

 [A] X1 ← X1 – 1 (I1)

X2 ← X2 – 1 (I2)
If X1 ≠ 0 GOTO B (I3)
Y ← Y + 1 (I4)
GOTO E (I5)

 [B] If X2 ≠ 0 GOTO A (I6)
GOTO E (I7)

#X1 = 2, #X2 = 4, #Y = 1, #A = 1, #B = 2, #E = 5

Note: <x, y> = 2x (2y + 1) – 1

#(I1) = is <a, <b, c>> = <1, <2, 1> = <1, 11> = 45

#(I3) = <0, <4, 1> = <0, 47> = 94

Given # (I3) = 94 find a, b, c, values

x = l(z) = largest number such that 2x | z + 1
y = r(z) = solution of 2y + 1 = (z+ 1) / 2x

a = l(94) = 0, <b, c> = r(94) = 47

b = l(47) = 4, c = r(47) = 1

a = 0 implies instruction is unlabeled.

c = 1 implies variable is c + 1 = r(r(94)) + 1 = 2 = X1

b = 4 implies label is b – 2 = l(r(94)) – 2 = 4 – 2 = B

#(I2) = <0, <2, 3> = <0, 27> = 54

#(I4) = <0, <1, 0> = <0, 1> = 2

We will consider the program P consisting of the 4 instructions computed above.

#P = [#(I1), #(I2), ,#(I3), ,#(I4)] -1 = [45, 54, 94, 2] -1 = 245 × 354 × 594 × 72 – 1

We will consider the program P consisting of the 4 instructions computed above.

#P = [#(I1), #(I2), ,#(I3), ,#(I4)] -1 = [45, 54, 94, 2] -1 = 245 × 354 × 594 × 72 – 1

We show how to use simulate the behavior of this program (of 4 instructions) by the
universal program U2. Thus we consider U2 that computes Φ(2)(X1, X2, X3) where X3 is #P
above and the input values are X1 = 2 and X2 = 1. Hence U2 computes Φ(2)(2, 1, #P).

Z ← X3 + 1 Hence Z = #P + 1 = [#(I1), #(I2), ,#(I3), ,#(I4)] = 245 × 354 × 594 × 72 .

Note that Z is set to the program number of P plus 1 which is a single number. In order to
get the component instructions #(Ii) we would need to have a macro that could figure out
these values [45, 54, 94, 2] = [(Z1), (Z2), (Z3), (Z4)]. We have previously shown in the section on
Godel numbering that the function (Zi) is primitive recursive and hence could be done by a
macro.

S ← ∏(i=1 to 2) (p2i)Xi Hence S = 3X1 × 7X2 = 32 × 71 [0, 2, 0, 1] which is the initialization of
input values. Not that the value of all other variables (including Y) is initially 0 and the value
of Y is obtained by the exponent of 2 in the product S.

K ← 1 . This ends the initialization phase.

We next turn to the code of the universal program which is shown in Figure 3.1 of the text in
Chapter 4 and apply it to our specific program P and inputs: X1 = 2 and X2 = 1.

U ← r((ZK)) K = 1, hence (Z1) is simply 45, which is the value of instruction #I1.

Thus U = r((ZK)) is simply 11 which is <2,1> = <b, c>. Thus, r(U) = c = 1 which means that the
variable number is r(U) + 1 = 2 which means it is X1. Similarly, l(U) = b = 2 implies that the
instruction is of the form V ←V– 1. Note that computing both r(U) and l(U) would be done by
macros. The instruction to be executed is thus simply X1 ← X1 – 1.

P ← pr(U) + 1 r(U) + 1 = 2 which is the variable number of X1. Now, p2 is the second prime: 3.

Note that S stores all the values of variables as a product of primes to exponents of the value of
the variables. Thus the exponent of 3 in S is the value of the variable X1. It is currently 2. In order
to execute the instruction X1 ← X1 – 1 we divide S by P or compute “integer part” of [S/P]. Note
that in this case in S the exponent of 3 would reduce by 1 and become 1:

S ← [S/P].

After this K is incremented by 1 and the second instruction is similarly executed.

See the universal program 3.1.

3. Universality

z +x,+, + 1
n

s + n(p*JX,

[Cl

[Ml

[Al
[Nl

El

i= 1

K+l
IFK=Lt(Z)+ 1 VK
u + r((Z),>
p + Pr(lJ)+ 1
IF 1(U) = 0 GOT0 N
IF 1(U) = 1 GOT0 A
IF -(PIS)GOTON
IF Z(U) = 2 GOT0 M
K + m i n [1((Z),) +

IS Ltcz)

GOT0 C
s + lW-7
GOT0 N
S+S*P
K-K+1
GOT0 C
Y +- (S),

73

=OGOTOF

2 = W>l

Figure 3.1. Program %$, which computes Y = @“)(X1 , . . . , X, , X, + 1>.

instruction counter is increased by 1 and the computation returns to
process the next instruction. To conclude the program,

On termination, the value of Y for the program being simulated is stored
as the exponent on pr(= 2) in S. We have now completed our description
of ‘%n and we put the pieces together in Fig. 3.1.

For each n > 0, the sequence

enumerates all partially computable functions of n variables. When we
want to emphasize this aspect of the situation we write

ap<x,) . . .) x,) = W)(X, , . . .,x, , y).

It is often convenient to omit the superscript when n = 1, writing

@y(n) = mx y) = @‘)(x, y).,

