COT 5310: Theory of Automata and Formal Languages

Lecture 4

Florida State University
Department of Computer Science

Slides Credit: Dr. Michael Mascagni, CS FSU

Coding Programs by Numbers

For each program \mathscr{P} in language \mathscr{S}, we will devise a method

- to associate a unique number, $\#(\mathscr{P})$, to the program \mathscr{P}, and
- to retrieve a program from its number.

In addition, for each number $n \in N$, we will retrieve from n a program.

Arranging Variables and Labels

- The variables are arranged in the following order

$$
Y, X_{1}, Z_{1}, X_{2}, Z_{2}, X_{3}, Z_{3}, \ldots
$$

- The labels are arranged in the following order

$$
A_{1}, B_{1}, C_{1}, D_{1}, E_{1}, A_{2}, B_{2}, C_{2}, D_{2}, E_{2}, A_{3}, \ldots
$$

- $\#(V)$ is the position of variable V in the ordering. So is $\#(L)$ for label L.
- Thus, $\#\left(X_{2}\right)=4, \#\left(Z_{1}\right)=\#(Z)=3, \#(E)=5, \#\left(B_{2}\right)=7, \ldots$.

Coding Instructions by Numbers

Let $/$ be an instruction of language \mathscr{S}. We write

$$
\#(I)=\langle a,\langle b, c\rangle\rangle
$$

where

1. if I is unlabeled, then $a=0$; if I is labeled L, then $a=\#(L)$;
2. if variable V is mentioned in I, then $c=\#(V)-1$;
3. if the statement in $/$ is

$$
V \leftarrow V \text { or } V \leftarrow V+1 \text { or } V \leftarrow V-1
$$

then $b=0$ or 1 or 2 , respectively;
4. if the statement in $/$ is

$$
\text { IF } V \neq 0 \text { GOTO } L^{\prime}
$$

then $b=\#\left(L^{\prime}\right)+2$.

Coding Instructions by Numbers, Examples

- The number of the unlabeled instruction

$$
X \leftarrow X+1
$$

is

$$
\langle 0,\langle 1,1\rangle\rangle=\langle 0,5\rangle=10 .
$$

- The number of the labeled instruction [A] $X \leftarrow X+1$
is

$$
\langle 1,\langle 1,1\rangle\rangle=\langle 1,5\rangle=21
$$

Retrieving The Instruction from A Number

For any given number q, there is a unique instruction / with $\#(I)=q$. How?

- First we compute $I(q)$. If $I(q)=0, I$ is unlabeled; otherwise I has the $I(q)$ th label L in our list.
- Then we compute $i=r(r(q))+1$ to locate the i th variable V in our list as the variable mentioned in I.
- Then the statement in / will be

$$
\begin{array}{ll}
V \leftarrow V & \text { if } I(r(q))=0 \\
V \leftarrow V+1 & \text { if } I(r(q))=1 \\
V \leftarrow V-1 & \text { if } I(r(q))=2 \\
\text { IF } V \neq 0 \text { GOTO } L^{\prime} & \text { if } j=I(r(q))-2>0
\end{array}
$$

and L^{\prime} is the j th label in the list.

Coding Programs by Numbers, Finally

Let a program \mathscr{P} consists of the instructions $I_{1}, I_{2}, \ldots, I_{k}$. Then we set

$$
\#(\mathscr{P})=\left[\#\left(I_{1}\right), \#\left(I_{2}\right), \ldots, \#\left(I_{k}\right)\right]-1
$$

We call $\#(\mathscr{P})$ the number of program \mathscr{P}. Note that the empty program has number 0 .

Coding Programs by Numbers, Examples

Consider the following "nowhere defined" program \mathscr{P}
[A] $X \leftarrow X+1$

$$
\text { IF } X \neq 0 \text { GOTO } A
$$

Let I_{1} and I_{2}, respectively, be the first and the second instruction in \mathscr{P}, then

$$
\begin{aligned}
& \#\left(I_{1}\right)=\langle 1,\langle 1,1\rangle\rangle=\langle 1,5\rangle=21 \\
& \#\left(I_{2}\right)=\langle 0,\langle 3,1\rangle\rangle=\langle 0,23\rangle=46
\end{aligned}
$$

