## Lecture 1

# Introduction and Overview 

## COT 4420 <br> Theory of Computation

Section 1.1

## Overview

- Understanding computation \& computability
- Study finitary representations for languages and machines
- Understanding capabilities of abstract machines


## Algorithms and Procedures

- Procedure: finite sequence of instructions that can be carried out mechanically, say by a computer program.
- Algorithm: a procedure that always halts is an algorithm.


## Example1

Example1: Determine if $i>1$ is a prime number

1. Set $j=2$
2. If $j>=i$ then halt; $i$ is a prime
3. If $i / j$ is an integer then halt; $i$ is not a prime
4. $j=j+1$
5. Go to 2

## Example1

## input

## output

Prime
Not prime

This is an algorithm: always halts and answers yes or no!

## Example2

Example2: Determine if a perfect number > $i$ exist
Note: A perfect number is a number that is equal to sum of its divisors (except for itself).

1. $j=i+1$
2. If $j$ is perfect, halt.
3. $j=j+1$
4. Go to 2

This is a procedure: It may never halt

## Mathematical preliminaries

## Sets

$$
\{a, b, c\}, \quad\{1,2,3, . .\}, \quad\{i: i>0, i \text { is even }\}
$$

A set $S_{1}$ is a subset of set $S$ if every element of $S_{1}$ is also an element of $S$.

$$
S_{1} \subseteq S
$$

$$
\begin{aligned}
& \{a\} \subseteq\{a, b, c\} \\
& \{a, b\} \subseteq\{a, b, c\}
\end{aligned}
$$

## Mathematical preliminaries Cardinality

- How many elements are in a set?

The cardinality of a set is a measure of the size of the set and is denoted by $|S|$.
For finite sets: $\quad S=\{a, b, c\} \quad|\mathrm{S}|=3$

- How about the number of elements in $\mathbb{N}$ or $\mathbb{R}$ ?
$|\mathbb{N}|=\kappa_{0} \quad$ (aleph-null)


## Mathematical preliminaries Cardinality

- Is the set of even numbers the same size as the set of natural numbers?
$\mid$ Even $\mid=$ ?

$$
\begin{aligned}
& 1 \rightarrow 2 \\
& 2 \rightarrow 4 \\
& 3 \rightarrow 6 \\
& 4 \rightarrow 8 \\
& 5 \rightarrow 10
\end{aligned}
$$

We mapped $n$ to $2 n$
$\mid$ Even $\mid=\aleph_{0}$

## Mathematical preliminaries Cardinality

- What about $|\mathbb{Z}|=$ ?
..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...

$$
\begin{array}{lllllllll}
8 & 6 & 4 & 2 & 0 & 1 & 3 & 5 & 7
\end{array}
$$

- A set $S$ is called countably infinite iff $|S|=|\mathbb{N}|$

Do all infinite sets have the same cardinality?

## Mathematical preliminaries Sets

The powerset is a set of all subsets:
$S=\{a, b, c\}$
$2^{S}=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$
Cardinality (size) of a set
$|S|=3$
$\left|2^{s}\right|=2^{|s|}=2^{3}=8$
Why?

## Mathematical preliminaries <br> Functions

A function is a rule that for every element of a set (domain) assigns an element of another set (range).

$$
f: S_{1} \rightarrow S_{2}
$$

If the domain of $f$ is all of $\mathrm{S}_{1}$, we say $f$ is a total function on $S_{1}$. Otherwise, $f$ is said to be a partial function.

## Mathematical preliminaries Relations

In a function, each element from the domain (input) is assigned to exactly one element from the range (output).

$$
\{(1,2),(2,4),(3,6)\}
$$

In a relation, there may be several elements from the range that is associated to one element in the domain.

$$
\{(1,2),(1,3),(2,4),(3,5)\}
$$

A relation is a subset of $S_{1} \times S_{2}$

## Mathematical preliminaries Functions

- A function is said to be one-to-one, if every element of the range corresponds to exactly one element of the domain.



## Mathematical preliminaries

## Functions

- A function is said to be onto, if it covers all elements in the range.
- For all elements of the range, there is an element in the domain.



## Proof Techniques Proof by induction

1. Base case: We need to show that the given statement is true for the first natural number.
2. Inductive step: We need to prove that if the given statement is true for any number $\leq n$, it is also true for $n+1$.

