Preliminaries (1) Programs and Computable Functions (2)

COT 5310: Theory of Automata and Formal Languages

Lecture 7

Florida State University Department of Computer Science

Slides Credit: Dr. Michael Mascagni, CS FSU

Alphabets and Strings

- An *alphabet* is a finite nonempty set *A* of *symbols*.
- ► An *n*-tuple of symbols of A is called a *word* or a *string* on A. In stead of writing a word as (a₁, a₂,..., a_n) we write simply a₁a₂...a_n.
- If $u = a_1 a_2 \dots a_n$, then we say that *n* is the length of *u* and we write |u| = n.
- ▶ We allow a unique null word, written 0, of length 0.
- ▶ The set of all words on the alphabet A is written as A^{*}.
- Any subset of A* is called a language on A or a language with alphabet A.

Alphabets and Strings, More

- If u, v ∈ A*, then we write uv for the word obtained by placing the string v after the string u. For example, if A = {a, b, c}, u = bab, and v = caa, then uv = babcaa.
- Where no confusion can result, we write uv instead of \widehat{uv} .
- It is obvious that, for all u, u0 = 0u = u, and that, for all u, v, w, u(vw) = (uv)w.
- If *u* is a string, and $n \in N$, n > 0, we write

$$u^{[n]} = \underbrace{uu \dots u}_{n}$$

We also write $n^{[0]} = 0$.

 If u ∈ A*, we write u^R for u written backward; i.e., if u = a₁a₂...a_n, then u^R = a_n...a₂a₁. Clearly, 0^R = 0, and (uv)^R = v^Ru^R for u, v ∈ A*.

The Concept of Finite Automata

- A finite automaton has a finite number of internal states that control its behavior. The states function as memory in the sense that the current state keeps track of the progress of the computation.
- The automaton begins by reading the leftmost symbol on a finite input tape, in a specific state called the *initial state*.
- If at a given time, the automaton is in a state q_i, reading a given symbol s_j on the input tape, the machine moves one square to the right on the tape and enters a state q_k.
- The current state plus the symbol being read from the tape completely determine the automaton's next state.
- When all symbols have been read, the automaton either stops at an accepting state or a non-accepting state.

Definition of Finite Automaton

Definition. A finite automaton M consists of

- an alphabet $A = \{s_1, s_2, \ldots, s_n\}$,
- a set of states $Q = \{q_1, q_2, \ldots, q_m\}$,
- a transition function δ that maps each pair $(q_i, s_j), 1 \le i \le m, 1 \le j \le n$, into a state q_k ,
- a set $F \subseteq Q$ of *final* or *accepting* states, and
- ▶ an *initial* state $q_1 \in Q$.

We can represent the transition function δ using a state versus symbol table.

What Does This Automaton Do?

The finite automaton \mathscr{M} has

- alphabet $A = \{a, b\}$,
- the set of *states* $Q = \{q_1, q_2, q_3, q_4\}$,
- the *transition function* δ defined by the following table:

δ	а	b
q_1	q ₂	q_4
q ₂	q 2	q 3
q 3	q_4	q 3
q_4	q_4	q_4

• the set $F = \{q_3\}$ as the accepting states, and

q₁ as the initial state.

What Does Automaton *M* Do?

For strings *aabbb*, *baba*, *aaba*, and *abbb*, the finite automaton \mathcal{M}

- accepts aabbb as *M* terminates in state q₃, which is an accepting state;
- rejects baba as *M* terminates in state q₄, which is not an accepting state;
- rejects aaba as *M* terminates in state q₄, which is not an accepting state;
- accepts *abbb* as *M* terminates in state q₃, which is an accepting state.

Finite Automata (9.1) Nondeterministic Finite Automata (9.2) Additional Examples (9.3) Closure Properties (9.4)

Function $\delta^*(q_i, u)$

If q_i is any state of \mathscr{M} and $u \in A^*$, we shall write $\delta^*(q_i, u)$ for the state which \mathscr{M} will enter if it begins in state q_i at the left end of the string u and moves across u until the entire string has been processed.

- $\delta^*(q_1, aabbb) = q_3$,
- $\delta^*(q_1, baba) = q_4$,
- $\delta^*(q_1, aaba) = q_4$,
- $\delta^*(q_1, abbb) = q_3.$

Definition of Function $\delta^*(q_i, u)$

A formal definition of function $\delta^*(q_i, u)$ is by the following recursion:

$$\begin{array}{lll} \delta^*(q_i,0) &=& q_i, \\ \delta^*(q_i,us_j) &=& \delta(\delta^*(q_i,u),s_j). \end{array}$$

Obviously, $\delta^*(q_i, s_j) = \delta(q_i, s_j)$.