Therefore

$$
\#(\mathscr{P})=2^{21} \cdot 3^{46}-1
$$

Coding Programs by Numbers, Examples

What is the program whose number is 199 ?
We first compute

$$
199+1=200=2^{3} \cdot 3^{0} \cdot 5^{2}=[3,0,2]
$$

Thus, if $\#(\mathscr{P})=199$, then \mathscr{P} consists of 3 instructions whose numbers are 3,0 , and 2 . As

$$
\begin{aligned}
& 3=\langle 2,0\rangle=\langle 2,\langle 0,0\rangle\rangle \\
& 2=\langle 0,1\rangle=\langle 0,\langle 1,0\rangle\rangle
\end{aligned}
$$

We conclude that \mathscr{P} is the following program
[B] $Y \leftarrow Y$

$$
\begin{aligned}
& Y \leftarrow Y \\
& Y \leftarrow Y+1
\end{aligned}
$$

This is not a very interesting program, as it just computes $f(x)=1$.

A Problem with Number 0

- The number of the unlabeled instruction $Y \leftarrow Y$ is

$$
\langle 0,\langle 0,0\rangle\rangle=\langle 0,0\rangle=0
$$

- By the definition of Gödel number, the number of a program will be unchanged if an unlabeled $Y \leftarrow Y$ is appended to its end. Note that this does not change the output of the program.
- However, we remove even this ambiguity by requiring that the final instruction in a program is not permitted to be the unlabeled statement $Y \leftarrow Y$.
- Now, each number determines a unique program (just as each program determines a unique number)!

$\operatorname{HALT}(x, y):$ A Predicate on Programs and Their Inputs

We define predicate $\operatorname{HALT}(x, y)$ such that
$\operatorname{HALT}(x, y) \Leftrightarrow$ program number y eventually halts on input x.
Let \mathscr{P} be the program such that $\#(\mathscr{P})=y$. Then

$$
\operatorname{HALT}(x, y)= \begin{cases}1 & \text { if } \Psi_{\mathscr{B}}^{(1)}(x) \text { is defined } \\ 0 & \text { if } \Psi_{\mathscr{P}}^{(1)}(x) \text { is undefined }\end{cases}
$$

Note that $\operatorname{HALT}(x, y)$ is a total function.
But, is $\operatorname{HALT}(x, y)$ computable?

$\operatorname{HALT}(x, y)$ Is Not Computable

Theorem 2.1. $\operatorname{HALT}(x, y)$ is not a computable predicate. Proof. Suppose HALT (x, y) were computable. Then we could construct the following program \mathscr{P} :

[A] IF $\operatorname{HALT}(X, X)$ GOTO A

It is clear that

$$
\Psi_{\mathscr{P}}^{(1)}(x)= \begin{cases}\text { undefined } & \text { if } \operatorname{HALT}(x, x) \\ 0 & \text { if } \sim \operatorname{HALT}(x, x) .\end{cases}
$$

Let $\#(\mathscr{P})=y_{0}$. Then, for all x, $\operatorname{HALT}\left(x, y_{0}\right) \Leftrightarrow \Psi_{\mathscr{P}}^{(1)}(x)$ is defined $\Leftrightarrow \mathscr{P}$ halts on $x \Leftrightarrow \sim \operatorname{HALT}(x, x)$ Let $x=y_{0}$, we arrive at

$$
\operatorname{HALT}\left(y_{0}, y_{0}\right) \quad \Leftrightarrow \quad \sim \operatorname{HALT}\left(y_{0}, y_{0}\right)
$$

which is a contradiction.

"HALT (x, y) Is Not Computable." What's that?

Let's be precise on what have be proved.

- $\operatorname{HALT}(x, y)$ is a predicate on programs in language \mathscr{S}. It is a predicate on the computational behavior of the programs, i.e., whether a program y of language \mathscr{S} will halt on input x.
- It is shown there exists no program in language \mathscr{S} that computes $\operatorname{HALT}(x, y)$.
- As $\operatorname{HALT}(x, y)$ is a total function, we now have as an example a total function that cannot be expressed as a program in \mathscr{S}.
- But can $\operatorname{HALT}(x, y)$ be expressed in languages other than \mathscr{S} ? Will HALT (x, y) become "computable" if other (more powerful) formalisms of computation are used?

The Unsolvability of Halting Problem

There is no algorithm that, given a program of \mathscr{S} and an input to the program, can determine whether or not the given program will eventually halt on the given input.

