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A Universal Program (4)
Recursively Enumerable Sets (4.4)
The Parameter Theorem (4.5)
Diagonalization, Reducibility, and Rice’s Theorem (4.6, 4.7)

Enumeration Theorem

Definition. We write

Wn = {x ∈ N | Φ(x , n) ↓}.

Then we have

Theorem 4.6. A set B is r.e. if and only if there is an n for which
B = Wn.
Proof. This is simply by the definition of Φ(x , n). 2

Note that
W0,W1,W2, . . .

is an enumeration of all r.e. sets.
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The Set K

Let
K = {n ∈ N | n ∈Wn}.

Now
n ∈ K ⇔ Φ(n, n) ↓ ⇔ HALT(n, n)

This, K is the set of all numbers n such that program number n
eventually halts on input n.
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K Is r.e. but Not Recursive

Theorem 4.7. K is r.e. but not recursive.
Proof. By the universality theorem, Φ(n, n) is partially computable,
hence K is r.e.

If K̄ were also r.e., then by the enumeration theorem,

K̄ = Wi

for some i . We then arrive at

i ∈ K ⇔ i ∈Wi ⇔ i ∈ K̄

which is a contradiction. We conclude that K is not recursive. 2
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r.e. Sets and Primitive Recursive Predicates

Theorem 4.8. Let B be an r.e. set. Then there is a primitive
recursive predicate R(x , t) such that

B = {x ∈ N | (∃t)R(x , t)}.

Proof. Let B = Wn. Then

B = {x ∈ N | (∃t)STP(1)(x , n, t)}.

By Theorem 3.2, STP(1) is primitive recursive. 2
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A r.e. Set Is the Range of A Primitive Recursive Function
Theorem 4.9. Let S be a nonempty r.e. set. Then there is a
primitive recursive function f (u) such that

S = {f (x) | x ∈ N} = {f (0), f (1), f (2), . . .}
That is, S is the range of f .
Proof. By Theorem 4.8

S = {x ∈ N | (∃t)R(x , t)}
where R is primitive recursive. Let x0 be some fixed member of S
(say, the smallest), and let

f (u) =

{
l(u) if R(l(u), r(u))
x0 otherwise.

Clearly f is primitive recursive. It follows that the range of f is a
subset of S . Conversely, if x ∈ S , then R(x , t0) is true for some t0.
Then f (〈x , t0〉) = l(〈x , t0〉) = x . That is, S is a subset of the range
of f . We conclude S = {f (n) | x ∈ N}. 2
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The Range of A Partially Computable Function Is r.e.
Theorem 4.10. Let f (x) be a partially computable function and
let S = {f (x) | f (x) ↓}. Then S is r.e.
Proof. Let

g(x) =

{
0 if x ∈ S
↑ otherwise.

Clearly S = {x | g(x) ↓}. It suffices to show that g is partially
computable. Let P be a program that computes f and let
#(P) = p. Then the following program computes g(x):

[A] IF ∼ STP(1)(Z , p,T ) GOTO B
V ← f (Z )
IF V = X GOTO E

[B] Z ← Z + 1
IF Z ≤ T GOTO A
T ← T + 1
Z ← 0
GOTO A

2
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Recursively Enumerable Sets, Revisited

Theorem 4.11. Suppose that S 6= ∅. Then the following
statements are all equivalent:

1. S is r.e.

2. S is the range of a primitive recursive function;

3. S is the range of a recursive function;

4. S is the range of a partially recursive function.

Proof. By Theorem 4.9, 1. implies 2. Obviously, 2. implies 3., and
3. implies 4. By Theorem 4.10, 4. implies 1. Hence all four
statements are equivalent. 2
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The Parameter Theorem

The Parameter theorem (which has also been called the s −m − n
theorem) relates the various functions Φ(n)(x1, x2, . . . , xn, y) for
different values of n.

Theorem 5.1. For each n,m > 0, there is a primitive recursive
function Sn

m(u1, u2, . . . , un, y) such that

Φ(m+n)(x1, . . . , xm, u1, . . . , un, y) = Φ(m)(x1, . . . , xm, S
n
m(u1, . . . , un, y))
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The Parameter Theorem, Continued

Φ(m+n)(x1, . . . , xm, u1, . . . , un, y) = Φ(m)(x1, . . . , xm, S
n
m(u1, . . . , un, y))

Suppose the values for variables u1, . . . , un are fixed and we have in
mind some particular value of y . Then left hand side of the above
equation is a partially computable function f of m arguments
x1, . . . , xm.
Let q be the number of a program that computes this function of
m variables, we have

Φ(m+n)(x1, . . . , xm, u1, . . . , un, y) = Φ(m)(x1, . . . , xm, q)

The parameter theorem tells us that not only does there exist such
a number q, but it can be obtained from u1, . . . , un, y by using a
primitive recursive function Sn

m.
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The Parameter Theorem, Proof

The proof is by a mathematical induction on n. For n = 1, we
need to show that there is a primitive recursive function S1

m(u, y)
such that

Φ(m+1)(x1, . . . , xm, u, y) = Φ(m)(x1, . . . , xm, S
1
m(u, y))

Let P be the program such that #(P) = y . Then S1
m(u, y) can

be taken to the number of the program which first gives variable
Xm+1 the value u and then proceeds to carry out P.
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The Parameter Theorem, Proof

Xm+1 will be given the value u by the program:

Xm+1 ← Xm+1 + 1
...
Xm+1 ← Xm+1 + 1

 u

The number of the instruction Xm+1 ← Xm+1 + 1 is

〈0, 〈1, 2m + 1〉〉 = 16m + 10. So we may take

S1
m(u, y) = [(

u∏
i=1

pi )
16m+10 · (

Lt(y+1)∏
j=1

p
(y+1)j
u+j )]−̇1

as the primitive recursive function.
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The Parameter Theorem, Proof

To complete the proof, suppose the result is known for n = k .
Then we have

Φ(m+k+1)(x1, . . . , xm, u1, . . . , uk , uk+1, y)

= Φ(m+k)(x1, . . . , xm, u1, . . . , uk , S
1
m+k(uk+1, y))

= Φ(m)(x1, . . . , xm,S
k
m(u1, . . . , uk , S

1
m+k(uk+1, y)))

using first the result for n = 1 and then the induction hypothesis.
By now, if we define

Sk+1
m (u1, . . . , uk , uk+1, y) = Sk

m(u1, . . . , uk , S
1
m+k(uk+1, y))

we have the desired result.
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The Parameter Theorem, Examples

Is there a computable function g(u, v) such that

Φu(Φv (x)) = Φg(u,v)(x)

for all u, v , x?
Yes! Note that

Φu(Φv (x)) = Φ(Φ(x , v), u)

is a partially computable function of x , u, v . Hence, we have

Φ(Φ(x , v), u) = Φ(3)(x , u, v , z0)

for some number z0. By the parameter theorem,

Φ(3)(x , u, v , z0) = Φ(x ,S2
1 (u, v , z0)) = ΦS2

1 (u,v ,z0)(x).
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