[A] $\mathrm{X}_{1} \leftarrow \mathrm{X}_{1}-1$
(I_{1})
$\mathrm{X}_{2} \leftarrow \mathrm{X}_{2}-1$
(I_{2})
If $X_{1} \neq 0$ GOTO B
(I_{3})
$\mathrm{Y} \leftarrow \mathrm{Y}+1$
(I4)
GOTO E
(I5)
[B] If $\mathrm{X}_{2} \neq 0$ GOTO A
(I6)
GOTO E
(I_{7})
$\# \mathrm{X}_{1}=2, \# \mathrm{X}_{2}=4, \# \mathrm{Y}=1, \# \mathrm{~A}=1, \# B=2, \# \mathrm{E}=5$
Note: $\left\langle\mathrm{x}, \mathrm{y}>=2^{\mathrm{x}}(2 \mathrm{y}+1)-1\right.$
$\#\left(\mathrm{I}_{1}\right)=$ is $<\mathrm{a},<\mathrm{b}, \mathrm{c} \gg=<1,<2,1>=<1,11>=45$
$\#\left(\mathrm{I}_{3}\right)=<0,<4,1>=<0,47>=94$
Given \# (I_{3}) = 94 find a, b, c, values
$\mathrm{x}=\mathrm{l}(\mathrm{z})=$ largest number such that $\mathrm{2}^{\mathrm{x}} \mid \mathrm{z}+1$
$y=r(z)=$ solution of $2 y+1=(z+1) / 2^{x}$
$\mathrm{a}=\mathrm{l}(94)=0,<\mathrm{b}, \mathrm{c}>=\mathrm{r}(94)=47$
$\mathrm{b}=\mathrm{l}(47)=4, \mathrm{c}=\mathrm{r}(47)=1$
$\mathrm{a}=0$ implies instruction is unlabeled.
$\mathrm{c}=1$ implies variable is $\mathrm{c}+1=\mathrm{r}(\mathrm{r}(94))+1=2=\mathrm{X}_{1}$
$\mathrm{b}=4$ implies label is $\mathrm{b}-2=\mathrm{l}(\mathrm{r}(94))-2=4-2=\mathrm{B}$
$\#\left(\mathrm{I}_{2}\right)=<0,<2,3>=<0,27>=54$
$\left.\#\left(\mathrm{I}_{4}\right)=<0,\langle 1,0\rangle=<0,1\right\rangle=2$
We will consider the program \mathscr{P} consisting of the 4 instructions computed above.
$\# \mathscr{P}=\left[\#\left(\mathrm{I}_{1}\right), \#\left(\mathrm{I}_{2}\right), \#\left(\mathrm{I}_{3}\right), \#\left(\mathrm{I}_{4}\right)\right]-1=[45,54,94,2]-1=2^{45} \times 3^{54} \times 5^{94} \times 7^{2}-1$

We will consider the program \mathscr{P} consisting of the 4 instructions computed above.
$\# \mathscr{P}=\left[\#\left(\mathrm{I}_{1}\right), \#\left(\mathrm{I}_{2}\right), \#\left(\mathrm{I}_{3}\right), \#\left(\mathrm{I}_{4}\right)\right]-1=[45,54,94,2]-1=2^{45} \times 3^{54} \times 5^{94} \times 7^{2}-1$
We show how to use simulate the behavior of this program (of 4 instructions) by the universal program \mathscr{U}_{2}. Thus we consider \mathscr{U}_{2} that computes $\Phi^{(2)}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)$ where X_{3} is \# \mathscr{P} above and the input values are $\mathrm{X}_{1}=2$ and $\mathrm{X}_{2}=1$. Hence \mathscr{U}_{2} computes $\Phi^{(2)}(2,1, \# \mathscr{T})$.

$$
Z \leftarrow X_{3}+1 \quad \text { Hence } \mathrm{Z}=\# \mathscr{P}+1=\left[\#\left(\mathrm{I}_{1}\right), \#\left(\mathrm{I}_{2}\right), \#\left(\mathrm{I}_{3}\right), \#\left(\mathrm{I}_{4}\right)\right]=2^{45} \times 3^{54} \times 5^{94} \times 7^{2}
$$

Note that Z is set to the program number of \mathscr{P} plus 1 which is a single number. In order to get the component instructions $\#\left(\mathrm{I}_{\mathrm{i}}\right)$ we would need to have a macro that could figure out these values $[45,54,94,2]=\left[\left(Z_{1}\right),\left(Z_{2}\right),\left(Z_{3}\right),\left(Z_{4}\right)\right]$. We have previously shown in the section on Godel numbering that the function $\left(\mathrm{Z}_{\mathrm{i}}\right)$ is primitive recursive and hence could be done by a macro.
$S \leftarrow \Pi(i=1$ to 2$)\left(p_{2 i}\right)^{X i}$ Hence $S=3^{\mathrm{X} 1} \times 7^{\mathrm{X} 2}=3^{2} \times 7^{1}[0,2,0,1]$ which is the initialization of input values. Not that the value of all other variables (including Y) is initially 0 and the value of Y is obtained by the exponent of 2 in the product S.
$K \leftarrow 1 \quad$. This ends the initialization phase.

