
ERROR CORRECTION AND DETECTION

Lecture Notes 2B

Error control: detection and correction

• Some sources of errors
– Electromagnetic distortion of signal: “noise” on the line
– Error in sampling pulse relative to neighbor pulse: “inter-symbol

interference”
– Energy coupling due to nearby links: “cross-talk”
– Improperly terminated circuits and receiver transmitter problems:

“echoes”

• Typical bit error rates
– Optical fiber : less than 1 in 109

– Wireless: 10-3

– Copper such as telephone lines: between 10-6 and 10-5

• Issues in determining errors
– Characterization of typical error occurrence: bit versus burst errors
– Probabilistic assumptions: independence of certain types of errors (for

example bit errors)

Types and use of error control
• Error control algorithms were initially used to ensure the

reliability of a “link.” The idea was to ensure that bits on a line
were transmitted correctly

• Error control is also used end-to-end such as in TCP and also in
specialized cases such as long distance satellite links, etc.

• Two basic approaches are:
– Transmitter adds bits to aid in error detection; the receiver determines if

an error was found, and requests a retransmission. This is termed ARQ
or automatic transmission request

– Transmitter adds bits to aid in error correction; the receiver attempts to
correct the error. This is termed FEC or forward error correction. Of
course, to correct an error you first need to detect it.

• Where are ARQ and FEC typically used
– ARQ is used in data transfer over links and end-to-end over moderate

distances
– FEC is used in situations where retransmission is difficult or infeasible:

deep space communication, audio and video, CDs, etc. FEC results in
greater overhead.

Parity bit: a basic scheme

Add a bit to form a code word. The bit added should make, for example, the
resulting sum of the bits modulo 2 even.

Thus, for even parity, ϕeven = Σi=1,8 di mod 2 = 0
Note that we are doing arithmetic modulo 2. That is:

0 ⊕ 0 = 0
0 ⊕ 1 = 1
1 ⊕ 0 = 1
1 ⊕ 1 = 0

The operator is the same as exclusive or. Note that multiplication can be
similarly defined.

The one bit parity check code can detect a single error or any odd number of
errors in the bits. It cannot detect an even number of errors.

Note that odd parity has the obvious definition.

d1 d2 d3 d4 d5 d6 d7

 1 0 1 1 0 0 1 0

Parity bit

the probability of not detecting error
Suppose the probability of an error during transmission of a bit is p,

where the errors are independent of each other and p is small.
We thus have the random bit error model. Suppose n bits are
transmitted.

Then, the probability of k errors in n bits is simply:
P(k errors) = (n;k) pk (1 – p)n-k the binomial distribution
(n; k) = (n choose k) = n!/ (k!(n-k)!)
For p small the following is a good approximation:(1-p)j ≈ (1-jp)
The probability of not detecting an error is the same as that of

having an even number of errors. If p is small the first term
dominates.

This is P(2 errors or 4 errors or …)
≈ (n;2) p2 (1 – p)n-2 ≈ (n;2) p2 (1 – (n-2)p) ≈ (n;2) p2

For n = 8, p = 10-6, (8;2) × 10-12 = 28 × 10-12.
Probability of an undetected error is 2.8 × 10-11.

Two dimensional parity checks

d1,1 . . . d1,n ϕeven[row 1]

d2,1 . . . d2,n ϕeven[row 2]

dm,1 . . . dm,n ϕeven[row m]

ϕeven[col 1] . . . ϕeven[col n] ϕeven

Can detect up to three errors and correct single error.

Internet checksum
• Assume header consists of n 16-bit words. Add these words up

modulo 216-1. That is:
• S = d1 + d2 + … + dn mod 216-1
• -S is the checksum.
• Note that the resulting codeword has the following feature:

it is S + (-S) = 0 mod 216-1.
• Note that 1’s complement arithmetic is assumed and thus there

are two representations of 0, all 1’s and all 0’s.
• Example with 4-bit code words instead of 16 bit.
 1011 + 0001 + 0101 + 1001 = 00011010 (11 + 1 + 5 + 9 = 26)
 26 mod 15 = 11 (right shift 00011010 4 bits to get 0001, add it to

original right 4 bits to get 00001011, (until upper 4 bits are
0000), and consider only low order 4 bits = 1011. Complement
this to get 0100 as the checkbits.
When adding headers + checkbits, result should be 1111.

