. This is where slow start is used. CongWin grows exponentially 
in the slow start phase. 
Why call this slow start? This approach is considered slower than sending all the initial 
data for a connection in one blast. 



After Slowstart and During Congestion Avoidance
• A connection stays in slow start phase only till the threshold is 

reached. It then enters congestion avoidance phase where CongWin is 
increased by 1 for every round trip time. 

• Essentially, CongWin is increased exponentially during slow start 
phase and linearly during congestion avoidance phase.

• These phases are illustrated in the graph in the next slide. 
– Initially, CongWin is set to 1. Between the round trip times 0 and 3, the 

connection is slow start phase and CongWin is increase to 8. 
– At this point the threshold is reached and then on CongWin is increased by 1 

for every RTT. This CongWin reaches the value of 12.

• All this is when there were no losses. What happens when there is a 
loss? Drastic action is taken. 
– The threshold is reset to current CongWin / 2. The CongWin is set to 1.
–  we are back in slow start phase. In the graph there was a loss when CongWin 

was 12. So the threshold is set to 6, CongWin is set to1 and we are back in the 
slow start phase.



TCP Congestion Avoidance

/* slowstart is over        */ 
/* Congwin > threshold */
Until (loss event) {
  every w segments ACKed:
      Congwin++
  }
threshold = Congwin/2
Congwin = 1
perform slowstart

Congestion avoidance

The algorithm and graph show how TCP adapts its congestion window based on packet 
successes/losses. This pattern of continually increasing and decreasing CongWin continues thru 
the lifetime of a connection and looks like a saw tooth pattern.



TCP Fairness
Fairness goal: if N TCP sessions share same bottleneck link, each should 

get 1/N of link capacity

TCP connection 1

bottleneck
router

capacity R
TCP 
connection 2

The AIMD  (additive increase, multiplicative decrease) approach used by TCP is meant to ensure 
fairness and stability. Suppose a bottleneck link with capacity R is shared by two connections. 
Fairness criteria says that both connections should get roughly equal share.



Why is TCP fair?
Two competing sessions:
• Additive increase gives slope of 1, as throughput increases
• multiplicative decrease decreases throughput proportionally 
• Red line shows behavior of connection 1

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: 

additive increase

loss: decrease window by 
factor of 2

However,
TCP is not 
perfectly fair.
It biases towards
flows with small
RTT.



Graph Details

• The graph shows connection 1’s throughput on the x-axis and 
connection 2’s throughput on the y-axis. The sum of their 
throughputs has to be below R. Crossing that line means loss.  
The middle arrow shows the line of equal bandwidth share. If 
you stay on this line, each connection is getting its fair share. If 
the sum is close to R, that means we are getting the best 
throughput.

• In this illustration, connection 1 starts at an arbitrary point 
(lowest right) and linearly increases its congestion window. Once 
it senses loss, it decreases the window by 2 (moves to the left, 
up). This way with linear increases and multiplicative decreases 
the connection 1’s throughput approaches the middle line 
ensuring fairness. Similarly for connection 2 if they have the 
same rtt.



Details in Updating cwnd and ssthresh (RFC 2581) 

• Terms
– SMSS:  sender maximum segment size
– FlightSize: number of bytes sent not acked

• In slow start, per ACK (for new data)
  cwnd += SMSS

• In congestion avoidance, per (non-duplicate) ACK,
  cwnd += SMSS*SMSS/cwnd
• When timer expires,
  ssthresh = max (FlightSize / 2, 2*SMSS)



TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that 
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative 
ACK, ACKing both in-order segments 

Immediately send duplicate ACK, 
indicating seq. # of next expected byte

Immediate send ACK



Fast  Retransmit

• Time-out period  often 
relatively long:
– long delay before resending 

lost packet

• Detect lost segments via 
duplicate ACKs.
– Sender often sends many 

segments back-to-back
– If segment is lost, there will 

likely be many duplicate 
ACKs.

• If sender receives 3 
ACKs for the same 
data, it supposes that 
segment after ACKed 
data was lost:
– fast retransmit: resend 

segment before timer 
expires



 event: ACK received, with ACK field value of y 
                 if (y > SendBase) { 
                       SendBase = y
                       if (there are currently not-yet-acknowledged segments)
                             start timer 
                     } 
                 else { 
                         increment count of dup ACKs received for y
                         if (count of dup ACKs received for y = 3) {
                               resend segment with sequence number y
                          }
         

Fast retransmit algorithm:

a duplicate ACK for 
already ACKed segment

fast retransmit



Fast Recovery

• Fast retransmit means that we do not have to go into the normal 
recovery mode – no need to do a real slow start.

• Set cwnd to be a larger value.



Fast Retransmit and Fast Recovery in Details

• The fast retransmit and fast recovery algorithms are usually implemented together as follows. 
1. When the third duplicate ACK is received, set ssthresh to no more than max (FlightSize / 2, 

2*SMSS). 
2. Retransmit the lost segment and set cwnd to ssthresh plus 3*SMSS. This artificially "inflates" 

the congestion window by the number of segments (three) that have left the network and which 
the receiver has buffered. 

3. For each additional duplicate ACK received, increment cwnd by SMSS. This artificially 
inflates the congestion window in order to reflect the additional segment that has left the 
network. 

4. Transmit a segment, if allowed by the new value of cwnd and the receiver's advertised window. 
5. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the value set in 

step 1). This is termed "deflating" the window.  
• This ACK should be the acknowledgment elicited by the retransmission from step 1, one RTT after the retransmission 

(though it may arrive sooner in the presence of significant out- of-order delivery of data segments at the receiver). 
Additionally, this ACK should acknowledge all the intermediate segments sent between the lost segment and the receipt of 
the third duplicate ACK, if none of these were lost. 

• http://www.faqs.org/rfcs/rfc2581.html 

http://www.faqs.org/rfcs/rfc2581.html
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