- In this form, the result is called the unsolvability of halting problem.
- The statement above is stronger than the statement "there exists no program in language \mathscr{S} that computes $\operatorname{HALT}(x, y)$," as an algorithm can refer to a method in any formalism of computation.
- However, language \mathscr{S} can be been shown to be as powerful as any known computational formalism. Therefore, we reason that if no program in \mathscr{S} can solve it, no algorithm can.

Church's Thesis

Any algorithm for computing on numbers can be carried out by a program of \mathscr{S}.

- This assertion is called Church's Thesis.
- As the word algorithm has no general definition separated from a particular language, Church's thesis cannot be proved as a mathematical theorem.
- We will use Church's thesis freely in asserting the nonexistence of algorithms whenever we have shown that the problem cannot be solved by a program of \mathscr{S}.

Why The Halting Problem Is So Hard? (Unsolvable!)

- This shall not be too surprising, as it is easy to construction short programs of \mathscr{S} such that it is very difficult to tell whether they will ever halt.
- Example: Fermat's last theorem.
- Example: Goldbach's conjecture.
- Actually it is always hard to prove whether programs of will exhibit specific computational behaviors (which are of sufficient interest).

Fermat's Last Theorem

The equation $x^{n}+y^{n}=z^{n}$ has no solution in positive x, y, z and $n>2$.

- It is easy to write a program \mathscr{P} of language \mathscr{S} that will search all positive integers x, y, z and numbers $n>2$ for a solution to the equation $x^{n}+y^{n}=z^{n}$.
- Program \mathscr{P} never halts if only if Fermat's last theorem is true.
- That is, if we can solve the halting problem, then we can easily prove (or dis-prove) the Fermat's last theorem!
- (Fermat's last theorem was finally proved in 1995 by Andrew Wiles with help from Richard Taylor.)

Goldbach's Conjecture

Every even number ≥ 4 is the sum of two prime numbers.

- Check: $4=2+2,6=3+3,8=3+5, \ldots$
- Is there a counterexample?
- Let's write a program \mathscr{P} in \mathscr{S} to search for a counterexample!
- Note that the test that a given even number n is an counterexample only requires checking the primitive recursive predicate:

$$
\sim(\exists x)_{\leq n}(\exists y)_{\leq n}[\operatorname{Prime}(x) \& \operatorname{Prime}(y) \& x+y=n]
$$

- The statement that \mathscr{P} never halts is equivalent to Goldbach's conjecture.
- The conjecture is still open; nobody knows yet whether \mathscr{P} will eventually halt.

Compute with Numbers of Programs

- Programs taking programs as input: Compilers, interpreters, evaluators, Web browsers,
- Can we write a program in language \mathscr{S} to accept the number of another program \mathscr{P}, as well as the input x to \mathscr{P}, then compute $\Psi_{\mathscr{P}}^{(1)}(x)$ as output?
- Yes, we can! The program above is called a universal program.

Universality

For each $n>0$, we define

$$
\Phi^{(n)}\left(x_{1}, \ldots, x_{n}, y\right)=\psi_{\mathscr{P}}^{(n)}\left(x_{1}, \ldots, x_{n}\right), \quad \text { where } \#(\mathscr{P})=y .
$$

Theorem 3.1. For each $n>0$, the function $\Phi^{(n)}\left(x_{1}, \ldots, x_{n}, y\right)$ is partially computable.

We shall prove this theorem by showing how to construct, for each $n>0$, a program \mathscr{U}_{n} which computes $\phi^{(n)}$. That is,

$$
\Psi_{\mathscr{U}_{n}}^{(n+1)}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=\Phi^{(n)}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

The programs \mathscr{U}_{n} are called universal.

"Computer Organization" of \mathscr{U}_{n}

- Program \mathscr{U}_{n} accepts $n+1$ input variables of which X_{n+1} is a number of a program \mathscr{P}, and X_{1}, \ldots, X_{n} are provided to \mathscr{P} as input variables.
- All variables used by \mathscr{P} are arranged in the following order

$$
Y, X_{1}, Z_{1}, X_{2}, Z_{2}, \ldots
$$

and their state is coded by the Gödel number $\left[y, x_{1}, z_{1}, x_{2}, z_{2}, \ldots\right]$.