Hamming distance

• How to design codes that have error correction/detection
capability?

• Hamming codes are a family of linear error correcting codes.
• Hamming distance dH(i, j) between two code words i, j:

– the number of bit positions in which two code words differ.
– Example: 010101 and 111000? Hamming distance = 4
– Note that not all 6 bit values can be code words since code words are a

subset of all possible 6 bit words. We sometimes call these legitimate or
legal code words. All words are also sometimes termed received words.

• Hamming distance dH of a complete code: the minimum Hamming
distance of any two code words in the code. dH = mini,j dH(i, j)

– E.g 010101, 111000, 000111, 111111
– Hamming distance dH = ?

• Suppose we assume C or fewer errors are possible and the Hamming
distance between legitimate code words is 2C + 1.

• Then, we can correct any error under the above assumption!

Code word space

Error detection and correction with block
codes

• Error detection
– dH = 2, then can detect any 1 bit error
– dH = d + 1, then can detect any d or fewer bits errors

• Error correction
– dH = 2 C + 1, then can correct C or fewer bit errors.

• Weight of a code word: distance from the all 0’s code word.
Equivalent to the number of 1’s in a non zero code word. For
example 10110 has weight 3.

• (n,k) block codes, also called Hamming codes
– k bits of data, (n – k) bits of check bits
– Check bits are a linear sum mod 2 of the data bits, with binary coefficients

Example of a (7,4) block code
• Let m4, m5, m6, m7, be the data bits, and c1, c2, c3, be the check

bits.
• Let the equations be:

c1 ⊕ m4 ⊕ m6 ⊕ m7 = 0
c2 ⊕ m4 ⊕ m5 ⊕ m6 = 0
c3 ⊕ m5 ⊕ m6 ⊕ m7 = 0

• In this example, it turns out that the minimum weight of any
code word is 3 and the minimum distance between two
legitimate code words is also 3. Thus single errors can be
corrected, and double errors can be detected.

• It can be shown that the minimum weight of a block code is also
the minimum distance between any two code words.

• Block codes have the property that the sum of two code words is
also a code word.

Matrices associated with (7,4) block code
Hamming codes naturally have two matrices associated with the
codes termed the generator matrix G and the parity check matrix H.
The check matrix H.
 The check matrix H can be derived from the equation of the
block code. This 3 × 7 matrix is as follows:

 H3,7 =
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

If we let [c1 c2 c3 m4 m5 m6 m7] be a code word v as a column vector, then
H v = 0 = [0 0 0]T defines the set of code words.
The next slide shows the full set of 16 code words. Remember that the data
that we are actually sending is m4 m5 m6 m7, hence 16 code words. If the code
word v is sent but the received vector is r, we have the following:
 0 errors: H r = 0
 1 errors: H r = s ≠ 0 and the error is detected and corrected.
 2 errors: H r ≠ 0 and the error is detected, but not correctly corrected.

c1 c2 c3 m4 m5 m6 m7

0 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 1 0 0 1 0
0 1 0 0 0 1 1
0 1 1 0 1 0 0
1 1 0 0 1 0 1
1 0 0 0 1 1 0
0 0 1 0 1 1 1
1 1 0 1 0 0 0
0 1 1 1 0 0 1
0 0 1 1 0 1 0
1 0 0 1 0 1 1
1 0 1 1 1 0 0
0 0 0 1 1 0 1
0 1 0 1 1 1 0

1 1 1 1 1 1 1

Matrices associated with (7,4) block code
(continued)

The generator matrix G.
 The generator matrix is a matrix that given a message
m = [m4 m5 m6 m7] will generate the code word v by m G = v,
where here G (or G4,7) is a 4 × 7 matrix. It can easily be derived
from the check matrix H if H is viewed as follows:

 H3,7 =
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 = [I3,3 | A]

In this example A is a 3 × 4 matrix and I is the identity matrix.

The syndrome s
The syndrome s (a column vector) is defined as s = H r, where r is
the received vector. Assuming 1 error, if you compare the
syndrome with the columns of H and the jth column is the match,
then the error is in the jth column of r. Try to prove this. Hint: write
r = v + e and determine the effect of e.