We say that \mathscr{M} accepts a word u provided that $\delta^*(q_1, u) \in F$. \mathscr{M} rejects a word u means that $\delta^*(q_1, u) \in Q - F$.

Finite Automata (9.1) Nondeterministic Finite Automata (9.2) Additional Examples (9.3) Closure Properties (9.4)

Regular Languages

The language accepted by a finite automaton \mathcal{M} , written $L(\mathcal{M})$, is the set of all $u \in A^*$ accepted by \mathcal{M} :

$$L(\mathscr{M}) = \{ u \in A^* \mid \delta^*(q_1, u) \in F \}.$$

A language is called *regular* if there exists a finite automaton that accepts it.

What Language Does This Automaton Accept?

The finite automaton ${\mathscr{M}}$ has

- the alphabet $A = \{a, b\}$,
- the set of states $Q = \{q_1, q_2, q_3, q_4\}$,
- \blacktriangleright the transition function δ defined by the following table:

δ	а	b
q_1	q ₂	q_4
q ₂	q 2	q 3
q 3	q_4	q 3
q_4	q_4	q_4

• the set $F = \{q_3\}$ as the accepting states, and

q₁ as the initial state.

Preliminaries (1) Regular Languages (9) Finite Automata (9.1) Nondeterministic Finite Automata (9.2) Additional Examples (9.3) Closure Properties (9.4)

What Language Does Automaton *M* Accept?

The language it accepts is

 $\{a^{[n]}b^{[m]} \mid n,m>0\}.$

As the above language is accepted by a finite automaton, we say it is a regular language.

Finite Automata (9.1) Nondeterministic Finite Automata (9.2) Additional Examples (9.3) Closure Properties (9.4)

State Transition Diagram

- Another way to represent the transition function δ is to draw a graph in which each state is represented by a *vertex*.
- The fact that $\delta(q_i, s_j) = q_k$ is represented by drawing an *arrow* from vertex q_i to vertex q_k and labeling it s_i .
- The diagram thus obtained is called the state transition diagram for the given automaton.
- See Fig. 1.1 in the textbook (p. 240) for the state transition diagram for the finite automaton we just showed in the previous two slides.

Nondeterministic Finite Automata

- We modify the definition of a finite automaton to permit transitions at each stage to either zero, one, or more than one states.
- That is, we make the the values of the transition function δ be sets of states, i.e., sets of elements of Q (rather than members of Q).
- The devices so obtained are called *nondeterministic finite automata* (ndfa).
- Sometimes the ordinary finite automata are then called deterministic finite automata (dfa).

Definition of Nondeterministic Finite Automaton

Definition. A nondeterministic finite automaton M consists of

- an alphabet $A = \{s_1, s_2, \ldots, s_n\}$,
- a set of states $Q = \{q_1, q_2, \dots, q_m\}$,
- ► a transition function δ that maps each pair $(q_i, s_j), 1 \le i \le m, 1 \le j \le n$, into a subset of states $Q_k \subseteq Q$,
- a set $F \subseteq Q$ of final or accepting states, and
- an initial state $q_1 \in Q$.

Preliminaries (1) Regular Languages (9)

Definition of Function $\delta^*(q_i, u)$

The formal definition of function $\delta^*(q_i, u)$ is now by:

$$egin{array}{rcl} \delta^*(q_i,0)&=&\{q_i\},\ \delta^*(q_i,us_j)&=&igcup_{q\in\delta^*(q_i,u)}\delta(q,s_j). \end{array}$$

- ► A ndfa \mathscr{M} with initial state q_1 accepts $u \in A^*$ if $\delta^*(q_1, u) \cap F \neq \emptyset$.
- ► That is, at least one of the states at which *M* ultimately arrives belongs to *F*.

L(M), the language accepted by M, is the set of all strings accepted by M.

What Does This Automaton Do?

The nondeterministic finite automaton ${\mathscr M}$ has

- the alphabet $A = \{a, b\}$,
- the set of states $Q = \{q_1, q_2, q_3, q_4\}$,
- \blacktriangleright the transition function δ defined by the following table:

δ	а	b
q_1	$\{q_1, q_2\}$	$\{q_1, q_3\}$
q_2	${q_4}$	Ø
q 3	Ø	$\{q_4\}$
q_4	$\{q_4\}$	$\{q_4\}$

• the set $F = \{q_4\}$ as the accepting states, and

- q₁ as the initial state.
- ► For the state transition diagram of *M*, see Fig. 2.1 in the textbook (p. 243).

