Lecture 3

Deterministic Finite Accepters

COT 4420 Theory of Computation

Section 2.1

Review Question

• What's the number of non-empty languages that contain only strings of a's and b's of length n?

a.
$$2^{n} - 1$$

b. 2^{n}
c. $2^{2^{n}}$
d. $2^{2^{n}} - 1$

Answer: d. There are 2ⁿ strings of a's and b's of length n. Each of these strings can show up or not show up.

Finite Automaton

- Finite Automaton is a mathematical model that remembers only a finite amount of information.
- States
- States changes in response to inputs
- Rules that tell how the states change are called transitions.

Finite Automaton

• Used in design and verification of communication protocols.

Used for text processing and in text searching algorithms

• Used in programming languages compilers for lexical analyzing and parsing.

Simple Example Automatic door

- The controller is in either of two states: OPEN, CLOSED
- There are four input possibilities: Front, Rear, Both, Neither
- The controller moves from state to state depending on the input it receives

Simple Example Automatic door

Deterministic Finite Accepter (DFA)

DFA is a 5-tuple M = <Q, Σ , δ , q₀, F>

- Q: a finite set of states
- Σ : a finite set of symbols called input alphabet
- δ : transition function (Q × $\Sigma \rightarrow$ Q)
- q_0 : the start state ($q_0 \in Q$)
- F: a set of final/accepting states (F \subseteq Q)

The way it works

- It starts in the start state, and with the leftmost symbol of the input.
- Each move consumes one input symbol, and based on the transition functions moves to a different state.
- When the end of the input string is reached, the string is accepted if the automaton is in one of the final states, otherwise it is rejected.

Takes a state (q) and an input symbol (a) and returns a state (q')
 δ(q, a) = q'

This means that if the automaton is in state q, and the current input symbol is a, the DFA will go into state q'.

Example

$\mathsf{M} = < \{\mathsf{q}_0, \, \mathsf{q}_1, \, \mathsf{q}_2\}, \, \{0, \, 1\}, \, \delta, \, \mathsf{q}_0, \, \{\mathsf{q}_2\} >$

$$\begin{split} \delta(q_0, 0) &= q_0 & \delta(q_1, 0) = q_0 & \delta(q_2, 0) = q_2 \\ \delta(q_0, 1) &= q_1 & \delta(q_1, 1) = q_2 & \delta(q_2, 1) = q_2 \end{split}$$

Graph representation

• States = nodes

а

• Transition function = arc

$$\delta(q_0, a) = q_1$$

q1

q0

- Start symbol = arrow
- Final state = double circle

Example: String with 11

- $\mathsf{M} = < \{\mathsf{q}_0, \, \mathsf{q}_1, \, \mathsf{q}_2\}, \, \{0, \, 1\}, \, \delta, \, \mathsf{q}_0, \, \{\mathsf{q}_2\} >$
- $\begin{array}{ll} \delta(q_0,\,0) = q_0 & \delta(q_1,\,0) = q_0 & \delta(q_2,\,0) = q_2 \\ \delta(q_0,\,1) = q_1 & \delta(q_1,\,1) = q_2 & \delta(q_2,\,1) = q_2 \end{array}$

Alternative Representation: Transition Table

- Columns: current input symbol
- Rows: current state
- Entries: next state

Deterministic Finite Accepter (DFA)

• The transition function δ needs to be a total function. It needs to be defined for every input value in Σ .

 At each step, a unique move is defined for every input symbol. So in every state, upon reading the input symbol, the automaton jumps deterministically to another state.

Extended Transition Function

$\delta^*: Q \times \Sigma^* \xrightarrow{} Q$

Example: w = ab

$$δ(q_0, a)=q_1 , δ(q_1, b)=q_2$$

 $δ^*(q_0, ab) = q_2$

Formally δ^* is defined recursively by: $\delta^*(q, \lambda) = q$ $\delta^*(q, wa) = \delta(\delta^*(q, w), a) \quad w \in \Sigma^*, a \in \Sigma$

Extended Transition Function

$$\begin{split} \delta^*(q_1, 011) &= \delta(\delta^*(q_1, 01), 1) = \delta(\delta(\delta^*(q_1, 0), 1), 1) \\ &= \delta(\delta(\delta(\delta^*(q_1, \lambda), 0), 1), 1) = \delta(\delta(\delta(q_1, 0), 1), 1) \\ \hline q_0 \\ \delta(\delta(q_0, 1), 1) &= \delta(q_1, 1) = q_2 \end{split}$$

Language of a DFA

The language recognized by a dfa M =(Q, Σ , δ , q_0 , F) is the set of all strings accepted by M.

$$L(M)=\{\,w\in\Sigma^*\colon\,\delta^*(q_0,w)\in F\}$$

Find dfa for L = { $a^nb : n \ge 0$ }

Example

Theorem

Theorem: Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and G_M be its associated transition graph. For every $q_i, q_j \in Q$ and $w \in \Sigma^+, \delta^*(q_i, w) = q_j$ iff there is a walk with label w from q_i to q_j in G_M .

Induction on the length w

Base case: $|w| = 1 \quad \delta^*(q_i, w) = q_j$ obviously there is an edge (q_i, q_j) with label w in G_M .

Induction: Assume it is true for all strings v with $|v| \le n$ We want to show it for a w with length n+1: w = va

Theorem (Cont'd)

Suppose now $\delta^*(q_i, v) = q_k \text{ since } |v| = n \text{ there}$ must be a walk in G_M labeled v from q_i to q_k . If $\delta^*(q_i, va) = q_j$ then M must have a transition $\delta(q_k, a) = q_j$ so by construction G_M has an edge (q_k, q_j) with label a.

Regular Languages

 A language L is called regular if and only if there exists some deterministic finite accepter M such that

$$L = L(M)$$

So in order to show that a language is *regular* we can find a dfa for it. (Note: soon we will see other ways to describe the regular languages such as <u>regular expressions</u> and <u>nondeterministic automata</u>)

Regular Languages

- Regular languages are common and appear in many context.
- Example: the set of strings that represent some floating-point number is a regular language.

Non-regular Languages

• Example: $L = \{ 0^n 1^n : n \ge 1 \}$

$$L = \{ 01, 0011, 000111, ... \}$$

 Example: L = { w | w in {(,)}* and w is balanced}

 $L = \{ (), (()), ()()(()()), ... \}$