
Link Layer Protocols

Lecture Notes 3

BASIC IDEA OF ERROR CONTROL

How to make sure that each frame is eventually delivered to the
destination (reliable service)

– Reliability through acknowledgement (ACKS) and sometimes
negative acknowledgements (NACKS). Note: NACKS are usually
a problem and generally not used.

– Basic Idea
• Sender sends a packet and knows that the frame is delivered when it

gets a positive acknowledgement.
– Sender sends, resends if receives a NACK.
– Receiver sends ACK when the checksum is correct, NACK

when incorrect.
• Problem? What if the whole packet gets lost?

– Solution: timeout, resend
• Problem? What if the acknowledgement is lost.
• Problem? What if the sender has no more data to send.
Need to do more: sequence numbering, ordering of exactly how to

handle timeout and receipt of acks, etc.

Logical Format of an IP Packet

Version IHL Service Type Total length
4 bits 4 bits 8 bits 16 bits

Identification Flags Fragment offset
16 bits 3 bits 13 bits

Time to Live Protocol Header Checksum
8 bits 8 bits 16 bits

Source IP Address
32 bits

Destination IP Address
32 bits

IP Options if used plus padding to 4 bytes
Variable length multiples of 4 bytes
Encapsulated Data
Variable length, integral number of bytes

UDP Logical Format

source port destination port
16 bits 16 bits

UDP length (in bytes) checksum
16 bits 16 bits

Data, variable length, multiple bytes

TCP Logical Format

Source port Destination port
16 bits 16 bits

sequence number
32 bits

acknowledgement number
32 bits

Hlen Reserved 8-bit control window size
4 bits 4 bits 8 bits 16 bits

checksum Urgent pointer
16 bits 16 bits

Options plus pad, variable length

Data, variable length

Flow control and Congestion Control

Flow control
– To avoid swamping the slow receiver.
– Use a feedback mechanism to make sure that the

sender knows the status of the receiver.
• “send me N frames and no more until I tell you to continue”

– Based typically on the notion of a flow

Congestion Control
– Avoiding congestion in the network
– Credit and token schemes
– Access control

ARQ PROTOCOLS
• Automatic Repeat Request

– Basis for peer-to-peer protocols that provide reliability
– Used on link layers or end to end
– Generally point to point (Transmitter and Receiver)
– Used for noisy or lossy channels where errors occur

• Terminology
– Frame: basic transmission block consisting of header, user information, and trailer
– Information frames and control frames
– Acknowledgements: a reply from the peer that indicates status

• Positive ack: I got it
• Negative ack: I did not get …….

– Piggy Back acks: acks sent as part of an information frame rather than isolated
• Sequencing: numbering frames to keep them in order and keep track of which

one is received
• Timeouts: used to determine when to retransmit
• Retransmissions: resending a frame potentially lost
• Window: keeping track of a set of frames for some purpose

Simplest protocol
P0

(not very good)

• Sender
– get a packet from the upper layer
– Determine the header
– Add frame header, send the frame

via the lower layer.

• Receiver
– get a frame from the lower layer
– Analyze response based on the

header
– deliver the packet to the upper

layer.

Why is this protocol not very good?

P1: First attempt at simple stop and wait
Assumption: no lost packets

• Sender
– get a packet from the upper layer
– Add frame header, send the frame

to the physical layer.
– Wait for ACK, if correct send next

packet else resend current packet

• Receiver
– get a frame from the upper layer
– Check header. If correct, send

ACK and deliver packet to upper
layer

– If incorrect, send a NACK

What is wrong with this protocol?

Developing a better protocol

Problem: frame may get lost, ack may get lost, how long do you wait

1. send frame Return ack (or nack)
wait for ack or nack;

2. on timeouts or nacks retransmit (use one or the other)
Frame N

ack

Frame N + 1

Frame N + 1

Frame N

ack

Frame N + 1

nack

Frame N + 1

timeout

Developing a better protocol (continued)
3. Problem: transmitter behaves the same but receiver cannot distinguish between

retransmitted and new frame without some distinguishing characteristic. (Note: using
timeouts, not nacks)

Frame N

ack

Frame N + 1

ack

Frame N

ack

Frame N + 1

Frame N + 1

ack

Frame N + 2

How can the receiver distinguish between getting N+2 and getting N+1 again

timeout

Developing a better protocol (continued)

• Add a 1 bit sequence # to the frame
– Frame N: seq num 0
– Frame N+1: seq num 1
– Frame N+2: seq num 0

• This is often called the alternating bit protocol
• Uses only positive acks (no nacks)
• We need to similarly distinguish acks (ie ACK0 or ACK1) due

to delayed acks otherwise we can have problems also.
• Note: conventionally, ACK1 means I am expecting frame sn = 1

and I got frame sn = 0.

