
Lecture 6A

TCP and Flow / Congestion Control

TCP Problems

• The problem is that the network can delay, reorder,
and lose packets
– Time-out/retransmission could introduce duplicates of

data, acknowledgement, connect, close packets
• Worst case scenario: consider this bank transaction

example
– (a) setup connection
– (b) transfer $100
– (c) close connection
– all messages are delayed and replayed.

TCP Basic Service

• full duplex data:
– bi-directional data flow in same

connection
– MSS: maximum segment size

• connection-oriented:
– handshaking (exchange of control

msgs) initialize sender & receiver
state before data exchange

• flow controlled:
– sender will not overwhelm receiver

• point-to-point:
– one sender, one receiver

• reliable, in-order byte steam:
– no “message boundaries”

• pipelined:
– TCP congestion and flow control sets

window size

• send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window

Urg data pnterchecksum
FSRPAUhead

len
not

used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Two extra bits CWR
and ECE used

Retransmission Ambiguity in TCP

• A segment is retransmitted if an ack is not received for that
segment within the retransmission timeout (RTO) time.

• Unfortunately, we cannot distinguish by the ack whether or not it
is for the initial segment or the retransmitted one!

A B A B

Note that the
ACK in both
cases will be
exactly the
same. This is a
fundamental
problem with
the TCP
retransmission
scheme

TCP Round Trip Time and Timeout

Q: how to set TCP retransmission
timeout (RTO) value?

• longer than RTT
– note: RTT will vary

• too short: premature timeout
– unnecessary retransmissions

• too long: slow reaction to segment
loss

Q: how to estimate RTT?
• SampleRTT: measured time from

segment transmission until ACK receipt
(Karn’s algorithm)
– ignore retransmissions, cumulatively

ACKed segments
– Only count single transmission ACKs

• SampleRTT will vary, want estimated
RTT “smoother”

– use several recent measurements, not
just current SampleRTT

TCP Round Trip Time and Timeout (cont)

EstimatedRTT’ = (1-x)*EstimatedRTT + x*SampleRTT

Exponential weighted moving average
influence of given sample decreases exponentially fast
typical value of x: 0.1

Setting the timeout
• Need EstimatedRTT plus “safety margin”
• Timeout is doubled every time a segment is timed out!
• When no timeout, since large variation in EstimatedRTT implies that we

need larger safety margin, we do the following:

Timeout’ = EstimatedRTT + 4*Deviation’

Deviation’ = (1-x)*Deviation +
 x*|SampleRTT-EstimatedRTT|

TCP Timeout Example

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

Modified three-way handshake:

client closes socket:

Step 1: client end system sends TCP FIN
control segment to server

Step 2: server receives FIN, replies with ACK.
Sends FIN.

TCP Connection Management: closing a connection

client server

close

close

closed

ti
m

e
wa

it

Step 3: client receives FIN, replies with
ACK.

 Enters “time wait” - will respond with
ACK to received FINs

Step 4: server, receives ACK. Connection
closed.

• Socket programming interface
 close() vs shutdown()

closed

Why does TCP close the connection this way?

• Saying goodbye is difficult!
• Consider A sending file to B.

When A gets the last ACK for
data, A sends FIN.

• Can A quit at this time? No,
because B may not know that
A knows that B got all data (in
case FIN is lost). So, B might
keep sending the last data
ACK.

A B

Closing continued

• B ACKs this FIN by sending
ACKFIN.

• Can B quit at this time? No, because B
does not know whether ACKFIN got
through or not.

• If not, A does not know that B knows
that A knows that B got all the data. If
A is not sure about this, A might keep
on sending FIN.

A B

Closing continued

• So A sends ACKACKFIN. Can A quit
at this time? Still no, because … (too
long, you get it).

• The point is, if you have reason to send
the last ACK, you have just as good
reason to send last + 1 ACK, because
the only way to make sure that the last
ACK is received is to receive the ACK
for that ACK, and you have to send an
ACK to ACK that ACK because the
other side is waiting for it.

• Conclusion: No protocol can make
sure of graceful close of connection.
So have to use timeout. If we do use
timeout, better use it earlier than later.

A B

TCP connection closed
• Now, A enters the TIMEWAIT state because it is not sure its

ACKACKFIN will be received or not. If not, it assumes that B
will retransmit ACKFIN. If it does not receive ACKFIN for
TIMEWAIT, it assumes that its ACKACKFIN got through
and quit. However, it could happen that all the ACKACKFINs
were lost. It could also happen that All B’s retransmit of
ACKFIN were lost. So there is a (very slight) chance that B
did not receive the final ACKACKFIN.

• The approach adopted by TCP at least makes sure that A is
sure that B receives FIN (A must receive ACKFIN.)

• So TCP is still reliable for data transfer, because both sides
know that the data has been transferred correctly in order.

