COT 5310: Theory of Automata and Formal Languages

Lecture 9

Florida State University
Department of Computer Science

Context-Free Production

Let \mathscr{V}, \mathcal{T} be a pair of disjoint alphabets. A *context-free production* on \mathscr{V}, \mathcal{T} is an expression

$$X \rightarrow h$$

where $X \in \mathcal{V}$ and $h \in (\mathcal{V} \cup T)^*$.

- ► The elements of \mathscr{V} are called *variables*, and the elements of T are called *terminals*.
- ▶ If P stands for the production $X \to h$ and $u, v \in (\mathscr{V} \cup T)^*$, we write

$$u \Rightarrow_P v$$

to mean that there are words $p, q \in (\mathcal{V} \cup T)^*$ such that u = pXq and v = phq.

▶ Productions $X \to 0$ are called *null productions*.

Context-Free Grammar

A context-free grammar Γ with variables $\mathscr V$ and terminals T consists of a finite set of context-free productions on $\mathscr V$, T together with a designated symbol $S \in \mathscr V$ called the start symbol.

- ▶ Collectively, the set $\mathscr{V} \cup T$ is called the *alphabet* of Γ .
- ▶ If none of the productions of Γ is a null production, Γ is called a *positive context-free grammar*.

Derivation

If Γ is a context-free grammar with variables $\mathscr V$ and terminals T, and if $u,v\in (\mathscr V\cup T)^*$, we write

$$u \Rightarrow_{\Gamma} v$$

to mean that $u \Rightarrow_P v$ for some production P of Γ . We write

$$u \Rightarrow_{\Gamma}^{*} v$$

to mean there is a sequence u_1, \ldots, u_m where $u = u_1, u_m = v$, and

$$u_i \Rightarrow_{\Gamma} u_{i+1}$$
 for $1 \le i < m$.

The sequence u_1, \ldots, u_m is called a *derivation of v from u in* Γ .

- ightharpoonup The number m is called the length of the derivation.
- ▶ The subscript Γ in \Rightarrow_{Γ} may be omitted when no ambiguity results.

Context-Free Language

Let Γ be a context-free grammar with terminals T and start symbol S, we define

$$L(\Gamma) = \{ u \in T^* \mid S \Rightarrow^* u \}.$$

- $L(\Gamma)$ is called the language generated by Γ .
- ▶ A Language $L \subseteq T^*$ is called *context-free* is there is a context-free grammar Γ such that $L = L(\Gamma)$.

Context-Free Language, An Example

A simple example of a context-free grammar Γ is given by $\mathscr{V} = \{S\}$, $T = \{a, b\}$, and the productions

$$S \rightarrow aSb$$

$$S \rightarrow ab$$

► Clearly, we have

$$L(\Gamma) = \{a^{[n]}b^{[n]} \mid n > 0\}.$$

- ► That is, the language $\{a^{[n]}b^{[n]} \mid n > 0\}$ is context-free.
- ▶ Note that $L(\Gamma)$ is not regular.
- ► Later we shall show that every regular language is context-free.

Positive Context-Free Grammar

- ▶ Recall that if none of the productions of a context-free grammar Γ is a null production, Γ is called a *positive* context-free grammar.
- ▶ If Γ is a positive context-free grammar, then $0 \notin L(\Gamma)$.
- ▶ The following algorithm transforms a given context-free grammar Γ into a positive context-free grammar $\bar{\Gamma}$ such that $L(\Gamma) = L(\bar{\Gamma})$ or $L(\Gamma) = L(\bar{\Gamma}) \cup \{0\}$.
 - 1. First we compute the *kernel* of Γ ,

$$\ker(\Gamma) = \{ V \in \mathscr{V} \mid V \Rightarrow_{\Gamma}^* 0 \}.$$

2. Then we obtain $\bar{\Gamma}$ by first adding all productions that can be obtained from the productions of Γ by deleting from the righthand sides one or more variables belonging to $\ker(\Gamma)$ and then deleting all null productions.