P2: stop and wait + timeout + sequence numbers

• Sender
– Send frame (sn)
– Wait for ACK or timeout

• if timeout, resend frame (sn)
• If correct ack, reset timeout

and send new frame (sn + 1)
• If incorrect ack, ignore and

wait for timeout

• Receiver
– Receive a frame
– if (sn = expected sn)

• Deliver packet.
• Send ACK (expected + 1)

– Else
• send ACK (expected)

Starting condition: sender initially sends a sequence number (sn) 0;
Receiver initially expects to receive sequence number 0

Receiver ack number indicates the next sequence number it expects to
receive

P2: stop and wait + timeout + sequence numbers
The receiver can distinguish between N + 2 and N + 1

Frame N=0

ack 1

Frame N = 1

ack 0

Frame N=0

ack 1

Frame N = 1

Frame N = 1

ack 0

Frame N = 0

timeout

Rnext = 0

Rnext = 1

Rnext = 0

Rnext = 1

Rnext = 0

Rnext = 1

Rnext = 0

Duplicate
- discardack 0

ack 1

Alternating Bit Solution
Another example of handling losses

Rnext = 0

Rnext = 1

timeout

Rnext = 1

Rnext = 0

Rnext = 0

Rnext = 1

Rnext = 1

Rnext = 0
timeout

Duplicate
- discard

Alternating Bit Solution
An example of delayed Ack

Rnext = 0

Rnext = 1

Rnext = 1

Rnext = 0

Reset timeout

Duplicate – expecting 0
discard

timeout

Incorrect ack, ignore

Simplistically analyzing correctness using system
state

(0,0) (0,1)

(1,0) (1,1)

Global state (Slast. Rnext)

Error free frame 0

Error free frame 1

Error free ACK 1 for
frame 0

Error free ACK 0 for
frame 1

Claim: correct and orderly delivery of frames. But is that enough?

P2 improved: stop and wait + timeout + sequence
numbers + fast response to incorrect ack

• Sender
– Send frame (seq)
– Wait for ACK or timeout

• if timeout, resend frame (seq)
• If correct ack, reset timeout

and send new frame (seq + 1)
• If “incorrect ack,” reset

timeout and resend frame

• Receiver
– Receive a frame
– if (seq = expected)

• Deliver packet.
• Send ACK (previous + 1)

– Else
• send ACK (previous)

If incorrect ack rather than “ignore and wait for timeout”

we immediately reset timeout rather than ignore the ack.

P2 Improved is actually flawed! Sorcerer’s Apprentice Problem

Rnext = 0

Rnext = 1

timeout

Rnext = 0

Reset timeout
Anext = 1

Anext = 1

Anext = 0

X Not expected

Rnext = 0

Wrong ack
Reset timeout

Rnext = 1

Got it
Anext = 0

X Not expected

Wrong ack
Reset timeout

X Not expected

When a wrong ack comes, the ack should be ignored, nothing should be sent and the
timeout should not be reset, otherwise will cause duplicate packets to be sent continuously

Protocol 3: Sliding window protocol (improved over P2)

– What is bad about protocol 2?
– How to improve?

• Allow pipelining, more outstanding frames.
• Maintain a window of outstanding frames at the sender (sender

window)
– All packets that are sent but not ACKed.

• Maintaining the sender window (some details):
– increase the upper bound of the window when a new packet is

given from upper layer.
– Increase the lower bound when an ACK of the lower bound

frame arrives.
• Need to decide how / if to use window at receiver

Bandwidth and delay and pipelining

• Suppose round trip time between sender and receiver is 4
seconds (delay). Suppose channel is 2000 bits per second
(bandwidth). Then, to keep the channel “full” we can send 8000
bits (delay × bandwidth) until a response arrives from the
receiver.

• Suppose packets are 1000 bits long. Then, we can send 8
packets until a response arrives.

