Lecture 4 Nondeterministic Finite Accepters

COT 4420 Theory of Computation

Section 2.2, 2.3

Nondeterminism

• A nondeterministic finite automaton can go to several states at once.

• Transitions from one state on an input symbol can be to a SET of states.

Nondeterministic Finite Accepter

- The main difference with DFA is that
- From one state with an input symbol there might be more than one choice in the transition function.

 From a state there might be no transition with an input symbol (The transition function is not total). In that case the automaton halts.

Second Choice

Accepting a String

• An NFA accepts a string

when there is a computation of the NFA that accepts the string

All the input is consumed and the automaton is in a final state

11 is accepted by the NFA:

Rejection example

Rejection example First choice

Rejection example Second choice

An NFA rejects a string:

If there is no computation of the NFA that accepts the string.

Either:

All the input is consumed and NFA is in a non accepting state

OR

• The input cannot be consumed

All possible computations lead to rejection

Costas Busch - LSU

Nondeterministic Finite Accepter (NFA)

 We have one start state. Starting from start state, an input is accepted if any sequence of choices leads to some final state. 1010 ?

110?

Nondeterministic Finite Accepter (NFA)

• A nondeterministic finite accepter is defined by 5-tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

where Q, Σ , q₀, and F are defined as DFA, but

$$\delta: \mathbb{Q} \times \Sigma \rightarrow 2^{\mathbb{Q}}$$

Extended Transition Function

 δ^* is defined recursively by:

$$\delta^*(q, \lambda) = \{q\}$$

Let S be $\delta^*(q, w)$ then:
$$\delta^*(q, wa) = \bigcup_{p \in S} \delta(p, a)$$

Language of an NFA

• The language of an nfa M is defined as the set of all strings accepted by M.

 $\mathsf{L}(\mathsf{M}) = \{ \mathsf{w} \in \Sigma^* : \delta^*(\mathsf{q}_0, \mathsf{w}) \cap \mathsf{F} \neq \emptyset \}$

 It is easier to express languages with NFAs than with DFAs

$$L(M_1) = L(M_2) = \{0\}$$

NFA's and DFA's

- Is NFA more powerful than DFA?
- We can show that the classes of DFA's and NFA's are equally powerful.

What does equivalence mean?

 Two finite accepters M₁ and M₂ are said to be equivalent if they both accept the same language,

$$L(M_1) = L(M_2)$$

Equivalence of NFA's and DFA's

The set of languages — The set of languages accepted by NFAs — accepted by DFAs OR Regular languages

- Step1) The set of languages accepted by DFAs is a subset of the set of languages accepted by NFAs.
- This is trivially true since every DFA is an NFA.

Equivalence of NFA's and DFA's

Step2) The set of languages accepted by NFAs is a subset of the set of languages accepted by DFAs.

For any NFA there is a DFA that accepts the same language.

Equivalence of DFA's and NFA's

- After an NFA reads a string w, we know that it must be in one state of a possible set of states, e.g. {q_i, q_i, ..., q_k}
- In the equivalent DFA after reading w we will be in a state labeled {q_i, q_j, ..., q_k}
 - The name of the states in our DFA will be sets of states!

Equivalence of DFA's and NFA's

 If our NFA has |Q| states, the equivalent DFA will have 2^{|Q|} states.

Theorem: Let L be the language accepted by NFA $M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$. Then there exists a DFA $M_D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ such that $L = L(M_D)$.

NFA to DFA

- 1. Our NFA has a start symbol q_0 . The start state of DFA will be $\{q_0\}$
- 2. Repeat these steps until no more edges are missing:
 - For every DFA state {q_i, q_j, ... q_k} that has no outgoing edge for some $a \in \Sigma$
 - $\delta_{\mathsf{N}}(\mathsf{q}_{\mathsf{i}}, a) \cup \delta_{\mathsf{N}}(\mathsf{q}_{\mathsf{j}}, a) \dots \cup \delta_{\mathsf{N}}(\mathsf{q}_{\mathsf{k}}, a) = \{\mathsf{q}_{\mathsf{l}}, \dots \, \mathsf{q}_{\mathsf{n}}\}$
 - Create a vertex labeled $\{q_1, ..., q_n\}$ if it does not exist
 - Add an edge from $\{q_i, q_j, ..., q_k\}$ to $\{q_i, ..., q_n\}$ with label a

NFA to DFA

3. Every state of DFA whose label contains a final state from NFA is identified as a final state.

NFA to DFA Example

NFA:

Proof of Equivalence

Theorem: Let M_N be an NFA and M_D be an equivalent DFA obtained by the procedure. Then $L(M_N) = L(M_D)$

We need to show that if $w \in L(M_N)$

$$w \in L(M_D)$$

Proof of Equivalence by Induction

• Show by induction on |w| that $\delta_N(q_0, w) = \delta_D(\{q_0\}, w)$

Basis:
$$|w|=0 \Rightarrow w = \lambda$$

 $\delta_N(q_0, \lambda) = \delta_D(\{q_0\}, \lambda) = \{q_0\}$

Proof of Equivalence by Induction

- Inductive step: Assume it is true for strings shorter than w. let w = va. So the induction hypothesis is true for v (v is shorter than w).
- Let $\delta_N(q_0, v) = \delta_D(\{q_0\}, v) = S$.
- The extended rule for NFA:
- $\delta_{N}(q_{0}, w) = \delta_{N}(q_{0}, va) = T = the union over all states p in S of \delta_{N}(p, a)$
- By the procedure we discussed we also know that $\delta_D(\{q_0\}, va)$ is the same set T.
- Therefore $\delta_N(q_0, w) = \delta_D(\{q_0\}, w) = T$.