8 / 35

Positive Context-Free Grammar, An Example

Consider the context-free grammar Γ with productions

$$S \rightarrow XYYX, \quad S \rightarrow aX, \quad X \rightarrow 0, \quad Y \rightarrow 0.$$

We obtain a positive context-free grammar $\bar{\Gamma}$ by

1. first computing the *kernel* of Γ ,

$$\ker(\Gamma) = \{X, Y, S\}.$$

2. then obtaining the productions of $\bar{\Gamma}$ as the following:

$$S \rightarrow XYYX, \quad S \rightarrow YYX, \quad S \rightarrow XYX, \quad S \rightarrow XYY,$$
 $S \rightarrow YX, \quad S \rightarrow YY, \quad S \rightarrow XX, \quad S \rightarrow XY,$ $S \rightarrow X, \quad S \rightarrow Y,$ $S \rightarrow X, \quad S \rightarrow X, \quad S \rightarrow X,$ $S \rightarrow X, \quad S \rightarrow X,$

Positive Context-Free Grammar, Continued

Theorem 1.2. A language L is context-free if and only if there is a positive context-free grammar Γ such that

$$L = L(\Gamma)$$
 or $L = L(\Gamma) \cup \{0\}$.

Moreover, there is an algorithm that will transform a context-free grammar Δ for which $L = L(\Delta)$ into a positive context-free grammar Γ that satisfies the above equation.

Γ-tree

Let Γ be a *positive* context-free grammar with alphabet $\mathscr{V} \cup \mathcal{T}$, where \mathcal{T} consists of the terminals and \mathscr{V} is the set of variables. A tree is called a Γ -tree if it satisfies the following conditions:

- 1. the root is labeled by a variable;
- 2. each vertex which is not a leaf is labeled by a variable;
- 3. if a vertex is labeled X and its immediate successors (i.e. children) are labeled $\alpha_1, \alpha_2, \ldots, \alpha_k$ (reading from left to right), then $X \to \alpha_1 \alpha_2 \ldots \alpha_k$ is a production of Γ .

Let \mathscr{T} be a Γ -tree, and let v be a vertex of Γ which is labeled by the variable X. We shall speak of the *subtree* \mathscr{T}^v of \mathscr{T} determined by v. The vertices of \mathscr{T}^v are v, its immediate successors in \mathscr{T} , their immediate successors, and so on. Clearly, \mathscr{T}^v is itself a Γ -tree.

Derivation Tree

- ▶ If \mathscr{T} is a Γ -tree, we write $\langle \mathscr{T} \rangle$ for the word that consists of the labels of the leaves of \mathscr{T} reading from left to right.
- ▶ If the root of \mathscr{T} is labeled by the start symbol symbol S of Γ and if $w = \langle \mathscr{T} \rangle$, then \mathscr{T} is called a *derivation tree for w in* Γ .
- See the tree shown in Fig. 1.1 for a derivation tree for $a^{[4]}b^{[3]}$ in the grammar shown in the same figure

Theorem 1.3. If Γ is a positive context-free grammar, and $S \Rightarrow_{\Gamma}^* w$, then there is a derivation tree for w in Γ .

Leftmost Derivation and Rightmost Derivation

Definition. We write $u \Rightarrow_I v$ in Γ if u = xXy and v = xzy, where $X \to z$ is a production of Γ and $x \in T^*$. If instead, $x \in (\mathscr{V} \cup T)^*$ but $y \in T^*$, we write $u \Rightarrow_r v$.

- ▶ When $u \Rightarrow_l v$, it is the *leftmost* variable in u for which a substitution is made. whereas when $u \Rightarrow_r v$, it is the *rightmost* variable in u.
- A derivation

$$u_1 \Rightarrow_I u_2 \Rightarrow_I u_3 \Rightarrow_I \dots u_n$$

is called a *leftmost* derivation, and then we write $u_1 \Rightarrow_l^* u_n$. Similarly, a derivation

$$u_1 \Rightarrow_r u_2 \Rightarrow_r u_3 \Rightarrow_r \dots u_n$$

is called a *rightmost* derivation, and we write $u_1 \Rightarrow_r^* u_n$.