A sliding window

Window of size 8: sent and unacknowledged (outstanding),

or possible to send frames

5 6 7 8 9 10 11 12 13 14

Last acknowledged cannot send

Sequence numbering frames

• 0, 1, 2, …, max-sequence-number
• With 3 bits have 0, 1, 2, …, 7
• Let Rwindow be size of receive window
• Let Swindow be size of send window
• Let N be the size of the sequence space

• Claim: Swindow + Rwindow ≤ N

• In go back N, the receive window is size 1 thus the max size of
the send window with 3 bits is 7.

Protocol: Go back N sliding window.
• Allow the sender to have multiple (N > 1) outstanding frames.
• Sender window = N (>1)
• Receiver window = 1.

• Sender: maintain the sender window (buffering all outstanding frames),
maintain a timeout for all outstanding frames.

• Receiver: Similar to protocol Stop and Wait (expected sequence number is
longer). When expected frame is received ACK by sending next frame
expected. When an out of order frame is received discard the frame and ACK
the last frame received.

• What happens when an transmission error occurs?
• When timer expires, resend all buffered frames GO BACK N to resend. Note:

need to maintain only a single timer

• Example: Frames 0,1, 2, 3, 4, 5, 6, 7, 8, 9 sent.
• ack 1, ack 2, ack 3, no ack 4 (acknowledging frame 3) received
• Frame 3 was lost, so we need to resend 3. But since the receiver has only a

window of 1 we resend 3 onwards, even if they were being received correctly

Sending 8 or 7 frames with 3 bit sequence space

• Suppose 8 frames were allowed in sender window.
– Sender sends 0, 1, …, 7.
– Receiver acks 0, 1, …, 7.
– All acks are lost
– Sender retransmits 0.
– Receiver is expecting new frame 0 (really 8).
– How can it distinguish from retransmitted frame 0?

• Suppose 7 frames were allowed in sender window
– Sender sends 0, 1, …, 6.
– Receiver acks 0, 1, …, 6.
– All acks are lost.
– Sender retransmits 0.
– Receiver is expecting 7 so it knows that 0 is an old frame. Similarly with

the frames though 6. When it gets 7, and is expecting 0, then the sender
window must have moved to 1, and thus the next 0 it receives will be
frame 8.

– How can we further improve the performance of the Go back N
sliding window protocol?

• When no errors, go back n can achieve the best communication
performance (fully exploit the pipeline communication).

• When an error occurs, the go back n protocol needs to resend
everything.

– How can we do better than that?

– The receiver now maintains a window of packets that it is willing
to keep, even though they might be out of order.

– Maintaining the receiver window:
– discard frames outside the window.
– When receiving the frame whose sequence number = lower

bound, ACK and advance the window (the ACK sequence
number may jump)

– Can use NAK to speedup retransmission.

Receive Window of size 8

5 6 7 0 1 2 3 4

Oldest expected

Protocol: Selective repeat sliding window.
– Allow the sender to have multiple (N > 1) outstanding frames.
– Allow the receiver to receive multiple (M>1) frames.
– Sender winder = N (>1)
– receiver winder = M (> 1).

– Sender: maintain the sender window (buffering all outstanding
frames), maintain timeout for all outstanding frames. Keeps
track separately of which Selective ACKs have been received
and moves the window as appropriate.

– Receiver: maintain the receiver window (buffer out of order
packets for in order delivery), sends selective ACKs for packets
received (including those below the window).

• What happens when a timeout occurs?
– resend only the selected packet.

– Try this example: Let one way delay equal to the time for sending
2 packets. Timeout time = round trip time + time for 2 packets. Let
the sender sends 10 packets and assume the fourth packet gets lost.

• Using go-back-N with sender window size = 8.
• Using selective repeat with sender window size and receiver window

size = 8

Synchronization –bit stuffing

• Distinctive pattern is used to identify start and end of frame. For
example
– 01111110 identifies start and end of frames
– 11111111 identifies an idle line

• Once the flag is discovered, rest is frame content until closing
flag
– Problem – Content may have flag pattern by chance
– Solution – Bit stuffing: after the opening flag, enable circuitry that inserts

a 0 after any 5 consecutive 1s in the data. Receiver does the opposite.
Not done for the closing flag.