Preliminaries (1) Regular Languages (9) Finite Automata (9.1) Nondeterministic Finite Automata (9.2) Additional Examples (9.3) Closure Properties (9.4)

What Strings Does Automaton *M* Accept?

M accepts a string on the alphabet $\{a, b\}$ just in case at least one of the symbols has two successive occurrence in the string.

Why?

Finite Automata (9.1) Nondeterministic Finite Automata (9.2) Additional Examples (9.3) Closure Properties (9.4)

Viewing dfa as ndfa

- Strictly speaking, a dfa is not just a special kind of ndfa.
- This is because for a dfa, δ(q, s) is a state, where for a ndfa it is a set of states.
- But it is natural to identify a dfa \mathscr{M} with transition function δ , with the closely related ndfa $\mathscr{\overline{M}}$ whose transition function $\overline{\delta}$ is given by

$$\bar{\delta}(q,s) = \{\delta(q,s)\},\$$

and which has the same final states as \mathcal{M} .

• It is obviously that $L(\mathcal{M}) = L(\bar{\mathcal{M}})$.

Finite Automata (9.1) Nondeterministic Finite Automata (9.2) Additional Examples (9.3) Closure Properties (9.4)

dfa is as expressive as ndfa

Theorem 2.1. A language is accepted by a ndfa if and only if it is regular. Equivalently, a language is accepted by an ndfa if and only if it is accepted by a dfa.

Proof Outline. As we have seen, a language accepted by a dfa is also accepted by an ndfa.

Conversely, let $L = L(\mathcal{M})$, where \mathcal{M} is an ndfa with transition function δ , set of states $Q = \{q_1, \ldots, q_m\}$, and set of final states F. We will construct a dfa $\tilde{\mathcal{M}}$ such that $L(\tilde{\mathcal{M}}) = L(\mathcal{M}) = L$.

The idea of the construction is that the individual states of $\tilde{\mathscr{M}}$ will be sets of states of \mathscr{M} .

Constructing $\tilde{\mathscr{M}}$

The dfa $\mathscr{\tilde{M}}$ consists of

- ▶ the same alphabet $A = \{s_1, s_2, \dots, s_n\}$ of the ndfa \mathcal{M} ,
- ► the set of states Q̃ = {Q₁, Q₂,..., Q_{2^m}} which consists of all the 2^m subsets of the set of states of the ndfa *M*,
- \blacktriangleright the transition function $\tilde{\delta}$ defined by

$$ilde{\delta}({\mathcal Q}_i,s) = igcup_{q\in {\mathcal Q}_i} \delta(q,s),$$

the set *F* of final states given by

 $\mathscr{F} = \{ Q_i \mid Q_i \cap F \neq \emptyset \},\$

• the initial state $Q_1 = \{q_1\}$, where q_1 is the initial state of \mathcal{M} .

Preliminaries (1) Regular Languages (9) Closure Properties (9.4) Finite Automata (9.1) Nondeterministic Finite Automata (9.2) Additional Examples (9.3) Closure Properties (9.4)

Lemma 1. Let $R \subseteq \tilde{Q}$. Then

$$ilde{\delta}(igcup_{Q_i\in R}Q_i,\ s)=igcup_{Q_i\in R}\ ilde{\delta}(Q_i,s).$$

Proof. Let $\bigcup_{Q_i \in R} Q_i = Q$. Then by definition,

$$egin{array}{rll} ilde{\delta}(Q,s)&=&igcup_{q\in Q}\delta(q,s)\ &=&igcup_{Q_i\in R}igcup_{q\in Q_i}\delta(q,s)\ &=&igcup_{Q_i\in R} ilde{\delta}(Q_i,s). \end{array}$$

 Preliminaries (1)
 Finite Automata (9.1)

 Regular Languages (9)
 Additional Examples (9.3)

 Closure Properties (9.4)

Lemma 2. For any string *u*,

$$\tilde{\delta}^*(Q_i, u) = \bigcup_{q \in Q_i} \delta^*(q, u).$$

Proof. The proof is by induction on |u|. If |u| = 0, then u = 0 and

$$ilde{\delta}^*(\mathcal{Q}_i,0)=\mathcal{Q}_i=igcup_{q\in\mathcal{Q}_i}\ \{q\}=igcup_{q\in\mathcal{Q}_i}\ \delta^*(q,0)$$

Preliminaries (1) Regular Languages (9) Finite Automata (9.1) Additional Examples (9.3) Closure Properties (9.4)