Leftmost Derivation and Rightmost Derivation, Examples

Consider the following positive context-free grammar

$$S \rightarrow aXbY$$
, $X \rightarrow aX$, $X \rightarrow a$, $Y \rightarrow bY$, $Y \rightarrow b$

and consider the following three derivations of $a^{[4]}b^{[3]}$ from S:

- 1. $S \Rightarrow aXbY \Rightarrow a^{[2]}XbY \Rightarrow a^{[3]}XbY \Rightarrow a^{[4]}bY \Rightarrow a^{[4]}b^{[2]}Y \Rightarrow a^{[4]}b^{[3]}$
- 2. $S \Rightarrow aXbY \Rightarrow a^{[2]}XbY \Rightarrow a^{[2]}Xb^{[2]}Y \Rightarrow a^{[3]}Xb^{[2]}Y \Rightarrow a^{[3]}Xb^{[3]} \Rightarrow a^{[4]}b^{[3]}$
- 3. $S \Rightarrow aXbY \Rightarrow aXb^{[2]}Y \Rightarrow aXb^{[3]} \Rightarrow a^{[2]}Xb^{[3]} \Rightarrow a^{[3]}Xb^{[3]} \Rightarrow a^{[4]}b^{[3]}$

The first derivation is leftmost, the last is rightmost, and the second is neither.

Leftmost Derivation and Rightmost Derivation, Continued

Theorem 1.4. Let Γ be a positive context-free grammar with start symbol S and terminals T. Let $w \in T^*$. Then the following conditions are equivalent:

- 1. $w \in L(\Gamma)$;
- 2. there is a derivation tree for w in Γ ;
- 3. there is a leftmost derivation of w from S in Γ ;
- 4. there is a rightmost derivation of w from S in Γ .

Branching Context-Free Grammar

Definition. A positive context-free grammar is called *branching* if it has no productions of the form $X \to Y$, where X and Y are variables.

Theorem 1.5. There is an algorithm that transforms a given positive context-free grammar Γ into a branching grammar Δ such that $L(\Delta) = L(\Gamma)$.

Proof. We transform Γ into Δ in two steps. First, we eliminate from Γ all the "cycling" productions

$$X_1 \rightarrow X_2, X_2 \rightarrow X_3, \dots, X_k \rightarrow X_1$$

and replace variables X_1, X_2, \ldots, X_k in the remaining productions of Γ by a new variable X. Next, we eliminate production $X \to Y$, but add to Γ productions $X \to x$ for each word $x \in (\mathscr{V} \cup T)^*$ for which $Y \to x$ is a production of Γ .

Path in a Γ-tree

A path in a Γ -tree $\mathscr T$ is a sequence $\alpha_1,\alpha_2,\ldots,\alpha_k$ of vertices of $\mathscr T$ such that α_{i+1} is an immediate successor of α_i for $i=1,2,\ldots,k-1$. All of the vertices on the path are called descendants of α_1 .

We may have two different vertices α, β lie on the same path in the derivation tree $\mathscr T$ and are labeled by the same variable X. In such a case one of the vertices is a descendant of the other, say, β is a descendant of α . Therefore, $\mathscr T^\beta$ is not only a subtree of $\mathscr T$ but also of $\mathscr T^\alpha$.

We wish to consider two important operations in the derivation tree \mathscr{T} which can be performed in this case. The two operations are called *pruning* and *splicing*.

Pruning and Splicing

- Pruning is the operation that removes the subtree \mathscr{T}^{α} from the vertex α and to graft the subtree \mathscr{T}^{β} in its place.
- ▶ Splicing is the operation that removes the subtree \mathscr{T}^{β} from the vertex β and to graft an exact copy of \mathscr{T}^{α} in its place.
- ▶ Because α and β are labeled by the same variable, the trees obtained by pruning and splicing are themselves derivation trees.
- ► See Fig. 1.3 in the textbook for illustrations of pruning and splicing.

Pruning and Splicing, Continued

Let \mathscr{T}_p and \mathscr{T}_s be trees obtained from a derivation tree \mathscr{T} in a branching grammar by pruning and splicing, respectively, where α and β are as before.