## Proof by Induction

Example1:

$$
\text { prove that: } \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Base case: $\mathrm{n}=1 \quad \sum_{i=1}^{1} i^{2}=1^{2}=1 \quad$ trivially true
Inductive step: Assume it is true for $\leq n$, prove true for $n+1$.

## Proof by Induction

## Example1

$$
\begin{aligned}
\sum_{i=1}^{n+1} i^{2} & =\sum_{i=1}^{n} i^{2}+(n+1)^{2}=\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6} \\
& =\frac{(n+1)(n(2 n+1)+6(n+1))}{6}=\frac{(n+1)(n+2)(2 n+3)}{6} \\
& =\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}
\end{aligned}
$$

## Proof by Induction Example2

Example2: Show that postages of $\geq 4$ can be achieved by using only 2 -cent and 5 -cent stamps.

Base case: $\mathrm{n}=4$ is true since you can use two 2cent stamps.
Inductive step: Assume it is true for $n$. So $n$ cent postage can be formed using only 2 -cent and 5 cent stamps. Need to prove true for $\mathrm{n}+1$.

## Proof by Induction Example2

Note that for the case of $n$, either at least one 5cent stamp must have been used or all 2-cent stamps were used..

Case1: if there is at least one 5-cent stamps, we can remove that stamp and replace it with three 2-cent stamps to form $\mathrm{n}+1$.

Case2: If only 2-cent stamps were used, we remove two 2-cent stamps (note that $n>4$ so at least two 2cent stamps must have been used in this case) and replace it with a 5-cent stamp to form $\mathrm{n}+1$.
This proves the assertion fro $\mathrm{n}+1$.

## Proof Techniques Proof by Contradiction

We want to prove that statement $P$ is true.

- We assume hypothetically that $P$ is not true.
- If we arrive at a conclusion that we know is incorrect, we conclude that the initial assumption was false. So P must be true.


## Proof by Contradiction Example1

- Example1: Suppose $a \in \mathrm{Z}$, If $a^{2}$ is even, then $a$ is even.
- Proof: We assume that the statement is not true. So $a^{2}$ is even, and $a$ is odd. Since $a$ is odd, there is an integer $k$ such that $a=2 k+1$
$a^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1 \Rightarrow a^{2}$ is odd.
We know this is not true because it was our initial assumption that $a^{2}$ is even.


## Diagonalization Argument

- Prove that $|\mathbb{N}|<|\mathbb{R}|$

In order to prove this, we need to show that $|\mathbb{N}| \leq|\mathbb{R}|$ and $|\mathbb{N}| \neq|\mathbb{R}|$
We can simply map every natural number to itself in $\mathbb{R}$. Therefore, $\mathbb{N}$ is no larger than $\mathbb{R}$.

Now we need to show that $|\mathbb{N}| \neq|\mathbb{R}|$.

## Diagonalization Argument

Suppose hypothetically that $|\mathbb{N}|=|\mathbb{R}|$ It means that $\mathbb{R}$ is countably infinite, and we should be able to count off all the real numbers. Assume we have ordered the real numbers $r_{0}, r_{1}$, $r_{2}, r_{3}, r_{4}, \ldots$
The idea is to find a real number $d$ that isn't anywhere in this sequence, showing that we haven't counted off all the real numbers.

## Diagonalization Argument

- Note that every real number has an infinite representation:

$$
\begin{aligned}
& 2=2.000000000000000 \\
& \pi=3.1415926535 \ldots . .
\end{aligned}
$$

- We define $r[0]$ to be the integer part of the real number and $r[n], n>0$ to be the $n$th decimal digit
- We create $d$ such that $d[n]!=r_{n}[n]$


## Diagonalization Argument

$$
\begin{aligned}
& r_{0}=0.00000000 \ldots \\
& r_{1}=1.02347612 \ldots \\
& r_{2}=1.1098654 \ldots . \\
& r_{3}=2.7610000000 \ldots \\
& d=1.219 \ldots .
\end{aligned}
$$

By contradiction we showed that $|\mathbb{N}| \neq|\mathbb{R}|$ and that $|\mathbb{N}|<|\mathbb{R}|$

## Uncountable sets

- A set $S$ is called uncountable iff $|\mathbb{N}|<|S|$
- Note that the cardinality of the reals is uncountable.

