Problem Set 3

Due February 20, 2024

1. (10 pts) For the program \mathscr{P} below, write out a computation of \mathscr{P} beginning with the snapshot (1, σ), where σ consists of the equations X = 2, Y = 0, Z = 0. What is $\Psi^{(1)}(2)$ for this program?

[A] If $X \neq 0$ GOTO B $Z \leftarrow Z + 1$ If $Z \neq 0$ GOTO E [B] $X \leftarrow X - 1$ $Y \leftarrow Y + 1$ $Z \leftarrow Z + 1$ If $Z \neq 0$ GOTO A

- 2. (10 pts) Let P(x) be a computable predicate. Show that the function *f* defined by:
 f (x₁, x₂) = { x₁ + x₂ if P (x₁ + x₂)
 ↑ otherwise }
 is partially computable. (Note, you need to write a program in S that implements this function).
- 3. (10) Let π be a computable permutation (i.e. one-one onto function) of N and let π^{-1} be the inverse of π , i.e., $\pi^{-1}(y) = x$ if and only if $\pi(x) = y$. Show that π^{-1} is computable.
- 4. (5 pts) Let $\pi(x)$ be the number of primes $\leq x$. Show that $\pi(x)$ is primitive recursive. (You can use other functions that have been shown to be primitive recursive in the text.)
- 5. (10 pts) Let R(x, t) be a primitive recursive predicate. Let:

 $g(x, y) = \max_{t \leq y} R(x, t)$

that is, g(x, y) is the largest value of *t* less than or equal to *y* for which R(x, t) is TRUE; if there is none then g(x, y) = 0. Prove that g(x, y) is primitive recursive.

- 6. (5 pts) Let us call a program P a straight-line program if it contains no (labeled or unlabeled) instructions of the form: IF V \neq 0 GOTO L. Show by induction on the length of programs, that if the length of straight-line program \tilde{P} is k, then $\Psi^{l}(x) \leq k$ for all *x*.
- 7. (10 pts) Give a detailed argument that the function x^{y} is primitive recursive. You can use the fact that x + y and xy (x times y) were shown to be primitive recursive.
- 8. (10 pts) Let \mathscr{C} be a PRC class and le g_1 and g_2 belong to \mathscr{C} . Show that if: $h_1(x, y, z) = g_1(z, y, x)$ $h_2(x) = g_2(x, x, x)$

then h_1 and h_2 also belong to \mathscr{C} .