We have $\langle \mathcal{T} \rangle = r_1 \langle \mathcal{T}^\alpha \rangle r_2$ for words r_1, r_2 and $\langle \mathcal{T}^\alpha \rangle = q_1 \langle \mathcal{T}^\beta \rangle q_2$ for words q_1, q_2 . Since α, β are distinct vertices, and since the grammar is branching, q_1 and q_2 cannot both be 0. (That is, $q_1 q_2 \neq 0$.)

Also,

$$\langle \mathscr{T}_p \rangle = r_1 \langle \mathscr{T}^\beta \rangle r_2 \text{ and } \langle \mathscr{T}_s \rangle = r_1 q_1^{[2]} \langle \mathscr{T}^\beta \rangle q_2^{[2]} r_2.$$

Since $q_1q_2 \neq 0$, we have $|\langle \mathcal{T}^{\beta} \rangle| < |\langle \mathcal{T}^{\alpha} \rangle|$ and hence $|\langle \mathcal{T}_{\rho} \rangle| < |\langle \mathcal{T} \rangle|$.

Pruning and Splicing, Continued

Theorem 1.6. Let Γ be a branching context-free grammar, let $u \in L(\Gamma)$, and let u have a derivation tree $\mathscr T$ in Γ that has two different vertices on the same path labeled by the same variable. Then there is a word $v \in L(\Gamma)$ such that |v| < |u|.

Proof. Since
$$u = \langle \mathcal{T} \rangle$$
, we need only take $v = \langle \mathcal{T}_p \rangle$.

Regular Grammars

Definition. A context-free grammar is called *regular* if each of its productions has one of the two forms

$$U \rightarrow aV$$
 or $U \rightarrow a$

where U, V are variables and a is a terminal.

Theorem 2.1. If
$$L$$
 is a regular language, then there is a regular grammar Γ such that either $L = L(\Gamma)$ or $L = L(\Gamma) \cup \{0\}$.

A Regular Grammar for Every Regular Language

Proof of Theorem 2.1. Let $L = L(\mathcal{M})$, where \mathcal{M} is a dfa with states q_1, \ldots, q_m , alphabet $\{s_1, \ldots, s_n\}$, transition function δ , and the set of accepting states F. We construct a grammar Γ with variables q_1, \ldots, q_m , terminals s_1, \ldots, s_n , and start symbol q_1 . The productions are

- 1. $q_i \rightarrow s_r q_j$ whenever $\delta(q_i, s_r) = q_j$, and
- 2. $q_i \rightarrow s_r$ whenever $\delta(q_i, s_r) \in F$.

Clearly the grammar Γ is regular. To show that $L(\Gamma) = L - \{0\}$ we suppose $u \in L, u = s_{i_1} s_{i_2} \dots s_{i_l} s_{i_{l+1}} \neq 0$. Thus, $\delta^*(q_1, u) \in F$, so that we have

$$\delta(q_1, s_{i_1}) = q_{j_1}, \quad \delta(q_{j_1}, s_{i_2}) = q_{j_2}, \quad \dots, \quad \delta(q_{j_l}, s_{i_{l+1}}) = q_{j_{l+1}} \in F.$$

A Regular Grammar for Every Regular Language, Continued

Proof of Theorem 2.1. (Continued) By construction, grammar Γ contains the productions

$$q_1 o s_{i_1} q_{j_1}, \quad q_{j_1} o s_{i_2} q_{j_2}, \quad \dots, \quad q_{j_{l-1}} o s_{i_l} q_{j_l}, \quad q_{j_l} o s_{i_{l+1}}.$$

Thus, we have in Γ

$$q_1 \Rightarrow s_{i_1}q_{j_1} \Rightarrow s_{i_1}s_{i_2}q_{j_2} \Rightarrow \ldots \Rightarrow s_{i_1}s_{i_2}\ldots s_{i_l}q_{j_l} \Rightarrow s_{i_1}s_{i_2}\ldots s_{i_l}s_{i_{l+1}} = u$$

so that $u \in L(\Gamma)$.