- We can allow state to state transitions on ε input.
- It does not consume the input string.
- Is ϵ -NFA more powerful than NFA ?

$0\,1\,0\,1$

0101

0101

0101

0101

- The ε-closure of a state q of the NFA will be denoted by E(q).
- E(q) is the set of states that can be reached from q following ε-moves, including q itself.
- The ε-closure of a set of states R = union of the ε-closure of each state.

 $E(R) = \{ q \mid q \text{ can be reached from } R \text{ by traveling}$ along zero or more ε transitions $\}$

ε-closure

E(R) = {q | q can be reached from R by traveling along zero or more ε transitions}

 $E(q_0) = \{q_0\}$ $E(q_4) = \{q_1, q_2, q_3, q_4\}$ q1 **q**3 q2 q 0 0 q4 q5

Extended Transition Function

Is intended to tell us where we can get from a given state following a path labeled by a certain string w.

```
δ is defined by:

δ(q, λ) = E(q)

Let S be δ(q, w) then:

\hat{\delta}(q, wa) = \bigcup_{p \in S} E(\delta(p, a))
```

Example

$$\hat{\delta}(q_0, \lambda) = E(q_0) = \{q_0\}$$

$$\hat{\delta}(q_0, 0) = E(\delta(q_0, 0)) = E(\{q_4\}) = \{q_1, q_2, q_3, q_4\}$$

$$\hat{\delta}(q_0, 01) = E(\{q_2, q_3\}) = \{q_2, q_3\}$$

Equivalence of NFA and ε-NFA

Every NFA is an ε-NFA, it just does not have a ε transition.

• Theorem: If a language L is accepted by an ϵ -NFA M_E then L is accepted by an NFA M without ϵ moves.

ε-NFA to NFA

• Given $M_E = (Q, \Sigma, \delta_E, q_0, F)$ construct $M = (Q, \Sigma, \delta', q_0, F')$

Where F' = the set of states q such that E(q) contains a state of F.

and compute $\delta'(q, a)$ as follows:

1. Let S = E(q)
2.
$$\delta'(q,a) = \bigcup_{p \in S} \delta_E(p,a)$$

*Note that $\delta_{E}(p,a)$ in ε-NFA is actually $E(\delta(p,a))$

$$\begin{aligned} \delta'(q_0, 0) &= S = E(q_0) = \{q_0\} \\ \delta'(q_0, 0) &= \delta_E(q_0, 0) = E(\delta(q_0, 0)) = E(q_4) = \{q_4, q_1, q_2, q_3\} \\ \delta'(q_0, 1) &= \delta_E(q_0, 1) = E(\delta(q_0, 1)) = E(q_1) = \{q_1, q_3\} \end{aligned}$$

		E()		Σ				E()
q_0	:	{q ₀ }	,	0	→	$\{q_4\}$:	${q_1,q_2,q_3,q_4}$
q_0	:	{q ₀ }	,	1	→	$\{q_1\}$:	{q ₁ ,q ₃ }
q_1	:	{q ₁ ,q ₃ }	,	0	→	Ø	:	Ø
q_1	:	{q ₁ ,q ₃ }	,	1	→	$\{q_2\}$:	${q_2}$
q ₂	:	{q ₂ }	,	0	→	Ø	:	Ø
q ₂	:	{q ₂ }	,	1	→	{q ₃ }	:	{q ₃ }
q ₃	:	{q ₃ }	,	0	→	Ø	:	Ø
q ₃	•	{q ₃ }	,	1	→	Ø	:	Ø
q_4	:	${q_4, q_1, q_2, q_3}$,	0	→	$\{q_5\}$:	{q ₅ }
q_4	•	${q_4, q_1, q_2, q_3}$,	1	→	${q_2, q_3}$:	${q_2, q_3}$
q_5	:	{q ₅ }	,	0	→	{q ₃ }	:	{q ₃ }
q_5	:	{q ₅ }	,	1	→	Ø	•	Ø

			E()		Σ				E()
(q ₀	:	{q ₀ }	,	0	→	$\{q_4\}$:	${q_1,q_2,q_3,q_4}$
	q_0	:	{q ₀ }	,	1	→	$\{q_1\}$:	{q ₁ ,q ₃ }
	q_1	:	{q ₁ ,q ₃ }	,	0	→	Ø	:	Ø
*	q_1	:	{q ₁ ,q ₃ }	,	1	→	$\{q_2\}$:	{q ₂ }
(q ₂	:	{q ₂ }	,	0	→	Ø	:	Ø
(q ₂	:	{q ₂ }	,	1	→	{q ₃ }	:	{q ₃ }
*	q_3	:	{q ₃ }	,	0	→	Ø	:	Ø
(q_3	:	{q ₃ }	,	1	→	Ø	:	Ø
*	q_4	:	{q ₄ , q ₁ , q ₂ , q ₃ }	,	0	→	{q ₅ }	:	{q ₅ }
(q_4	:	{q ₄ , q ₁ , q ₂ , q ₃ }	,	1	→	${q_2, q_3}$:	${q_2, q_3}$
(q_5	:	{q ₅ }	,	0	→	{q ₃ }	:	{q ₃ }
	q_5	:	{q ₅ }	,	1	→	Ø	:	Ø

NFA without ε moves

Summary

- DFA's, NFA's, and ∈-NFA's all accept exactly the same set of languages: the regular languages.
- The NFA types are easier to design and may have exponentially fewer states than a DFA.
- DFA's are much easier to implement on a computer.