Preliminaries (1) Programs and Computable Functions (2)

# **COT 5310: Theory of Automata and Formal Languages**

# Lecture 6



Florida State University Department of Computer Science

Slides Credit: Dr. Michael Mascagni, CS FSU

### Enumeration Theorem

Definition. We write

$$W_n = \{x \in N \mid \Phi(x, n) \downarrow\}.$$

Then we have

**Theorem 4.6.** A set *B* is r.e. if and only if there is an *n* for which  $B = W_n$ . *Proof.* This is simply by the definition of  $\Phi(x, n)$ .

Note that

 $W_0, W_1, W_2, \ldots$ 

is an enumeration of all r.e. sets.

A Cursively Enumerable Sets (4.4) A Universal Program (4) The Parameter Theorem (4.5) Diagonalization, Reducibility, and Rice's Theorem (4.6, 4.7)

#### The Set K

Let

$$K = \{n \in N \mid n \in W_n\}.$$

Now

$$n \in K \Leftrightarrow \Phi(n, n) \downarrow \Leftrightarrow \mathsf{HALT}(n, n)$$

This, K is the set of all numbers n such that program number n eventually halts on input n.

## K Is r.e. but Not Recursive

**Theorem 4.7.** *K* is r.e. but not recursive. *Proof.* By the universality theorem,  $\Phi(n, n)$  is partially computable, hence *K* is r.e.

If  $\overline{K}$  were also r.e., then by the enumeration theorem,

 $\bar{K} = W_i$ 

for some *i*. We then arrive at

 $i \in K \Leftrightarrow i \in W_i \Leftrightarrow i \in \bar{K}$ 

which is a contradiction. We conclude that K is not recursive.

#### r.e. Sets and Primitive Recursive Predicates

**Theorem 4.8.** Let *B* be an r.e. set. Then there is a primitive recursive predicate R(x, t) such that

 $B = \{x \in N \mid (\exists t)R(x,t)\}.$ 

*Proof.* Let  $B = W_n$ . Then

 $B = \{x \in N \mid (\exists t) \mathsf{STP}^{(1)}(x, n, t)\}.$ 

By Theorem 3.2,  $STP^{(1)}$  is primitive recursive.

#### A r.e. Set Is the Range of A Primitive Recursive Function Theorem 4.9. Let S be a nonempty r.e. set. Then there is a primitive recursive function f(u) such that

 $S = \{f(x) \mid x \in N\} = \{f(0), f(1), f(2), \ldots\}$ 

That is, S is the range of f. *Proof.* By Theorem 4.8

 $S = \{x \in N \mid (\exists t)R(x,t)\}$ 

where R is primitive recursive. Let  $x_0$  be some fixed member of S (say, the smallest), and let

$$f(u) = \begin{cases} l(u) & \text{if } R(l(u), r(u)) \\ x_0 & \text{otherwise.} \end{cases}$$

Clearly f is primitive recursive. It follows that the range of f is a subset of S. Conversely, if  $x \in S$ , then  $R(x, t_0)$  is true for some  $t_0$ . Then  $f(\langle x, t_0 \rangle) = I(\langle x, t_0 \rangle) = x$ . That is, S is a subset of the range of f. We conclude  $S = \{f(n) \mid x \in N\}$ . A Universal Program (4)

## The Range of A Partially Computable Function Is r.e.

**Theorem 4.10.** Let f(x) be a partially computable function and let  $S = \{f(x) \mid f(x) \downarrow\}$ . Then S is r.e. *Proof.* Let

 $g(x) = \begin{cases} 0 & \text{if } x \in S \\ \uparrow & \text{otherwise.} \end{cases}$ 

Clearly  $S = \{x \mid g(x) \downarrow\}$ . It suffices to show that g is partially computable. Let  $\mathscr{P}$  be a program that computes f and let  $\#(\mathscr{P}) = p$ . Then the following program computes g(x): [A] IF ~ STP<sup>(1)</sup>(Z, p, T) GOTO B  $V \leftarrow f(Z)$ IF V = X GOTO E  $[B] Z \leftarrow Z + 1$ IF Z < T GOTO A  $T \leftarrow T + 1$  $Z \leftarrow 0$ GOTO A

### Recursively Enumerable Sets, Revisited

**Theorem 4.11.** Suppose that  $S \neq \emptyset$ . Then the following statements are all equivalent:

- 1. *S* is r.e.
- 2. S is the range of a primitive recursive function;
- 3. *S* is the range of a recursive function;
- 4. S is the range of a partially recursive function.

