Lecture 2

Languages, Grammars, and Automata

COT 4420
Theory of Computation

Languages
 Definitions

- Any finite, nonempty set of symbols is an alphabet or vocabulary.

$$
\begin{aligned}
& \Sigma=\{A, B, C, D, \ldots, Z\} \\
& \Sigma=\{0,1\} \\
& \Sigma=\{\square, \text { if, then, else }\}
\end{aligned}
$$

- A finite sequence of symbols from the alphabet is called a string or a word or a sentence.

$$
\begin{aligned}
& w=\text { ALPHA } \\
& w=0100011101
\end{aligned}
$$

Languages
 Definitions

- Two strings can be concatenated to form another string:

$$
\begin{aligned}
& v=\operatorname{ALPHA}, \quad w=\text { BETA } \\
& \operatorname{Concat}(v, w)=v w=\text { ALPHABETA }
\end{aligned}
$$

- The length of a string w, denoted by $|w|$ is the number of symbols in the string.

$$
|\mathrm{ALPHA}|=5
$$

- The empty string is denoted by λ or ε and its length is 0 .

$$
|\lambda|=0
$$

Languages Definitions

- If Σ is the alphabet, Σ^{*} is the set of all strings over Σ, including the empty string.
- Σ^{*} is obtained by concatenating zero or more symbols from Σ.

$$
\Sigma^{+}=\Sigma^{*}-\{\lambda\}
$$

Let $\Sigma=\{a, b, c, d\}$, what is Σ^{*} ?
Can you specify a procedure to generate Σ^{*} ?
What is $\left|\Sigma^{*}\right|$?

Languages
 Definitions

- A language over Σ is a subset of Σ^{*}.
$\mathrm{L} \subseteq \Sigma^{*}$

Example: $\Sigma=\{a, b\}$

$$
\begin{array}{ll}
L_{1}=\{a, a a, a b a\} & \text { a finite language } \\
L_{2}=\left\{a^{n} b^{n}: n \geq 1\right\} & \text { an infinite language }
\end{array}
$$

Ways to represent languages

1. Recognition point of view

- Give a procedure which
says Yes for sentences in the language, and either does not terminate or says No for sentences NOT in the language.
The procedure recognizes the language

Ways to represent languages

2. Generation point of view

- Systematically generate (enumerate) all sentences of the language
- What's the relationship between these two points of view?

Ways to represent languages

Given a procedure to recognize L, we can give a procedure for generating L.
Steps

		1	2	3	4	...
	x_{1}	1	3	6	10	15
	x_{2}	2	5	9	14	
	x_{3}	4	8	13		
	x_{4}	7	12			
	:	11				

1. Run step 1 on x_{1}
2. Run step 1 on x_{2}
3. Run step 2 on x_{1}
4. Run step 1 on x_{3}
5. ...

Ways to represent languages

Given a procedure for generating L, we can give a procedure for recognizing L. what is it?

Definitions

- A language L that can be generated by a procedure is said to be a recursively enumerable set or RE.
- It accepts $\mathrm{w} \in \mathrm{L}$, but we do not know what happens for $w \notin \mathrm{~L}$. (It may halt or goes into an infinite loop)
- A language L that can be recognized by an algorithm is said to be recursive or \mathbf{R}.
- Halts on every w $\in \Sigma^{+}$.

- Recursive sets are a subset of RE.
- Suppose L is recursive, how about \bar{L} ?

Automata

- An automaton is an abstract model of a digital computer.
- Reads the input (string over the alphabet)
- Has a control unit which can be in any of the finite number of internal states and can change state in some defined manner.
- Given an input string, it outputs yes or no meaning that it either accepts the string or rejects it.

Grammars
 Definitions

- A grammar is a method to describe and generate the sentences of a language.
- A grammar G is defined as a quadruple

$$
G=(V, T, S, P)
$$

\mathbf{V} is a finite set of variables
T is a finite set of terminal symbols
$\mathbf{S} \in \mathrm{V}$ is a special variable called start symbol
\mathbf{P} is a finite set of production rules of the form

$$
\begin{gathered}
\mathrm{x} \rightarrow \mathrm{y} \\
\text { where } \mathrm{x} \in(\mathrm{~V} \cup \mathrm{~T})^{+}, \mathrm{y} \in(\mathrm{~V} \cup \mathrm{~T})^{*}
\end{gathered}
$$

Grammars

Example

$S \rightarrow$ <noun phrase> <verb phrase>
<noun phrase> \rightarrow <article> <noun>
<article> \rightarrow the
<noun> \rightarrow dog
<verb phrase> \rightarrow is <adjective>
<adjective> \rightarrow happy
S => <noun phrase><verb phrase> => <article><noun><verb phrase> => the <noun><verb phrase> => the <noun> is <adjective> => the dog is <adjective> => the dog is happy

Grammars Definitions

- We say that w derives z if $w=u x v$, and $z=u y v$ and $x \rightarrow y \in P$
w => z
- If $w_{1}=>w_{2}=>\ldots=>w_{n}$ we say $w_{1}=>^{*} w_{n}$ (derives in zero or more steps)
- The set of sentential forms is

$$
S(G)=\left\{\alpha \in(V \cup T)^{*} \mid S=>^{*} \alpha\right\}
$$

- The language generated by grammar G is

$$
L(G)=\left\{w \in T^{*} \mid S=>^{*} w\right\}
$$

Grammars

 Example$\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
P:

$$
\begin{aligned}
& S \rightarrow \mathrm{aSBC} \\
& S \rightarrow \mathrm{aBC} \\
& \mathrm{CB} \rightarrow \mathrm{BC} \\
& \mathrm{aB} \rightarrow \mathrm{ab}
\end{aligned}
$$

$V=\{S, B, C\}$
$T=\{a, b, c\}$

Grammars
 Example

$G=(\{S\},\{a, b\}, S, P)$
Productions:

$$
\begin{aligned}
& S \rightarrow \mathrm{aSb} \\
& \mathrm{~S} \rightarrow \lambda
\end{aligned}
$$

What is the $L(G)$?

$$
L=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

Grammars Example

Find a grammar that generates

$$
L=\left\{a^{n} b^{2 n}: n \geq 0\right\}
$$

$s \rightarrow \operatorname{aSbb} \mid \lambda$

Summary

- An automaton recognizes (or accepts) a language
- A grammar generates a language
- For some grammars, it is possible to build an automaton M_{G} from the grammar G so that M_{G} recognizes the language $L(G)$ generated by the grammar G.

