Problem Set 3

Due February 20, 2024

1. (10 pts) For the program \mathscr{P} below, write out a computation of \mathscr{P} beginning with the snapshot $(1, \sigma)$, where σ consists of the equations $X=2, Y=0, Z=0$. What is $\Psi^{(1)}(2)$ for this program?
```
[A] If \(X \neq 0\) GOTO B
\(\mathrm{Z} \leftarrow \mathrm{Z}+1\)
If \(\mathrm{Z} \neq 0\) GOTO E
[B] \(\mathrm{X} \leftarrow \mathrm{X}-1\)
\(Y \leftarrow Y+1\)
\(\mathrm{Z} \leftarrow \mathrm{Z}+1\)
If \(Z \neq 0\) GOTO A
```

2. (10 pts) Let $\mathrm{P}(\mathrm{x})$ be a computable predicate. Show that the function f defined by:

$$
f\left(x_{1}, x_{2}\right)=\left\{x_{1}+x_{2} \text { if } P\left(x_{1}+x_{2}\right)\right.
$$

$\uparrow \quad$ otherwise $\}$
is partially computable. (Note, you need to write a program in \mathscr{S} that implements this function).
3. (10) Let π be a computable permutation (i.e. one-one onto function) of N and let π^{-1} be the inverse of π, i.e., $\pi^{-1}(y)=x$ if and only if $\pi(x)=y$.
Show that π^{-1} is computable.
4. (5 pts) Let $\pi(x)$ be the number of primes $\leq x$. Show that $\pi(x)$ is primitive recursive. (You can use other functions that have been shown to be primitive recursive in the text.)
5. (10 pts) Let $R(x, t)$ be a primitive recursive predicate. Let:

$$
g(x, y)=\max _{t \leq y} R(x, t)
$$

that is, $g(x, y)$ is the largest value of t less than or equal to y for which $R(x, t)$ is TRUE; if there is none then $g(x, y)=0$. Prove that $g(x, y)$ is primitive recursive.
6. (5 pts) Let us call a program P a straight-line program if it contains no (labeled or unlabeled) instructions of the form: IF V $\neq 0$ GOTO L. Show by induction on the length of programs, that if the length of straight-line program P is k, then $\Psi^{1}(x) \leq k$ for all x.
7. (10 pts) Give a detailed argument that that the function x^{y} is primitive recursive. You can use the fact that $x+y$ and $x y$ (x times y) were shown to be primitive recursive.
8. (10 pts) Let \mathscr{C} be a PRC class and le g_{1} and g_{2} belong to \mathscr{C}. Show that if:

$$
\begin{aligned}
& h_{1}(x, y, z)=g_{1}(z, y, x) \\
& h_{2}(x)=g_{2}(x, x, x)
\end{aligned}
$$

then h_{1} and h_{2} also belong to \mathscr{C}.