TCP flow/congestion control

• Sometimes sender shouldn’t send a packet
whenever its ready
– Flow control - Receiver not ready (e.g., buffers full)
– React to congestion

• Many unACK’ed packets, may mean long end-end delays,
congested networks

• Network itself may provide sender with congestion indication

– Avoid congestion
• Sender transmits smoothly to avoid temporary network

overloads

TCP Flow Control
receiver: explicitly informs

sender of (dynamically
changing) amount of free
buffer space
– RcvWindow field in

TCP segment

sender: keeps the amount of
transmitted, unACKed data
less than most recently
received RcvWindow

sender won’t overrun
receiver’s buffers by

transmitting too much,
 too fast

flow control

receiver buffering

RcvBuffer = size of TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

TCP Congestion Control – send window

• To react to congestion, TCP has only one knob – the
size of the send window
– Reduce or increase the size of the send window

• The size of the send window is determined by two
things:
– The size of the receiver window the receiver indicated in

the TCP segment
– The sender’s perception about the level of congestion in the

network

TCP Congestion Control - approach

• Idea
– Each source determines network capacity for itself
– Uses implicit feedback, adaptive congestion window
– ACKs paced transmission (self-clocking)

• Challenge
– Determining the available capacity in the first place
– Adjusting to changes in the available capacity to achieve

both efficiency and fairness

Some details of congestion control

• Under TCP, congestion control is done by end systems (doing
flow control) that attempt to determine the network capacity
without any explicit feedback from the network. Any packet loss
is assumed to be an indication of congestion since transmission
errors are very rare in wired networks. A congestion window is
maintained and adapted to the changes in the available capacity.
This congestion window limits the number of bytes allowed in
transit.

• Since TCP does not have explicit feedback from the network, it
is difficult to determine the available capacity precisely. The
challenge faced by TCP is how to determine the available
capacity in the first place when the connection is just established
and also how to adapt to dynamically changing capacity.

• It should be noted that all things described here about TCP are
done per each connection.

What is Congestion?

• Informally: “too many sources sending too much data too
fast for network to handle”

• Different from flow control, caused by the network not by
the receiver

• How does the sender know whether there is congestion?
Manifestations:
– Lost packets (buffer overflow at routers)
– Long delays (queuing in router buffers)

Causes/costs of congestion
• two senders, two

receivers
• Bottleneck is channel

capacity C across
middle links

• one router, infinite
buffers

• no retransmission

• large delays when
congested

• maximum
achievable
throughput

unlimited shared output
link buffers

Host A
λin : original data

Host B

λout

TCP Congestion Control

• Window-based, implicit, end-end control
• Transmission rate limited by congestion window size, Congwin, over

segments:

w segments, each with MSS (maximum segment size) in bytes sent in one RTT:

throughput =
w * MSS

RTT
Bytes/sec

Congwin

TCP Congestion Control

• two “phases”
– slow start
– congestion avoidance

• important variables:
– Congwin
– threshold: defines

threshold between slow start
phase and congestion avoidance
phase

• “probing” for usable bandwidth:
– ideally: transmit as fast as

possible (Congwin as large as
possible) without loss

– increase Congwin until loss
(congestion)

– loss: decrease Congwin, then
begin probing (increasing)
again

TCP Slowstart

• exponential increase (per RTT) in
window size (not so slow!)

• loss event: timeout (Tahoe TCP)

initialize: Congwin = 1
for (each segment ACKed)
 Congwin++
until (loss event OR
 CongWin > threshold)

Slowstart algorithm Host A

RT
T

Host B

time

Illustration of slow start: Congwin starts with 1 and after a round trip time it increases to 2, then 4 and
so on. This exponential growth continues till there was any loss or the threshold is reached. After
reaching threshold, we enter congestion avoidance phase. Loss may be detected either through a
timeout or duplicate acks.

Why Slow Start?
• Objective

– Determine the available capacity in the first place

• Idea
– Begin with congestion window = 1 pkt
– Double congestion window each RTT

• Increment by 1 packet for each ack

• Exponential growth but slower than one blast
• Used when

– First starting connection
– Connection goes dead waiting for a timeout

Note: slow start is essentially used to figure the available capacity in the network when the
connection is established. This is where slow start is used. CongWin grows exponentially
in the slow start phase.
Why call this slow start? This approach is considered slower than sending all the initial
data for a connection in one blast.

After Slowstart and During Congestion Avoidance
• A connection stays in slow start phase only till the threshold is

reached. It then enters congestion avoidance phase where CongWin is
increased by 1 for every round trip time.

• Essentially, CongWin is increased exponentially during slow start
phase and linearly during congestion avoidance phase.

• These phases are illustrated in the graph in the next slide.
– Initially, CongWin is set to 1. Between the round trip times 0 and 3, the

connection is slow start phase and CongWin is increase to 8.
– At this point the threshold is reached and then on CongWin is increased by 1

for every RTT. This CongWin reaches the value of 12.

• All this is when there were no losses. What happens when there is a
loss? Drastic action is taken.
– The threshold is reset to current CongWin / 2. The CongWin is set to 1.
– we are back in slow start phase. In the graph there was a loss when CongWin

was 12. So the threshold is set to 6, CongWin is set to1 and we are back in the
slow start phase.

