Lecture 2 Languages, Grammars, and Automata

COT 4420 Theory of Computation

Section 1.2 , 1.3

• Any finite, nonempty set of symbols is an alphabet or vocabulary.

 $Σ = {A, B, C, D, ..., Z}$ $Σ = {0, 1}$ $Σ = { □, if, then, else}$

• A finite sequence of symbols from the alphabet is called a string or a word or a sentence.

w = ALPHA w = 0100011101

• Two strings can be concatenated to form another string:

v = ALPHA, w = BETAConcat(v, w) = vw = ALPHABETA

- The length of a string w, denoted by |w| is the number of symbols in the string.
 |ALPHA| = 5
- The empty string is denoted by λ or ϵ and its length is 0.

 $|\lambda| = 0$

- If Σ is the alphabet, Σ^{*} is the set of all strings over Σ, including the empty string.
- Σ^* is obtained by concatenating zero or more symbols from Σ .

$$\Sigma^+ = \Sigma^* - \{\lambda\}$$

Let $\Sigma = \{a, b, c, d\}$, what is Σ^* ? Can you specify a procedure to generate Σ^* ? What is $|\Sigma^*|$?

• A language over Σ is a subset of Σ^* . $L \subseteq \Sigma^*$

Example:
$$\Sigma = \{a, b\}$$

 $L_1 = \{a, aa, aba\}$
 $L_2 = \{a^n b^n : n \ge 1\}$

a finite language an infinite language

- 1. Recognition point of view
 - Give a <u>procedure</u> which
 says Yes for sentences in the language, and
 either does not terminate or says No for
 sentences NOT in the language.
 - The procedure recognizes the language

- 2. Generation point of view
 - Systematically generate (enumerate) all sentences of the language

• What's the relationship between these two points of view?

Given a procedure to recognize L, we can give a procedure for generating L.

	Steps						
		1	2	3	4	•••	
Strings	X ₁	1	3	6	10	15	
	x ₂	2	5	9	14		
	X ₃	4	8	13			
	x ₄	7	12				
	•	11					

- 1. Run step 1 on x_1
- 2. Run step 1 on x_2
- 3. Run step 2 on x_1
- 4. Run step 1 on x₃
 5. ...

Given a procedure for generating L, we can give a procedure for recognizing L. what is it?

- A language L that can be generated by a procedure is said to be a recursively enumerable set or RE.
 - It accepts w ∈ L, but we do not know what happens
 for w ∉ L. (It may halt or goes into an infinite loop)

• A language L that can be recognized by an <u>algorithm</u> is said to be recursive or **R**.

– Halts on every $w \in \Sigma^+$.

$$\mathsf{W} \longrightarrow \mathsf{M} \xrightarrow{\mathsf{Yes}} \mathsf{No}$$

- Recursive sets are a subset of RE.
- Suppose *L* is recursive, how about \overline{L} ?

Automata

- An automaton is an abstract model of a digital computer.
- Reads the input (string over the alphabet)
- Has a control unit which can be in any of the finite number of internal states and can change state in some defined manner.
- Given an input string, it outputs yes or no meaning that it either accepts the string or rejects it.

Grammars Definitions

- A grammar is a method to describe and generate the sentences of a language.
- A grammar G is defined as a quadruple

G = (V, T, S, P)

V is a finite set of variables

- T is a finite set of terminal symbols
- $\bm{S} \in V$ is a special variable called **start symbol**
- P is a finite set of production rules of the form

$$x \rightarrow y$$

where $x \in (V \cup T)^{\scriptscriptstyle +}$, $\ y \in (V \cup T)^{\scriptscriptstyle *}$

Grammars Example

 $S \rightarrow$ <noun phrase> <verb phrase> <noun phrase> \rightarrow <article> <noun> $\langle article \rangle \rightarrow$ the <noun $> \rightarrow dog$ $\langle verb phrase \rangle \rightarrow is \langle adjective \rangle$ $\langle adjective \rangle \rightarrow happy$

S => <noun phrase><verb phrase> => <article><noun><verb phrase> => the <noun><verb phrase> => the <noun> is <adjective> => the dog is <adjective> => the dog is happy

Grammars Definitions

• We say that w derives z if w = uxv, and z = uyvand $x \rightarrow y \in P$

- If w₁ => w₂ => ... => w_n we say w₁ =>* w_n (derives in zero or more steps)
- The set of sentential forms is $S(G) = \{ \alpha \in (V \cup T)^* \mid S =>^* \alpha \}$
- The language generated by grammar G is $L(G) = \{ w \in T^* \mid S = >^* w \}$

	Grammars Example		
G = (V, T, P, S)	V = {S, B, C}	T = {a, b, c}	
P:			
$S \rightarrow aSBC$	$bB \rightarrow bb$		
$S \rightarrow aBC$	$bC \rightarrow bc$		
$CB \rightarrow BC$	$cC \rightarrow cc$		
aB \rightarrow ab			
S =>* aaBCBC	sentential form		
What is L(G) ?	L(G) = { a ⁿ b ⁿ c ⁿ	$n \ge 1$ }	

 \bigcirc

Grammars Example

Productions:

 $S \rightarrow aSb$ $S \rightarrow \lambda$

What is the L(G)? $L = \{a^nb^n : n \ge 0\}$

Grammars Example

Find a grammar that generates $L = \left\{ a^n b^{2n} : n \ge 0 \right\}$

 $S \rightarrow aSbb \mid \lambda$

Summary

- An automaton recognizes (or accepts) a language
- A grammar generates a language
- For some grammars, it is possible to build an automaton M_G from the grammar G so that M_G recognizes the language L(G) generated by the grammar G.