– Note that a 0 is “stuffed” into the stream

High Level Data Link Control (HDLC)

• The prototype for many other link layer protocols
– Makes a link appear to be reliable (ARQ)
– Implements basic flow control

• Sets a limit on the number of outstanding frames without an ACK
• Receiver can indicate its buffers are full and request sender to stop sending

– Uses bit oriented framing
– Originally designed for multi-drop lines (multipoint) with a supervising

entity exchanging frames with a number of secondary entities: addressing
is thus very simple in HDLC with an 8 bit field in the basic protocol

– Supports several data transfer modes of which the most important are:
• Normal Response Mode (NMR): A primary sends commands to several

secondary entities (also called an unbalanced multipoint link)
• Asynchronous Balanced Mode (ABM): two stations act as peers with each

acting the role of primary and secondary station. Information frames are sent
in both directions for full-duplex transmission

Logical HDLC frame format

• Flag: the bit pattern 01111110
• Address: used for disambiguating entities on a multi-drop line
• Control: Indicates the type of frame and has other associated

information
• Data: the user data of variable length
• FCS: frame check sequence using a CRC code

FLAG ADDRESS CONTROL DATA FCS FLAG

8

bits
8

bits
8

bits
(variable) 16

bits
8

bits

Format of the control fields

• SSN is send sequence number, RSN is receive sequence number
• P/F is the poll / final bit
• Function bits identify further the control frames

0 SSN P/F RSN

1 bit 3 bits 1 bit 3 bits

Information (I)

1 0 FUNCTION P/F RSN

2 bits 2 bits 1 bit 3 bits

Supervisory (S)

1 1 FUNCTION P/F FUNCTION

2 bits 2 bits 1 bit 3 bits

Unnumbered (U)

The supervisory frame

• Receive Ready (RR)
– Used to acknowledge frames when no information frame is ready for

piggybacked acknowledgements

• Reject (REJ)
– Tells the other entity that an error was detected and to retransmit frames

from RSN on (Used in the GO BACK N case)

• Receive not Ready (RNR)
– Acknowledges all frames less than RSN and tells other entity not to send

any more frames because of buffers being full, etc.

• Selective Reject (SREJ)
– Retransmit the frame with sequence number RSN (Used in the Selective

Repeat ARQ case)

Unnumbered frames and P/F bit

• Unnumbered frames
– SABM: set asynchronous balanced mode
– SNRM: set normal response mode
– SABME: set asynchronous balance mode extended
– DISC: disconnect
– UA: unnumbered acknowledgement
– FRMR: frame reject

• The unnumbered frames are used in initialization, to define
parameters for the connection, and for disconnecting

• Poll / Final Bit
– When set and sent by the primary in unbalanced mode, indicates a poll of

the specific secondary and requests transmission of frames
– When set by the secondary it indicates the final frame
– In balanced mode, it is used for sending an ENQ control message asking

the other side to send back its status.

An example exchange: primary A and secondary entities B, C
format of exchange: address, control, SSN (if applicable), RSN, P/F

B, RR, 0, P

B, SREJ, 1

C, RR, 0, P

B, SREJ, 1,P

B, I, 0, 5

B, I, 0, 0
B, I, 1, 0
B, I, 2, 0, F

C, RR, 0, F

B, I, 1, 0
B, I, 3, 0
B, I, 4, 0, F

The point to point protocol (PPP)
• The Point-to-Point protocol is designed to send encapsulated packets such as

IP datagrams over serial connections. It should be viewed as a link layer
protocol. It is a descendent of HDLC. Note however that PPP does not need
to have a separate physical address such as a MAC address, since there is no
address ambiguity on a point-to-point link. However, for convenience, PPP
does support an address for each end of the link – fortunately or unfortunately
these are IP addresses.

• PPP supports multiple protocols besides TCP/IP; supports negotiation for
communication parameters of the link; supports error detection (but usually
not flow control, error correction, re-sequencing or retransmission); supports
compression, authentication, and encryption; and supports the establishment
of IP addresses.

• PPP is both a control protocol and a data transport protocol. The control part
negotiates various aspects of the connection before sending encapsulated data.