TCP Congestion Avoidance

/* slowstart is over */
/* Congwin > threshold */
Until (loss event) {
 every w segments ACKed:
 Congwin++
 }
threshold = Congwin/2
Congwin = 1
perform slowstart

Congestion avoidance

The algorithm and graph show how TCP adapts its congestion window based on packet
successes/losses. This pattern of continually increasing and decreasing CongWin continues thru
the lifetime of a connection and looks like a saw tooth pattern.

TCP Fairness
Fairness goal: if N TCP sessions share same bottleneck link, each should

get 1/N of link capacity

TCP connection 1

bottleneck
router

capacity R
TCP
connection 2

The AIMD (additive increase, multiplicative decrease) approach used by TCP is meant to ensure
fairness and stability. Suppose a bottleneck link with capacity R is shared by two connections.
Fairness criteria says that both connections should get roughly equal share.

Why is TCP fair?
Two competing sessions:
• Additive increase gives slope of 1, as throughput increases
• multiplicative decrease decreases throughput proportionally
• Red line shows behavior of connection 1

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance:

additive increase

loss: decrease window by
factor of 2

However,
TCP is not
perfectly fair.
It biases towards
flows with small
RTT.

Graph Details

• The graph shows connection 1’s throughput on the x-axis and
connection 2’s throughput on the y-axis. The sum of their
throughputs has to be below R. Crossing that line means loss.
The middle arrow shows the line of equal bandwidth share. If
you stay on this line, each connection is getting its fair share. If
the sum is close to R, that means we are getting the best
throughput.

• In this illustration, connection 1 starts at an arbitrary point
(lowest right) and linearly increases its congestion window. Once
it senses loss, it decreases the window by 2 (moves to the left,
up). This way with linear increases and multiplicative decreases
the connection 1’s throughput approaches the middle line
ensuring fairness. Similarly for connection 2 if they have the
same rtt.

Details in Updating cwnd and ssthresh (RFC 2581)

• Terms
– SMSS: sender maximum segment size
– FlightSize: number of bytes sent not acked

• In slow start, per ACK (for new data)
 cwnd += SMSS

• In congestion avoidance, per (non-duplicate) ACK,
 cwnd += SMSS*SMSS/cwnd
• When timer expires,
 ssthresh = max (FlightSize / 2, 2*SMSS)

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK

Fast Retransmit

• Time-out period often
relatively long:
– long delay before resending

lost packet

• Detect lost segments via
duplicate ACKs.
– Sender often sends many

segments back-to-back
– If segment is lost, there will

likely be many duplicate
ACKs.

• If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
– fast retransmit: resend

segment before timer
expires

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }
 else {
 increment count of dup ACKs received for y
 if (count of dup ACKs received for y = 3) {
 resend segment with sequence number y
 }

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

Fast Recovery

• Fast retransmit means that we do not have to go into the normal
recovery mode – no need to do a real slow start.

• Set cwnd to be a larger value.

Fast Retransmit and Fast Recovery in Details

• The fast retransmit and fast recovery algorithms are usually implemented together as follows.
1. When the third duplicate ACK is received, set ssthresh to no more than max (FlightSize / 2,

2*SMSS).
2. Retransmit the lost segment and set cwnd to ssthresh plus 3*SMSS. This artificially "inflates"

the congestion window by the number of segments (three) that have left the network and which
the receiver has buffered.

3. For each additional duplicate ACK received, increment cwnd by SMSS. This artificially
inflates the congestion window in order to reflect the additional segment that has left the
network.

4. Transmit a segment, if allowed by the new value of cwnd and the receiver's advertised window.
5. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the value set in

step 1). This is termed "deflating" the window.
• This ACK should be the acknowledgment elicited by the retransmission from step 1, one RTT after the retransmission

(though it may arrive sooner in the presence of significant out- of-order delivery of data segments at the receiver).
Additionally, this ACK should acknowledge all the intermediate segments sent between the lost segment and the receipt of
the third duplicate ACK, if none of these were lost.

• http://www.faqs.org/rfcs/rfc2581.html

http://www.faqs.org/rfcs/rfc2581.html

	Lecture 6A
	TCP Problems
	TCP Basic Service
	TCP segment structure
	Retransmission Ambiguity in TCP
	TCP Round Trip Time and Timeout
	TCP Round Trip Time and Timeout (cont)
	TCP Timeout Example
	TCP Connection Management: closing a connection
	Why does TCP close the connection this way?
	Closing continued
	Closing continued
	TCP connection closed
	TCP flow/congestion control
	TCP Flow Control
	TCP Congestion Control – send window
	TCP Congestion Control - approach
	Some details of congestion control
	What is Congestion?
	Causes/costs of congestion
	TCP Congestion Control
	TCP Congestion Control
	TCP Slowstart
	Why Slow Start?
	After Slowstart and During Congestion Avoidance
	TCP Congestion Avoidance
	TCP Fairness
	Why is TCP fair?
	Graph Details
	Details in Updating cwnd and ssthresh (RFC 2581)
	TCP ACK generation [RFC 1122, RFC 2581]
	Fast Retransmit
	Fast retransmit algorithm:
	Fast Recovery
	Fast Retransmit and Fast Recovery in Details