Conversely, suppose that $u \in L(\Gamma)$, $u = s_{i_1} s_{i_2} \dots s_{i_l} s_{i_{l+1}}$. Then there is a derivation of u from q_1 in Γ . By construction, Γ has all the necessary productions to simulate the transition $\delta^*(q_1, u) \in F$ in the dfa \mathcal{M} .

A Regular Language for Every Regular Grammar

Theorem 2.2. Let Γ be a regular grammar. Then $L(\Gamma)$ is a regular language.

Proof. Let Γ have the variables V_1, V_2, \ldots, V_K , where $S = V_1$ is the start symbol, and terminals s_1, s_2, \ldots, s_n . Since Γ is regular, its productions are of the form $V_i \to s_r V_j$ and $V_i \to s_r$. We now construct the following ndfa \mathscr{M} which accepts precisely $L(\Gamma)$.

- ▶ The states are $V_1, V_2, ..., V_K$ and an additional state W. V_1 is the initial state and W is the only accepting state.
- ► For transition functions, let

$$\delta_1(V_i, s_r) = \{V_j \mid V_i \to s_r V_j \text{ is a production of } \Gamma\},$$

$$\delta_2(V_i, s_r) = \begin{cases} \{W\} & \text{if } V_i \to s_r \text{ is a production of } \Gamma \\ \emptyset & \text{otherwise.} \end{cases}$$

Then define the transition function δ as $\delta(V_i, s_r) = \delta_1(V_i, s_r) \cup \delta_2(V_i, s_r)$.

A Regular Language for Every Regular Grammar

Proof of Theorem 2.2. (Continued) Now let $u = s_{i_1} s_{i_2} \dots s_{i_l} s_{i_{l+1}} \in L(\Gamma)$. Thus we have

$$V_1 \Rightarrow s_{i_1} V_{j_1} \Rightarrow s_{i_1} s_{i_2} V_{j_2} \Rightarrow^* s_{i_1} s_{i_2} \dots s_{i_l} V_{i_l} \Rightarrow s_{i_1} s_{i_2} \dots s_{i_l} s_{i_{l+1}}$$

where Γ contains the productions

$$V_1 \to s_{i_1} V_{j_1}, \quad V_{j_1} \to s_{i_2} V_{j_2}, \quad \dots, V_{j_{l-1}} \to s_{i_l} V_{j_l}, \quad V_{j_l} \to s_{i_{l+1}}$$

Thus,

$$V_{j_1} \in \delta(V_1, s_{i_1}), \quad V_{j_2} \in \delta(V_{j_1}, s_{i_2}), \quad \ldots, \quad W \in \delta(V_{j_l}, s_{i_{l+1}}).$$

Thus $W \in \delta^*(V_1, u)$ and $u \in L(\mathcal{M})$.

Conversely, if $u = s_{i_1} s_{i_2} \dots s_{i_l} s_{i_{l+1}}$ is accepted by \mathcal{M} , then there must be a sequence of transitions of the form above. Hence, the productions listed above must all belong to Γ , so that there is a derivation of u from V_1 .

Every Regular Language Is Context-free

Theorem 2.3. A language L is regular if and only if there is a regular grammar Γ such that either $L = L(\Gamma)$ or $L = L(\Gamma) \cup \{0\}$. \square

Corollary 2.4. Every regular language is context-free.

Right-linear Grammars

Definition. A context-free grammar is called *right-linear* if each of its productions has one of the two forms

$$U \rightarrow xV$$
 or $U \rightarrow x$,

where U, V are variables and $x \neq 0$ is a word consisting entirely of terminals.

Thus, a regular grammar is just a right-linear grammar in which |x|=1.

Right-linear Grammars, Continued

Theorem 2.5. Let Γ be a right-linear grammar. Then $L(\Gamma)$ is regular.