PPP frame format

•
[flag] 1 byte
[addr] 1 byte, not really used, fixed value
[ctrl] 1 byte, fixed value “unnumbered information”
[protocol] 2 bytes, default value, smaller can be negotiated.
[data] variable, depends on the protocol value
[fcs] 2 bytes, default
[flag] 1 byte, ending flag

Address usually set to 11111111 indicating that all stations should accept this frame

The control field is generally set to 00000011 indicating the analogue of an HDLC unnumbered
frame and is thus used only in the connectionless mode without acks

The protocol field indicates the protocol carried as part of the information field

Examples are Link Control Protocol for setting up, configuring,, testing and terminating the
link, Network Control Protocol, IP, etc.

LCP – Link Control Protocol

• LCP is used to establish, maintain and end a PPP session.
• An LCP packet is carried in the data portion of the PPP frame

identified by a code value:
• config request, config ack, config nak, config reject, terminate

request, terminate ack, (some others …).
• These LCP packets are used to negotiate a series of options such

as ACCM (async control character map), the type of
authentication protocol to use (CHAP - challenge handshake
authentication protocol), MRU etc.

• The format of the LCP packet in the PPP data part is:

[LCP code] 1 byte, code value of the control packet
[ID] 1 byte, used to match requests with responses
[length] 2 bytes, length in bytes of the LCP packet
[LCP data] variable

Example of establishing a session

• Parameters of the link, say home computer to POP are
established in each direction separately
– Home computer establishes from POP to Home Computer
– POP establishes in other direction

• Suppose a set of 3 options are established, including use of
authentication
– There would likely be 4 message exchanges for each simplex direction

establishment with a sequence such as: creq, cnak, creq, cack
– Each message (containing suggested values of the 3 options) would be on

the order of 27 bytes as follows:
– [flag, addr, crtl, LCP: 5] [CREQ, id, length: 4] [options: 15] [fcs, flag: 3]
– In this example, negotiation would involve 8 messages x 27 bytes to

establish both links

Authentication Phase

• If an authentication protocol, say CHAP (Challenge-Handshake
Authentication Protocol) was proposed, this is done next.

• For example, assume that we are using MD5 keyed hash. Both
Home and POP must assume a shared CHAP secret key.
Assume the POP wishes to authenticate the home computer. The
three-way handshake proceeds as follows, beginning with the
POP: challenge, response, acknowledgement (success or failure).
– POP sends a challenge string of size 60 bytes and a host name of 4 bytes
– Response includes a 16 bytes MD5 authentication hash.
– POP responds with an acknowledgement of success and a welcome

Network Control Protocol

• A network control protocol is next used to set up TCP/IP options
• The structure of negotiating this is similar to LCP but the options

are different
– For example, suppose we use the network control protocol IPCP (internet

protocol control protocol)
– Options could additionally be to use Van Jacobson compression and the

Home Computer might request an IP address from the POP.

• Once all these options are established, PPP can begin carrying
IP packets in its data portion

• Excluding negotiations, what would the overhead be for
transporting IP packets?

	Link Layer Protocols
	Slide Number 2
	Logical Format of an IP Packet
	UDP Logical Format
	TCP Logical Format
	Slide Number 6
	ARQ PROTOCOLS
	Simplest protocol �P0�(not very good)
	P1: First attempt at simple stop and wait �Assumption: no lost packets
	Developing a better protocol
	Developing a better protocol (continued)
	Developing a better protocol (continued)
	�P2: stop and wait + timeout + sequence numbers��
	P2: stop and wait + timeout + sequence numbers
	Alternating Bit Solution�Another example of handling losses
	Alternating Bit Solution�An example of delayed Ack
	Simplistically analyzing correctness using system state
	�P2 improved: stop and wait + timeout + sequence numbers + fast response to incorrect ack��
	P2 Improved is actually flawed! Sorcerer’s Apprentice Problem�
	Slide Number 20
	Bandwidth and delay and pipelining
	A sliding window
	Sequence numbering frames
	Slide Number 24
	Sending 8 or 7 frames with 3 bit sequence space
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Synchronization –bit stuffing
	High Level Data Link Control (HDLC)
	Logical HDLC frame format
	Format of the control fields
	The supervisory frame
	Unnumbered frames and P/F bit
	An example exchange: primary A and secondary entities B, C�format of exchange: address, control, SSN (if applicable), RSN, P/F
	The point to point protocol (PPP)
	PPP frame format
	LCP – Link Control Protocol
	Example of establishing a session
	Authentication Phase
	Network Control Protocol

