COT 5310: Theory of Automata and Formal Languages

Lecture 6

Florida State University
Department of Computer Science

Enumeration Theorem

Definition. We write

$$
W_{n}=\{x \in N \mid \Phi(x, n) \downarrow\} .
$$

Then we have

Theorem 4.6. A set B is r.e. if and only if there is an n for which $B=W_{n}$.
Proof. This is simply by the definition of $\Phi(x, n)$.
Note that

$$
W_{0}, W_{1}, W_{2}, \ldots
$$

is an enumeration of all r.e. sets.

The Set K

Let

$$
K=\left\{n \in N \mid n \in W_{n}\right\} .
$$

Now

$$
n \in K \Leftrightarrow \Phi(n, n) \downarrow \Leftrightarrow \operatorname{HALT}(n, n)
$$

This, K is the set of all numbers n such that program number n eventually halts on input n.

K Is r.e. but Not Recursive

Theorem 4.7. K is r.e. but not recursive.
Proof. By the universality theorem, $\Phi(n, n)$ is partially computable, hence K is r.e.

If \bar{K} were also r.e., then by the enumeration theorem,

$$
\bar{K}=W_{i}
$$

for some i. We then arrive at

$$
i \in K \Leftrightarrow i \in W_{i} \Leftrightarrow i \in \bar{K}
$$

which is a contradiction. We conclude that K is not recursive.

r.e. Sets and Primitive Recursive Predicates

Theorem 4.8. Let B be an r.e. set. Then there is a primitive recursive predicate $R(x, t)$ such that

$$
B=\{x \in N \mid(\exists t) R(x, t)\} .
$$

Proof. Let $B=W_{n}$. Then

$$
B=\left\{x \in N \mid(\exists t) \operatorname{STP}^{(1)}(x, n, t)\right\} .
$$

By Theorem 3.2, STP $^{(1)}$ is primitive recursive.

A r.e. Set Is the Range of A Primitive Recursive Function Theorem 4.9. Let S be a nonempty r.e. set. Then there is a primitive recursive function $f(u)$ such that

$$
S=\{f(x) \mid x \in N\}=\{f(0), f(1), f(2), \ldots\}
$$

That is, S is the range of f.
Proof. By Theorem 4.8

$$
S=\{x \in N \mid(\exists t) R(x, t)\}
$$

where R is primitive recursive. Let x_{0} be some fixed member of S (say, the smallest), and let

$$
f(u)= \begin{cases}I(u) & \text { if } R(I(u), r(u)) \\ x_{0} & \text { otherwise }\end{cases}
$$

Clearly f is primitive recursive. It follows that the range of f is a subset of S. Conversely, if $x \in S$, then $R\left(x, t_{0}\right)$ is true for some t_{0}. Then $f\left(\left\langle x, t_{0}\right\rangle\right)=I\left(\left\langle x, t_{0}\right\rangle\right)=x$. That is, S is a subset of the range of f. We conclude $S=\{f(n) \mid x \in N\}$.

The Range of A Partially Computable Function Is r.e.
Theorem 4.10. Let $f(x)$ be a partially computable function and let $S=\{f(x) \mid f(x) \downarrow\}$. Then S is r.e.
Proof. Let

$$
g(x)= \begin{cases}0 & \text { if } x \in S \\ \uparrow & \text { otherwise. }\end{cases}
$$

Clearly $S=\{x \mid g(x) \downarrow\}$. It suffices to show that g is partially computable. Let \mathscr{P} be a program that computes f and let $\#(\mathscr{P})=p$. Then the following program computes $g(x)$:
[A] IF $\sim \operatorname{STP}^{(1)}(Z, p, T)$ GOTO B
$V \leftarrow f(Z)$
IF $V=X$ GOTO E
[B] $Z \leftarrow Z+1$
IF $Z \leq T$ GOTO A
$T \leftarrow T+1$
$Z \leftarrow 0$
GOTO A

Recursively Enumerable Sets, Revisited

Theorem 4.11. Suppose that $S \neq \emptyset$. Then the following statements are all equivalent:

1. S is r.e.
2. S is the range of a primitive recursive function;
3. S is the range of a recursive function;
4. S is the range of a partially recursive function.

Proof. By Theorem 4.9, 1. implies 2. Obviously, 2. implies 3., and 3. implies 4. By Theorem 4.10, 4. implies 1. Hence all four statements are equivalent.

The Parameter Theorem

The Parameter theorem (which has also been called the $s-m-n$ theorem) relates the various functions $\phi^{(n)}\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)$ for different values of n.