We next turn to the code of the universal program which is shown in Figure 3.1 of the text in Chapter 4 and apply it to our specific program \mathscr{P} and inputs: $\mathrm{X}_{1}=2$ and $\mathrm{X}_{2}=1$.
$U \leftarrow r\left(\left(Z_{K}\right)\right) \quad \mathrm{K}=1$, hence $\left(\mathrm{Z}_{1}\right)$ is simply 45 , which is the value of instruction $\mathrm{\#}_{1}$.
Thus $\mathrm{U}=r\left(\left(Z_{K}\right)\right)$ is simply 11 which is $\langle 2,1\rangle=\langle\mathrm{b}, \mathrm{c}\rangle$. Thus, $\mathrm{r}(\mathrm{U})=\mathrm{c}=1$ which means that the variable number is $r(U)+1=2$ which means it is X_{1}. Similarly, $l(U)=b=2$ implies that the instruction is of the form $V \leftarrow V-1$. Note that computing both $r(U)$ and $l(U)$ would be done by macros. The instruction to be executed is thus simply $\mathrm{X}_{1} \leftarrow \mathrm{X}_{1}-1$.
$P \leftarrow p_{r(U)+1} \quad \mathrm{r}(\mathrm{U})+1=2$ which is the variable number of X_{1}. Now, p_{2} is the second prime: 3 .
Note that S stores all the values of variables as a product of primes to exponents of the value of the variables. Thus the exponent of 3 in S is the value of the variable X_{1}. It is currently 2 . In order to execute the instruction $\mathrm{X}_{1} \leftarrow \mathrm{X}_{1}-1$ we divide S by P or compute "integer part" of $[\mathrm{S} / \mathrm{P}]$. Note that in this case in S the exponent of 3 would reduce by 1 and become 1 :
$S \leftarrow[S / P]$.
After this K is incremented by 1 and the second instruction is similarly executed.
See the universal program 3.1.

$$
\begin{array}{ll}
& \mathbf{z} \leftarrow X_{n+1}+\mathbf{1} \\
& S \leftarrow \prod_{i=1}^{n}\left(p_{2 i}\right)^{X_{i}} \\
& K \leftarrow 1 \\
\text { [C] } \quad & \text { IF } K=\mathbf{L t}(Z)+\mathbf{1} \vee K=0 \text { GOT } \\
& U \leftarrow r\left((Z)_{K}\right) \\
& P \leftarrow p_{r(U)+1} \\
& \text { IF } l(U)=\mathbf{0} \text { GOT0 } N \\
& \text { IF } l(U)=\mathbf{1} \text { GOT0 } \\
& \text { IF } \sim(P \mid S) \text { GOTO } N \\
& \text { IF } l(U)=\mathbf{2} \text { GOT0 } M \\
& \text { K } \leftarrow \text { min }\left[l\left((Z)_{i}\right)+\mathbf{2}=l(U)\right] \\
& \text { GOT0 } \mathbf{C} \\
\text { [M] } & S \leftarrow[S / P] \\
& \text { GOT0 } N \\
\text { [A] } & S \leftarrow S \cdot P \\
\text { [N] } & K \leftarrow K+1 \\
& \text { GOT0 } \mathbf{C} \\
\text { [F] } & Y \leftarrow(S)_{1}
\end{array}
$$

Figure 3.1. Program \mathscr{U}_{n}, which computes $Y=\Phi^{(n)}\left(X_{1}, \ldots, X_{n}, X_{n}{ }_{1}\right)$.
instruction counter is increased by 1 and the computation returns to process the next instruction. To conclude the program,

$$
[F] \quad Y \leftarrow(S)_{1}
$$

On termination, the value of Y for the program being simulated is stored as the exponent on $p_{1}(=2)$ in S . We have now completed our description of \mathscr{U}_{n} and we put the pieces together in Fig. 3.1.

For each $n>0$, the sequence

$$
\Phi^{(n)}\left(x_{1}, \ldots, x_{n}, 0\right), \Phi^{(n)}\left(x_{1}, \ldots, x_{n}, 1\right), \ldots
$$

enumerates all partially computable functions of n variables. When we want to emphasize this aspect of the situation we write

$$
\Phi_{y}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\Phi^{(n)}\left(x_{1}, \ldots, x_{n}, y\right)
$$

It is often convenient to omit the superscript when $n=1$, writing

$$
\Phi_{y}(x)=\Phi(x, y)=\Phi^{(1)}(x, y)
$$

