[A] $\mathrm{X}_{1} \leftarrow \mathrm{X}_{1}-1$
(I_{1})
$\mathrm{X}_{2} \leftarrow \mathrm{X}_{2}-1$
If $X_{1} \neq 0$ GOTO B
(I_{3})
$\mathrm{Y} \leftarrow \mathrm{Y}+1$
(I4)
GOTO E
(I5)
[B] If $\mathrm{X}_{2} \neq 0$ GOTO A (I_{6})
GOTO E
(I_{7})
$\# \mathrm{X}_{1}=2, \# \mathrm{X}_{2}=4, \# \mathrm{Y}=1, \# \mathrm{~A}=1, \# B=2, \# \mathrm{E}=5$
Note: $\left\langle x, y>=2^{x}(2 y+1)-1\right.$
$\#\left(\mathrm{I}_{1}\right)=$ is $\left.\left.<\mathrm{a},<\mathrm{b}, \mathrm{c} \gg=<1,<2,1\right\rangle=<1,11\right\rangle=45$
$\#\left(\mathrm{I}_{3}\right)=<0,<4,1>=<0,47>=94$
Given \# (I_{3}) = 94 find a, b, c, values
$\mathrm{x}=\mathrm{l}(\mathrm{z})=$ largest number such that $\mathrm{2}^{\mathrm{x}} \mid \mathrm{z}+1$
$y=r(z)=$ solution of $2 y+1=(z+1) / 2^{x}$
$a=l(94)=0,<b, c>=r(94)=47$
$\mathrm{b}=\mathrm{l}(47)=4, \mathrm{c}=\mathrm{r}(47)=1$
$\mathrm{a}=0$ implies instruction is unlabeled.
$\mathrm{c}=1$ implies variable is $\mathrm{c}+1=\mathrm{r}(\mathrm{r}(94))+1=2=\mathrm{X}_{1}$
$\mathrm{b}=4$ implies label is $\mathrm{b}-2=\mathrm{l}(\mathrm{r}(94))-2=4-2=\mathrm{B}$
$\#\left(\mathrm{I}_{2}\right)=<0,<2,3>=<0,27>=54$
$\left.\#\left(\mathrm{I}_{4}\right)=<0,\langle 1,0\rangle=<0,1\right\rangle=2$
We will consider the program \mathscr{P} consisting of the 4 instructions computed above.
$\# \mathscr{P}=\left[\#\left(\mathrm{I}_{1}\right), \#\left(\mathrm{I}_{2}\right), \#\left(\mathrm{I}_{3}\right), \#\left(\mathrm{I}_{4}\right)\right]-1=[45,54,94,2]-1=2^{45} \times 3^{54} \times 5^{94} \times 7^{2}-1$
We consider \mathscr{U}_{2} that computes $\Phi^{(2)}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)$ where X_{3} is $\# \mathscr{P}$ above.
$Z \leftarrow X_{3}+1 \quad$ Hence $\mathrm{Z}=\# \mathscr{P}+1=\left[\#\left(\mathrm{I}_{1}\right), \#\left(\mathrm{I}_{2}\right), \#\left(\mathrm{I}_{3}\right), \#\left(\mathrm{I}_{4}\right)\right]=2^{45} \times 3^{54} \times 5^{94} \times 7^{2}$
$S \leftarrow \Pi(i=1$ to 2$)\left(p_{2 i}\right)^{X i}$ Hence $\mathrm{S}=3^{\mathrm{X} 1} \times 7^{\mathrm{X} 2}=\left[0, \mathrm{X}_{1}, 0, \mathrm{X}_{2}\right]$ which is the initialization of input values. Not that the value of all other variables (including Y) is initially 0 and the value of Y is obtained by the exponent of 2 in the product S .
$K \leftarrow 1$