*Proof.* By Theorem 4.9, 1. implies 2. Obviously, 2. implies 3., and 3. implies 4. By Theorem 4.10, 4. implies 1. Hence all four statements are equivalent.

#### The Parameter Theorem

The Parameter theorem (which has also been called the s - m - n *theorem*) relates the various functions  $\Phi^{(n)}(x_1, x_2, \dots, x_n, y)$  for different values of n.

**Theorem 5.1.** For each n, m > 0, there is a primitive recursive function  $S_m^n(u_1, u_2, ..., u_n, y)$  such that

 $\Phi^{(m+n)}(x_1,...,x_m,u_1,...,u_n,y) = \Phi^{(m)}(x_1,...,x_m,S_m^n(u_1,...,u_n,y))$ 

#### The Parameter Theorem, Continued

 $\Phi^{(m+n)}(x_1,...,x_m,u_1,...,u_n,y) = \Phi^{(m)}(x_1,...,x_m,S_m^n(u_1,...,u_n,y))$ 

Suppose the values for variables  $u_1, \ldots, u_n$  are fixed and we have in mind some particular value of y. Then left hand side of the above equation is a partially computable function f of m arguments  $x_1, \ldots, x_m$ . Let q be the number of a program that computes this function of

m variables, we have

$$\Phi^{(m+n)}(x_1,\ldots,x_m,u_1,\ldots,u_n,y)=\Phi^{(m)}(x_1,\ldots,x_m,q)$$

The parameter theorem tells us that not only does there exist such a number q, but it can be obtained from  $u_1, \ldots, u_n, y$  by using a primitive recursive function  $S_m^n$ .

### The Parameter Theorem, Proof

The proof is by a mathematical induction on *n*. For n = 1, we need to show that there is a primitive recursive function  $S_m^1(u, y)$  such that

$$\Phi^{(m+1)}(x_1,\ldots,x_m,u,y) = \Phi^{(m)}(x_1,\ldots,x_m,S_m^1(u,y))$$

Let  $\mathscr{P}$  be the program such that  $\#(\mathscr{P}) = y$ . Then  $S_m^1(u, y)$  can be taken to the number of the program which first gives variable  $X_{m+1}$  the value u and then proceeds to carry out  $\mathscr{P}$ .

#### The Parameter Theorem, Proof

 $X_{m+1}$  will be given the value u by the program:

$$\left.\begin{array}{c}X_{m+1}\leftarrow X_{m+1}+1\\\vdots\\X_{m+1}\leftarrow X_{m+1}+1\end{array}\right\}u$$

The number of the instruction  $X_{m+1} \leftarrow X_{m+1} + 1$  is  $\langle 0, \langle 1, 2m + 1 \rangle \rangle = 16m + 10$ . So we may take

$$S_m^1(u, y) = [(\prod_{i=1}^u p_i)^{16m+10} \cdot (\prod_{j=1}^{Lt(y+1)} p_{u+j}^{(y+1)_j})] - 1$$

as the primitive recursive function.

### The Parameter Theorem, Proof

To complete the proof, suppose the result is known for n = k. Then we have

$$\Phi^{(m+k+1)}(x_1, \dots, x_m, u_1, \dots, u_k, u_{k+1}, y)$$
  
=  $\Phi^{(m+k)}(x_1, \dots, x_m, u_1, \dots, u_k, S^1_{m+k}(u_{k+1}, y))$   
=  $\Phi^{(m)}(x_1, \dots, x_m, S^k_m(u_1, \dots, u_k, S^1_{m+k}(u_{k+1}, y)))$ 

using first the result for n = 1 and then the induction hypothesis. By now, if we define

$$S_m^{k+1}(u_1,\ldots,u_k,u_{k+1},y) = S_m^k(u_1,\ldots,u_k,S_{m+k}^1(u_{k+1},y))$$

we have the desired result.

#### The Parameter Theorem, Examples

Is there a computable function g(u, v) such that

 $\Phi_u(\Phi_v(x)) = \Phi_{g(u,v)}(x)$ 

for all *u*, *v*, *x*? Yes! Note that

$$\Phi_u(\Phi_v(x)) = \Phi(\Phi(x,v),u)$$

is a partially computable function of x, u, v. Hence, we have

$$\Phi(\Phi(x,v),u) = \Phi^{(3)}(x,u,v,z_0)$$

for some number  $z_0$ . By the parameter theorem,

$$\Phi^{(3)}(x, u, v, z_0) = \Phi(x, S_1^2(u, v, z_0)) = \Phi_{S_1^2(u, v, z_0)}(x).$$