Theorem 5.1. For each $n, m>0$, there is a primitive recursive function $S_{m}^{n}\left(u_{1}, u_{2}, \ldots, u_{n}, y\right)$ such that
$\phi^{(m+n)}\left(x_{1}, \ldots, x_{m}, u_{1}, \ldots, u_{n}, y\right)=\Phi^{(m)}\left(x_{1}, \ldots, x_{m}, S_{m}^{n}\left(u_{1}, \ldots, u_{n}, y\right)\right)$

The Parameter Theorem, Continued

$\phi^{(m+n)}\left(x_{1}, \ldots, x_{m}, u_{1}, \ldots, u_{n}, y\right)=\Phi^{(m)}\left(x_{1}, \ldots, x_{m}, S_{m}^{n}\left(u_{1}, \ldots, u_{n}, y\right)\right)$

Suppose the values for variables u_{1}, \ldots, u_{n} are fixed and we have in mind some particular value of y. Then left hand side of the above equation is a partially computable function f of m arguments x_{1}, \ldots, x_{m}.
Let q be the number of a program that computes this function of m variables, we have

$$
\phi^{(m+n)}\left(x_{1}, \ldots, x_{m}, u_{1}, \ldots, u_{n}, y\right)=\Phi^{(m)}\left(x_{1}, \ldots, x_{m}, q\right)
$$

The parameter theorem tells us that not only does there exist such a number q, but it can be obtained from u_{1}, \ldots, u_{n}, y by using a primitive recursive function S_{m}^{n}.

The Parameter Theorem, Proof

The proof is by a mathematical induction on n. For $n=1$, we need to show that there is a primitive recursive function $S_{m}^{1}(u, y)$ such that

$$
\Phi^{(m+1)}\left(x_{1}, \ldots, x_{m}, u, y\right)=\Phi^{(m)}\left(x_{1}, \ldots, x_{m}, S_{m}^{1}(u, y)\right)
$$

Let \mathscr{P} be the program such that $\#(\mathscr{P})=y$. Then $S_{m}^{1}(u, y)$ can be taken to the number of the program which first gives variable X_{m+1} the value u and then proceeds to carry out \mathscr{P}.

The Parameter Theorem, Proof

X_{m+1} will be given the value u by the program:

$$
\left.\begin{array}{l}
X_{m+1} \leftarrow X_{m+1}+1 \\
\vdots \\
X_{m+1} \leftarrow X_{m+1}+1
\end{array}\right\} u
$$

The number of the instruction $X_{m+1} \leftarrow X_{m+1}+1$ is $\langle 0,\langle 1,2 m+1\rangle\rangle=16 m+10$. So we may take

$$
S_{m}^{1}(u, y)=\left[\left(\prod_{i=1}^{u} p_{i}\right)^{16 m+10} \cdot\left(\prod_{j=1}^{L t(y+1)} p_{u+j}^{(y+1)_{j}}\right)\right] \dot{-} 1
$$

as the primitive recursive function.

The Parameter Theorem, Proof

To complete the proof, suppose the result is known for $n=k$. Then we have

$$
\begin{aligned}
& \Phi^{(m+k+1)}\left(x_{1}, \ldots, x_{m}, u_{1}, \ldots, u_{k}, u_{k+1}, y\right) \\
= & \Phi^{(m+k)}\left(x_{1}, \ldots, x_{m}, u_{1}, \ldots, u_{k}, S_{m+k}^{1}\left(u_{k+1}, y\right)\right) \\
= & \Phi^{(m)}\left(x_{1}, \ldots, x_{m}, S_{m}^{k}\left(u_{1}, \ldots, u_{k}, S_{m+k}^{1}\left(u_{k+1}, y\right)\right)\right)
\end{aligned}
$$

using first the result for $n=1$ and then the induction hypothesis.
By now, if we define

$$
S_{m}^{k+1}\left(u_{1}, \ldots, u_{k}, u_{k+1}, y\right)=S_{m}^{k}\left(u_{1}, \ldots, u_{k}, S_{m+k}^{1}\left(u_{k+1}, y\right)\right)
$$

we have the desired result.

The Parameter Theorem, Examples

Is there a computable function $g(u, v)$ such that

$$
\Phi_{u}\left(\Phi_{v}(x)\right)=\Phi_{g(u, v)}(x)
$$

for all u, v, x ?
Yes! Note that

$$
\Phi_{u}\left(\Phi_{v}(x)\right)=\Phi(\Phi(x, v), u)
$$

is a partially computable function of x, u, v. Hence, we have

$$
\Phi(\Phi(x, v), u)=\Phi^{(3)}\left(x, u, v, z_{0}\right)
$$

for some number z_{0}. By the parameter theorem,

$$
\Phi^{(3)}\left(x, u, v, z_{0}\right)=\Phi\left(x, S_{1}^{2}\left(u, v, z_{0}\right)\right)=\Phi_{S_{1}^{2}\left(u, v, z_{0}\right)}(x)
$$