Proof. (Continued) If |u| = l + 1 and the result is known for |u| = l, we write u = vs, where |v| = l, and observe that, using Lemma 1 and the induction hypothesis,

$$\begin{split} \tilde{\delta}^*(Q_i, u) &= \tilde{\delta}^*(Q_i, vs) &= \tilde{\delta}(\tilde{\delta}^*(Q_i, v), s) \\ &= \tilde{\delta}(\bigcup_{q \in Q_i} \delta^*(q, v), s) \\ &= \bigcup_{q \in Q_i} \tilde{\delta}(\delta^*(q, v), s) \\ &= \bigcup_{q \in Q_i} \bigcup_{r \in \delta^*(q, v)} \delta(r, s) \\ &= \bigcup_{q \in Q_i} \delta^*(q, vs) = \bigcup_{q \in Q_i} \delta^*(q, u). \end{split}$$

Preliminaries (1) Regular Languages (9) Closure Properties (9.4) Finite Automata (9.2) Additional Examples (9.3) Closure Properties (9.4)

Lemma 3. $L(\mathcal{M}) = L(\tilde{\mathcal{M}}).$

Proof. $u \in L(\tilde{\mathscr{M}})$ if and only if $\tilde{\delta}^*(Q_1, u) \in \mathscr{F}$. But, by Lemma 2, $\tilde{\delta}^*(Q_1, u) = \tilde{\delta}^*(\{q_1\}, u) = \delta^*(q_1, u).$

Hence,

$$u \in L(\tilde{\mathscr{M}})$$
 if and only if $\delta^*(q_1, u) \in \mathscr{F}$
if and only if $\delta^*(q_1, u) \cap F \neq \emptyset$
if and only if $u \in L(\mathscr{M})$

Note that Theorem 2.1 is an immediate consequence of Lemma 3.

Additional Examples

Construct a dfa that accepts the language:

 $\{(11)^{[n]} \mid n \ge 0\}$

- ▶ The vendor machine example. (Fig. 3.2 in textbook, p. 248)
- Construct an ndfa that accepts all and only strings which end in *bab* or *aaba*.
- Construct an ndfa that accepts the language:

 $\{a^{[n_1]}b^{[m_1]}\dots a^{[n_k]}b^{[m_k]} \mid n_1, m_1, \dots, n_k, m_k > 0\}.$

Closure properties

- To show that the class of regular languages is closed under a large number of operations.
- To use deterministic or nondeterministic finite automata whenever necessary, as the two classes of automata are equivalent in expressiveness (Theorem 2.1).

Nonrestarting dfa

Definition. A dfa is called *nonrestarting* if there is no pair q, s for which

 $\delta(q,s)=q_1$

where q_1 is the initial state.

Theorem 4.1. There is an algorithm that will transform a given dfa \mathscr{M} into a nonrestarting dfa $\widetilde{\mathscr{M}}$ such that $L(\widetilde{\mathscr{M}}) = L(\mathscr{M})$.

Preliminaries (1) Regular Languages (9) Closure Properties (9.4) Finite Automata (9.2) Additional Examples (9.3) Closure Properties (9.4)

Constructing a nonrestarting dfa from a dfa

Proof of Theorem 4.1. From a dfa \mathscr{M} , we can construct an equivalent nonrestarting dfa $\widetilde{\mathscr{M}}$ by adding a new "returning initial" state q_{n+1} , and by redefining the transition function accordingly. That is, for $\widetilde{\mathscr{M}}$, we define

• the set of states $\tilde{Q} = Q \cup \{q_{n+1}\}$

• the transition function $\tilde{\delta}$ by

$$egin{array}{rcl} ilde{\delta}(q,s) &=& \left\{egin{array}{ll} \delta(q,s) & ext{if} & q \in Q ext{ and } \delta(q,s)
eq q_1 \ q_{n+1} & ext{if} & q \in Q ext{ and } \delta(q,s) = q_1 \ ilde{\delta}(q_{n+1},s) &=& ilde{\delta}(q_1,s) \end{array}
ight.$$

► the set of final states $\tilde{F} = \begin{cases} F & \text{if } q_1 \notin F \\ F \cup \{q_{n+1}\} & \text{if } q_1 \in F \end{cases}$

To see that $L(\mathcal{M}) = L(\tilde{\mathcal{M}})$ we observe that $\tilde{\mathcal{M}}$ follows the same transitions as \mathcal{M} except whenever \mathcal{M} reenters q_1 , $\tilde{\mathcal{M}}$ enters q_{n+1} .