Polynomial codes

• Also called CRC codes (cyclic redundancy check)
• Binary codes that represent a word as a polynomial over GF(2)
[v4 v3 v2 v1 v0] v4 x4 + v3 x3 + v2 x2 + v1 x1 + v0
[1 1 1 0 1] x4 + x3 + x2 + 1

• Note that addition, multiplication, etc. is mod 2.
• Polynomials over GF(2) can be multiplied, added, subtracted,

divided etc., just like ordinary polynomials.

• Addition example:
 x4 + + x2 + 1
 x4 + x3 + + 1
 x3 + x2

• Multiplication example
 (x2 + 1) * (x3 + x2) = x5 + x4 + x3 + x2

• Division example
 x3 + x
 x2 + 1 x5 + x + 1
 x5 + x3

 x3 + x + 1
 x3 + x
 1

• Note that the number of bits of the remainder will be the order of
the polynomial (that is 2 in the example, ie remainder is 0x + 1.

Quotient Q(x)

Remainder R(x)

The generator polynomial

• Define the generator polynomial G(x) of degree r to be a
polynomial of degree r. We will assume it has lowest term 1.

 That is: xr + . . . + 1.
 For example, x16 + x15 + x2 + 1, r = 16

• Note that the remainder of any polynomial divided by G(x)
would be of order ≤ 15, and can be defined by 16 bits.

• Let M(x) be the message and suppose it is k bits long. Then
M(x) = mk-1 xk-1 + . . . + m1 x + m0

Encoding message and adding the CRC check
bits

1. M(x) * xr this gives r 0’s in the lower order positions.

2. Divide this result by G(x)

(M(x) * xr) / G(x) = Q(x) + R(x) / G(x)

ie. M(x) * xr = Q(x) G(x) + R(x)

3. Add the remainder to M(x) * xr. That is:

T(x) = M(x) xr + R(x) Note there are r low order parity bits

4. Note that G(x) | T(x) G(x) divides T(x)
5. When generator polynomial is order 16, we have 16 bits of

CRC that is added to the message.

Checking Received Message for Correctness

• Let the message that is received be A(x)
• Compute A(x) / G(x) and determine the remainder.
• If remainder is 0, we say there are no errors and received

message is correct.
• If remainder is not 0, we detect error.

Error detection capabilities of polynomial
codes

• We transmitted T(x). Suppose instead that we receive
 T(x) ⊕ E(x)

 Note that each 1 bit in E(x) represents a transmission error or an
inversion in the corresponding transmitted code word bit.

Now, ℜ[(T(x) ⊕ E(x)) / G(x)] = ℜ[E(x) / G(x)]
 since G(x) | T(x) (ℜ is remainder)
• Therefore, if G(x) does not divide E(x) we detect an error.

• Detecting single bit errors
 E(x) = xi for some i. Now, assume that our generator polynomial

G(x) has more than 1 term. Eg., x3 + x + 1.
 Note that G(x) cannot divide E(x) with a 0 remainder.

Eg., x3 + x + 1 x5 does not give 0 remainder

Detecting double bit errors
E(x) = xj + xi j > i

 = xi (xj-i + 1)
 We must check that G(x) does not divide xj-i + 1
 A polynomial is irreducible if it cannot be factored.
 x4 + x2 + x + 1 is not irreducible. Why? Note that x + 1 is a

factor. Note that x2 + x + 1 is irreducible.
 An irreducible polynomial is primitive if it “generates” a finite

field in a specific way. We will not consider this further as it is
somewhat complicated to explain this notion.

 If p(x) is primitive and order N, it will not divide (xm + 1)
 for m < 2N -1. For example, p(x) = x15 + x + 1 is primitive and

thus does not divide xm + 1 for m < 215 – 1. Therefore,
 if j-i < 215 – 1, then no double bit error of this “length” is

possible, if G(x) = (x + 1) (x15 + x + 1).

Detecting an odd number of errors

Suppose E(x) has an odd number of terms
Claim: E(x) does not have x + 1 as a factor

 Suppose it did. Then, E(x) = (x + 1) Q(x)
 therefore E(1) = (1 + 1) Q(1) = 0 (substituting 1 for x)
 This is a contradiction since E(1) for an odd number of terms

cannot be 0 but must be 1.

