
 
  
    [A]  X1 ← X1 – 1   (I1) 

X2 ← X2 – 1   (I2) 
If X1 ≠ 0 GOTO B  (I3) 
Y ← Y + 1   (I4) 
GOTO E   (I5) 

    [B]  If X2 ≠ 0 GOTO A (I6)  
GOTO E  (I7) 

 
#X1 = 2, #X2 = 4, #Y = 1, #A = 1, #B = 2, #E = 5 

Note: <x, y> = 2x (2y + 1) – 1 

#(I1) = is <a, <b, c>> = <1, <2, 1> = <1, 11> = 45 

#(I3) = <0, <4, 1> = <0, 47> = 94  

Given # (I3) = 94 find a, b, c, values 

x = l(z) = largest number such that 2x | z + 1 
y = r(z) = solution of   2y + 1 = (z+ 1) / 2x 

a = l(94) = 0, <b, c> = r(94) = 47 

b = l(47) = 4, c = r(47) = 1 

a = 0 implies instruction is unlabeled. 

c = 1 implies variable is c + 1 = r(r(94)) + 1 = 2 = X1 

b = 4 implies label is b – 2 = l(r(94)) – 2 = 4 – 2 = B 

#(I2) = <0, <2, 3> = <0, 27> = 54 

#(I4) = <0, <1, 0> = <0, 1> = 2 

We will consider the program P   consisting of the 4 instructions computed above. 

#P   = [#(I1), #(I2), ,#(I3), ,#(I4)] -1 = [45, 54, 94, 2] -1 = 245 × 354 × 594 × 72 – 1  

  



We will consider the program P   consisting of the 4 instructions computed above. 

#P   = [#(I1), #(I2), ,#(I3), ,#(I4)] -1 = [45, 54, 94, 2] -1 = 245 × 354 × 594 × 72 – 1  

We show how to use simulate the behavior of this program (of 4 instructions) by the 
universal program U2. Thus we consider U2 that computes Φ(2)(X1, X2, X3) where X3 is #P 
above and the input values are X1 = 2 and X2 = 1. Hence U2  computes Φ(2)(2, 1, #P). 
 

Z ← X3 + 1  Hence Z = #P  + 1 = [#(I1), #(I2), ,#(I3), ,#(I4)] = 245 × 354 × 594 × 72 . 

Note that Z is set to the program number of P  plus 1 which is a single number. In order to 
get the component instructions #(Ii) we would need to have a macro that could figure out 
these values [45, 54, 94, 2] = [(Z1), (Z2), (Z3), (Z4)]. We have previously shown in the section on 
Godel numbering that the function (Zi) is primitive recursive and hence could be done by a  
macro. 

S ← ∏(i=1 to 2) (p2i)Xi   Hence S = 3X1 × 7X2 = 32 × 71  [0, 2, 0, 1] which is the initialization of 
input values. Not that the value of all other variables (including Y) is initially 0 and the value 
of Y is obtained by the exponent of 2 in the product S. 

K ← 1     .   This ends the initialization phase.  
 

We next turn to the code of the universal program which is shown in Figure 3.1 of the text in 
Chapter 4 and apply it to our specific program P  and inputs: X1 = 2 and X2 = 1. 

U ← r((ZK))        K = 1, hence (Z1) is simply 45, which is the value of instruction #I1.  

Thus U = r((ZK)) is simply  11 which is <2,1> =  <b, c>. Thus, r(U) = c = 1 which means that the 
variable number is r(U) + 1 = 2 which means it is X1. Similarly, l(U) = b = 2 implies that the 
instruction is of the form   V ←V– 1.  Note that computing both r(U) and l(U) would be done by 
macros. The instruction to be executed is thus simply X1 ← X1 – 1. 

P ← pr(U) + 1        r(U) + 1 = 2 which is the variable number of X1. Now, p2 is the second prime: 3. 

Note that S stores all the values of variables as a product of primes to exponents of the value of 
the variables.  Thus the exponent of 3 in S is the value of the variable X1. It is currently 2. In order 
to execute the instruction X1 ← X1 – 1 we divide S by P or compute “integer part” of [S/P]. Note 
that in this case in S the exponent of 3 would reduce by  1 and become 1: 

S ← [S/P]. 

After this K is incremented by 1 and the second instruction is similarly executed. 

See the universal program 3.1.   



3. Universality
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Figure 3.1. Program %$,  which computes Y = @“)(X1  , . . . , X, , X, + 1>.

instruction counter is increased by 1 and the computation returns to
process the next instruction. To conclude the program,

On termination, the value of Y for the program being simulated is stored
as the exponent on pr( = 2) in S. We have now completed our description
of ‘%n and we put the pieces together in Fig. 3.1.

For each n > 0, the sequence

enumerates all partially computable functions of n variables. When we
want to emphasize this aspect of the situation we write

ap<x,  ) . . . ) x,) = W)(X, , . . .,x, , y).

It is often convenient to omit the superscript when n = 1, writing

@y(n) = mx y) = @‘)(x,  y).,