Preliminaries (1) Regular Languages (9) Closure Properties (9.4) Finite Automata (9.2) Additional Examples (9.3) Closure Properties (9.4)

$L \cup \tilde{L}$

Theorem 4.2. If L and \tilde{L} are regular languages, then so is $L \cup \tilde{L}$. *Proof.* Let \mathscr{M} and $\mathscr{\tilde{M}}$ be nonrestarting dfas that accept L and \tilde{L} respectively. We now construct a ndfa $\mathscr{\tilde{M}}$ by "merging" \mathscr{M} and $\mathscr{\tilde{M}}$ but with a new initial state \check{q}_1 . That is, we define $\mathscr{\tilde{M}}$ by

• the set of states $\check{Q} = Q \cup \tilde{Q} \cup \{\check{q}_1\} - \{q_1, \tilde{q}_1\}$

 \blacktriangleright the transition function $\check{\delta}$ by

$$\check{\delta}(q,s) = egin{cases} \{\delta(q,s)\} & ext{if} \quad q \in Q - \{q_1\} \ \{ ilde{\delta}(q,s)\} & ext{if} \quad q \in ilde{Q} - \{ ilde{q}_1\} \ ilde{\delta}(ilde{q}_1,s)\} & = \ \{\delta(q_1,s)\} \cup \{ ilde{\delta}(ilde{q}_1,s)\} \end{cases}$$

the set of final states

 $\check{F} = \begin{cases} F \cup \tilde{F} \cup \{\check{q}_1\} - \{q_1, \tilde{q}_1\} & \text{if } q_1 \in F \text{ or } \tilde{q}_1 \in \tilde{F} \\ F \cup \tilde{F} & \text{otherwise} \end{cases}$ Note that once a first transition has been selected, $\check{\mathcal{M}}$ is locked into either \mathscr{M} or $\tilde{\mathscr{M}}$. Hence $L(\check{\mathcal{M}}) = L \cup \tilde{L}$. Preliminaries (1)Finite Automata (9.1)Preliminaries (1)Nondeterministic Finite Automata (9.2)Regular Languages (9)Additional Examples (9.3)Closure Properties (9.4)

$A^* - L$

Theorem 4.3. Let $L \subseteq A^*$ be a regular language. Then $A^* - L$ is regular.

Proof. Let \mathscr{M} be a dfa that accept L. Let dfa $\widetilde{\mathscr{M}}$ be exactly like \mathscr{M} except that it accepts precisely when \mathscr{M} rejects. That is, the set of accepting states of $\widetilde{\mathscr{M}}$ is Q - F. Then $L(\widetilde{\mathscr{M}}) = A^* - L$. \Box

Preliminaries (1)Finite Automata (9.1)Regular Languages (9)Nondeterministic Finite Automata (9.2)Additional Examples (9.3)Closure Properties (9.4)

$L_1 \cap L_2$

Theorem 4.4. If L_1 and L_2 are regular languages, then so is $L_1 \cap L_2$.

Proof. Let $L_1, L_2 \subseteq A^*$. Then, by the De Morgan identity, we have

$$L_1 \cap L_2 = A^* - ((A^* - L_1) \cup (A^* - L_2))$$

Theorem 4.2 and 4.3 then give the result.

\emptyset and $\{0\}$

Theorem 4.5. \emptyset and $\{0\}$ are regular languages.

Proof. \emptyset is clearly the language accepted by any automaton whose set of accepting states is empty.

For $\{0\}$, we can construct a two-state dfa such that $F = \{q_1\}$ and $\delta(q_1, a) = \delta(q_2, a) = q_2$ for every symbol $a \in A$, the alphabet. Clearly this dfa accepts $\{0\}$.

Every finite subset of A^* is regular

Theorem 4.5. Let $u \in A^*$. Then $\{u\}$ is a regular language.

Proof. Theorem 4.4 proves the case for u = 0. For the other case, let $u = a_1 a_2 \dots a_l$ where $l \ge 1, a_1, a_2, \dots a_l \in A$. We now construct a (l+1)-state ndfa \mathscr{M} with initial state q_1 , accepting state q_{l+1} , and the transition function δ given by

$$\begin{array}{lll} \delta(q_i,a_i) &=& \{q_{i+1}\}, \quad i=1,\ldots,l \\ \delta(q_i,a) &=& \emptyset \quad \text{for } a \in A - \{a_i\}, \quad i=1,\ldots,l \end{array}$$

Clearly $L(\mathcal{M}) = \{u\}.$

Corollary 4.7. Every finite subset of A^* is regular.