Proof. We replace each production of Γ of the form

$$U \rightarrow a_1 a_2 \dots a_n V, \quad n > 1$$

by the productions

$$U \rightarrow a_1 Z_1, \quad Z_1 \rightarrow a_2 Z_2, \quad Z_{n-2} \rightarrow a_{n-1} Z_{n-1}, \quad Z_{n-1} \rightarrow a_n V,$$

where Z_1, \ldots, Z_{n-1} are new variables. Do similar replacement for production

$$U \rightarrow a_1 a_2 \dots a_n$$
, $n > 1$

Chomsky Normal Form

Definition. A context-free grammar Γ with variables \mathscr{V} and terminals T is in *Chomsky normal form* if each of its productions has one of the forms

$$X \rightarrow YZ$$
 or $X \rightarrow a$,

where $X, Y, Z \in \mathcal{V}$ and $a \in T$.

Theorem 3.1. There is an algorithm that transforms a given positive context-free grammar Γ into a Chomsky normal form grammar Δ such that $L(\Gamma) = L(\Delta)$.

Chomsky Normal Form, Continued

Proof of Theorem 3.1. Using Theorem 1.5, we begin with a branching context-free grammar Γ with variable $\mathscr V$ and terminals T. We then perform the following two steps:

- 1. a new variable X_a is introduced for each $a \in T$, and for each production $X \to x \in \Gamma, |x| > 1$, we replace it with $X \to x'$ where x' is obtained from x by replacing each terminal a by the corresponding new variable X_a ;
- 2. For productions of the form $X \to X_1 X_2 \dots X_k$, k > 2, we introduce new variables Z_1, Z_2, \dots, Z_{k-2} and replace the production with the following

$$\begin{array}{ccc} X & \rightarrow & X_1 Z_1 \\ & \vdots & & \\ Z_{k-3} & \rightarrow & X_{k-2} Z_{k-2} \\ Z_{k-2} & \rightarrow & X_{k-1} X_k. \end{array}$$

Chomsky Normal Form, Examples

Consider the following branching context-free grammar

$$S \rightarrow aXbY$$
, $X \rightarrow aX$, $Y \rightarrow bY$, $X \rightarrow a$, $Y \rightarrow b$

The resulting grammar, respectively, from the two steps is:

1.

$$S \to X_a X X_b Y$$
, $X \to X_a X$, $Y \to X_b Y$, $X \to a$, $X_a \to a$, $Y \to b$, $X_b \to b$

2. For the production $S \to X_a X X_b Y$, we replace it with the following:

$$\begin{array}{ccc} S & \rightarrow & X_a Z_1 \\ Z_1 & \rightarrow & X Z_2 \\ Z_2 & \rightarrow & X_b Y. \end{array}$$

The resulting grammar is in Chomsky normal form.

Bar-Hillel's Pumping Lemma

An application of Chomsky normal form is in the proof of the following theorem, which is an analogy for context-free languages of the pumping lemma for regular languages.

Theorem 4.1. Let Γ be a Chomsky normal form grammar with exactly n variables, and let $L = L(\Gamma)$. Then, for every $x \in L$ for which $|x| > 2^n$, we have $x = r_1 q_1 r q_2 r_2$, where

- 1. $|q_1rq_2| \leq 2^n$;
- 2. $q_1q_2 \neq 0$;
- 3. for all $i \geq 0$, $r_1q_1^{[i]}rq_2^{[i]}r_2 \in L$.

Bar-Hillel's Pumping Lemma, Application

Theorem 4.2. The language $L = \{a^{[n]}b^{[n]}c^{[n]} \mid n > 0\}$ is *not* context-free.

Proof. Suppose that L is context-free with $L=L(\Gamma)$, where Γ is a Chomsky normal form grammar with n variables. Choose k so large that $|a^{[k]}b^{[k]}c^{[k]}|>2^n$. Then $a^{[k]}b^{[k]}c^{[k]}=r_1q_1rq_2r_2$, where $x_i=r_1\ q_1^{[i]}\ r\ q_2^{[i]}\ r_2\in L$

for all $i \ge 0$. As $x_2 = r_1q_1q_1rq_2q_2r_2 \in L$, we know that q_1 and q_2 must each contain only one of the letters a, b, c. That is, one letter is missing in both q_1 and q_2 .

But as i=2,3,4,... contains more and more copies of q_1 and q_2 and since $q_1q_2 \neq 0$, it is impossible for x_i to have the same number of occurrences of a,b, and c. This contradiction shows that L is not context-free.