 Therefore, if we make x + 1 a factor of G(x), then G(x) does not
divide E(x) for an odd number of terms.

Burst errors

• Polynomial code with r check bits will detect burst errors ≤ r.

 Burst length = k, can be represented by
 xi [xk-1 + vk-2xk-2 + … + v1x + 1] where i is location of burst

 Note: xi is not a factor of G(x) and if xk-1 + vk-2xk-2 + … + v1x + 1
 is less in degree than G(x), then remainder cannot be 0.

 For example xi [xr-1 + xr-3 + … + x + 1] will be detected.

 Note: a large fraction of bursts ≥ r are also detected.

Some standard generator polynomials

• CRC-12: x12 + x11 + x3 + x2 + x + 1 Bisync
• CRC-16: x16 + x15 + x2 + x + 1 Bisync
• CCITT-16 x16 + x12 + x5 + 1 HDLC, XMODEM
• CCITT-32 x32 + x26 + x23 + x22 + x16 + x12 + x11
 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 IEEE 802

Implementation using shift registers
division by x3 + x + 1

because g0 = 1 because g1 = 1 because g2= 0 because g3 = 1

Suppose you want to divide < a4 , a3 , a2 , a1 , a0 > then shift the input in
over 5 clock cycles. The remainder appears in <S2, S1, S0>

Clock S0 S1 S2

 0 0 0 0

 3 a2 a3 a4

 4 a1 + a4 a2 + a4 a3

 5 a0 + a3 a1 + a4 + a3 a2 + a4

Parallel transfer of information (bits)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Parallel Wires

8 bits, 16 bits, etc.

Serial transfer (bit serial)

SOURCE DEST

Transfer, for example, an octet a single bit at a time using a fixed time
interval for each bit. A clock signal helps determine when to sample the
bit.

Why use a serial line? As distances increase, multiple wire costs increase,
complexity of line drivers and receivers increase, etc.

Thus, to send a character, first serialize the bits, send over the line, and
then receive the bits, and convert back to character.

Control line / info

Data line

0 0 0 0 1 1 0 0 1 0 0 0 0

Communication Modes

• Simplex: Data is transmitted in one direction only

• Half duplex: alternating exchange of data between two devices.
Need to switch between sender and receiver mode

• Full duplex: data can be exchanged in both directions
simultaneously

Determining a received bit pattern

Determine
• Start of each bit (or center of bit). Bit or clock synchronization

• Start and end of the unit, a character, a byte, etc. Byte synchronization

• Start and end of message unit or frame. Frame synchronization

Asynchronous transmission
• Receiver and transmitter clocks are not synchronized. They are

independent. Receiver resynchronizes at the start of each unit,
say a character.

• To determine beginning of character, have a “start” bit
• To be sure about end of character, have a stop bit.
• Know how many bits are in a character, say 8.
• Clock frequency for sampling is usually 16 times bit rate.

Receiver attempts to sample in the center of the bit.
• Start bit is usually 1 bit long and stop bits are often 1, 1.5, or 2

bits

(idle) start 1 0 0 1 1 1 1 0 stop (idle)

Synchronous transmission

• Sender and receiver clocks are synchronized (often through the
sending of a clock signal on a control line)

• Start and stop bits are not used. Characters can be sent one after
the other without the overhead of start and stop bits.

• Framing is still important.

	ERROR CORRECTION AND DETECTION
	Error control: detection and correction
	Types and use of error control
	Parity bit: a basic scheme
	the probability of not detecting error
	Two dimensional parity checks
	Internet checksum
	Hamming distance
	Code word space
	Error detection and correction with block codes
	Example of a (7,4) block code
	Matrices associated with (7,4) block code
	Slide Number 13
	Matrices associated with (7,4) block code (continued)
	Polynomial codes
	Slide Number 16
	The generator polynomial
	Encoding message and adding the CRC check bits
	Checking Received Message for Correctness
	Error detection capabilities of polynomial codes
	Detecting double bit errors
	Detecting an odd number of errors
	Burst errors
	Some standard generator polynomials
	Implementation using shift registers�division by x3 + x + 1
	Parallel transfer of information (bits)
	Serial transfer (bit serial)
	Communication Modes
	Determining a received bit pattern
	Asynchronous transmission
	Synchronous transmission

