Lecture 3

Deterministic Finite Accepters

COT 4420
 Theory of Computation

Section 2.1

Review Question

- What's the number of non-empty languages that contain only strings of a's and b's of length n ?
a. $2^{n}-1$
b. 2^{n}
c. $2^{2^{n}}$

Answer: d. There are 2^{n} strings of a's and b's of length n. Each of these strings can show up or not show up.

Finite Automaton

- Finite Automaton is a mathematical model that remembers only a finite amount of information.
- States
- States changes in response to inputs
- Rules that tell how the states change are called transitions.

Finite Automaton

- Used in design and verification of communication protocols.
- Used for text processing and in text searching algorithms
- Used in programming languages compilers for lexical analyzing and parsing.

Simple Example Automatic door

- The controller is in either of two states: OPEN, CLOSED
- There are four input possibilities: Front, Rear, Both, Neither
- The controller moves from state to state depending on the input it receives

Simple Example Automatic door

Deterministic Finite Accepter (DFA)

DFA is a 5 -tuple $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$

- Q: a finite set of states
- Σ : a finite set of symbols called input alphabet
- δ : transition function $(\mathrm{Q} \times \Sigma \rightarrow \mathrm{Q})$
- q_{0} : the start state $\left(\mathrm{q}_{0} \in \mathrm{Q}\right)$
- F: a set of final/accepting states $(\mathrm{F} \subseteq \mathrm{Q})$

The way it works

- It starts in the start state, and with the leftmost symbol of the input.
- Each move consumes one input symbol, and based on the transition functions moves to a different state.
- When the end of the input string is reached, the string is accepted if the automaton is in one of the final states, otherwise it is rejected.

The transition function

- Takes a state (q) and an input symbol (a) and returns a state (q^{\prime})

$$
\delta(q, a)=q^{\prime}
$$

This means that if the automaton is in state q, and the current input symbol is a, the DFA will go into state q^{\prime}.

Example

$M=<\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{0},\left\{q_{2}\right\}>$

$$
\begin{array}{lll}
\delta\left(q_{0}, 0\right)=q_{0} & \delta\left(q_{1}, 0\right)=q_{0} & \delta\left(q_{2}, 0\right)=q_{2} \\
\delta\left(q_{0}, 1\right)=q_{1} & \delta\left(q_{1}, 1\right)=q_{2} & \delta\left(q_{2}, 1\right)=q_{2}
\end{array}
$$

Graph representation

- States = nodes
- Transition function $=\operatorname{arc} \quad \delta\left(a_{0}, a\right)=q_{1}$

- Start symbol = arrow

- Final state $=$ double circle

Example: String with 11

$M=\left\langle\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{0},\left\{q_{2}\right\}\right\rangle$
$\delta\left(q_{0}, 0\right)=q_{0}$
$\delta\left(q_{0}, 1\right)=q_{1}$
$\delta\left(q_{1}, 0\right)=q_{0}$
$\delta\left(q_{2}, 0\right)=q_{2}$
$\delta\left(q_{1}, 1\right)=q_{2}$
$\delta\left(q_{2}, 1\right)=q_{2}$

Alternative Representation: Transition

Table

- Columns: current input symbol
- Rows: current state
- Entries: next state

Deterministic Finite Accepter (DFA)

- The transition function δ needs to be a total function. It needs to be defined for every input value in Σ.
- At each step, a unique move is defined for every input symbol. So in every state, upon reading the input symbol, the automaton jumps deterministically to another state.

Extended Transition Function

$\delta^{*}: \mathrm{Q} \times \Sigma^{*} \rightarrow \mathrm{Q}$
Example: w = ab

$$
\begin{aligned}
& \delta\left(q_{0}, a\right)=q_{1} \quad, \quad \delta\left(q_{1}, b\right)=q_{2} \\
& \delta^{*}\left(q_{0}, a b\right)=q_{2}
\end{aligned}
$$

Formally δ^{*} is defined recursively by:

$$
\begin{aligned}
& \delta^{*}(q, \lambda)=q \\
& \delta^{*}(q, w a)=\delta\left(\delta^{*}(q, w), a\right) \quad w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Extended Transition Function

	q_{0}	0
q_{0}	q_{0}	q_{1}
q_{1}	q_{0}	q_{2}
q_{2}	q_{2}	q_{2}

$$
\begin{aligned}
& \delta^{*}(q, \lambda)=q \\
& \delta^{*}(q, w a)=\delta\left(\delta^{*}(q, w), a\right) \\
& \quad w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

$\delta^{*}\left(q_{1}, 011\right)=\delta\left(\delta^{*}\left(q_{1}, 01\right), 1\right)=\delta\left(\delta\left(\delta^{*}\left(q_{1}, 0\right), 1\right), 1\right)$
$=\delta\left(\delta\left(\delta\left(\delta^{*}\left(q_{1}, \lambda\right), 0\right), 1\right), 1\right)=\delta\left(\delta\left(\delta\left(q_{1}, 0\right), 1\right), 1\right)$
$\delta\left(\delta\left(q_{0}, 1\right), 1\right)=\delta\left(q_{1}, 1\right)=q_{2}$

Language of a DFA

The language recognized by a dfa $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is the set of all strings accepted by M .

$$
L(M)=\left\{w \in \Sigma^{*}: \delta^{*}\left(q_{0}, w\right) \in F\right\}
$$

Find dfa for $L=\left\{a^{n} b: n \geq 0\right\}$

Example

aaababbbaaaa
baabbaaaba abbabbaab

Theorem

Theorem: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and G_{M} be its associated transition graph. For every $q_{i}, q_{j} \in Q$ and $w \in \Sigma^{+}, \delta^{*}\left(q_{i}, w\right)=q_{j}$ iff there is a walk with label w from q_{i} to q_{j} in G_{M}.

Induction on the length w
Base case: $|w|=1 \quad \delta^{*}\left(q_{i}, w\right)=q_{j}$ obviously there is an edge $\left(q_{i}, q_{j}\right)$ with label w in G_{M}.
Induction: Assume it is true for all strings v with $|v| \leq n$ We want to show it for a w with length $n+1$: $w=$ va

Theorem (Cont'd)

Suppose now $\delta^{*}\left(q_{i}, v\right)=q_{k}$ since $|v|=n$ there must be a walk in G_{M} labeled v from q_{i} to q_{k}. If $\delta^{*}\left(q_{i}, v a\right)=q_{j}$ then M must have a transition $\delta\left(q_{k}, a\right)=q_{j}$ so by construction G_{M} has an edge $\left(q_{k}, q_{j}\right)$ with label a.

Regular Languages

- A language L is called regular if and only if there exists some deterministic finite accepter M such that

$$
L=L(\mathrm{M})
$$

So in order to show that a language is regular we can find a dfa for it. (Note: soon we will see other ways to describe the regular languages such as regular expressions and nondeterministic automata)

Regular Languages

- Regular languages are common and appear in many context.
- Example: the set of strings that represent some floating-point number is a regular language.

Non-regular Languages

- Example: $L=\left\{0^{n} 1^{n}: n \geq 1\right\}$

$$
L=\{01,0011,000111, \ldots\}
$$

- Example: $L=\left\{w \mid w i n\{(,)\}^{*}\right.$ and w is balanced\}

$$
L=\{(),(()),()()(()()), \ldots\}
$$