- Let variable S in program \mathscr{U}_{n} store the current state of program \mathscr{P} coded in the above manner.
- Let variable K in program \mathscr{U}_{n} store the number such that the K th instruction of program \mathscr{P} is about to be executed.
- Let variable Z in program \mathscr{U}_{n} store the instruction sequence of program \mathscr{P} coded as a Gödel number.

Setting Up

As program \mathscr{U}_{n} computes $\Phi^{(n)}\left(X_{1}, \ldots, X_{n}, X_{n+1}\right)$, we begin \mathscr{U}_{n} by setting up the initial environment for program (number) X_{n+1} to execute:

$$
\begin{aligned}
& Z \leftarrow X_{n+1}+1 \\
& S \leftarrow \prod_{i=1}^{n}\left(p_{2 i}\right)^{X_{i}} \\
& K \leftarrow 1
\end{aligned}
$$

- If $X_{n+1}=\#(\mathscr{P})$, where \mathscr{P} consists of instructions I_{1}, \ldots, I_{m}, then Z gets the value $\left[\#\left(I_{1}\right), \ldots, \#\left(I_{m}\right)\right]$.
- S is initialized as $\left[0, X_{1}, 0, X_{2}, \ldots, 0, X_{n}\right]$ which gives the first n input variables their appropriate values and gives all other variables the value 0 .
- K, the instruction counter, is given the initial value 1 .

Decoding Instruction

We first see if the execution of program \mathscr{P} shall halt. If not, we fetch the K th instruction and decode the instruction.
[C] IF $K=\operatorname{Lt}(Z)+1 \vee K=0$ GOTO F
$U \leftarrow r\left((Z)_{k}\right)$
$P \leftarrow p_{r(U)+1}$

- If the computation has ended, GOTO F, where the proper value will be output. (The case for $K=0$ will be explained later.)
- $(Z)_{k}=\langle a,\langle b, c\rangle\rangle$ is the number of the K th instruction. Thus $U=\langle b, c\rangle$ is the code of the statement to be executed.
- The variable mentioned in the statement is the $(r(U)+1)$ th in our list S, and its current value is stored as the exponent to which P divides S.

Instruction Execution

$$
\begin{aligned}
& \text { IF } \prime(U)=0 \text { GOTO } N \\
& \text { IF } I(U)=1 \text { GOTO } A \\
& \text { IF } \sim(P \mid S) \text { GOTO } N \\
& \text { IF } I(U)=2 \text { GOTO } M
\end{aligned}
$$

- If $I(U)=0$, the instruction is a dummy $V \leftarrow V$ and the computation does nothing. Hence, it goes to N (for Nothing).
- If $I(U)=1$, the instruction is $V \leftarrow V+1$. The computation goes to A (for $A d d$) to add 1 to the exponent on P in the prime power factorization of S.
- If $I(U) \neq 0,1$, the instruction is either $V \leftarrow V-1$, or IF $V \neq 0$ GOTO L. In both cases, if $V=0$, the computation does nothing so goes to N. This happens when P is not a divisor of S.
- If $P \mid S$ and $I(U)=2$, the computation goes to M (for Minus).

Branching

$K \leftarrow \min _{i \leq L t(Z)}\left[I\left((Z)_{i}\right)+2=I(U)\right]$ GOTO C

- If $I(U)>2$ and $P \mid S$, the current instruction is of the form IF $V \neq 0$ GOTO L where V has a nonzero value and L is the label whose position in our label list is $I(U)-2$.
- The next instruction should be the first with this label.
- That is, K should get as its value the least i for which $I\left((Z)_{i}\right)=I(U)-2$. If there is no instruction with the appropriate label, K gets the 0 , which will lead to termination the next time through the main loop.
- Once the instruction counter K is adjusted, the execution enters the main loop by GOTO C.

Subtraction and Addition

$$
\begin{array}{ll}
{[M]} & S \leftarrow\lfloor S / P\rfloor \\
& \text { GOTO } N \\
{[A]} & S \leftarrow S \cdot P \\
{[N]} & K \leftarrow K+1 \\
& \text { GOTO } C
\end{array}
$$

- 1 is subtracted from the variable by dividing S by P.
- 1 is added to the variable by multiplying S by P.
- The instruction counter is increased by 1 and the computation returns to the main loop to fetch the next instruction.

Finalizing

[F] $\quad Y \leftarrow(S)_{1}$

- One termination, the value of Y for the program being simulated is stored at the exponent on p_{1} in S.

\mathscr{U}_{n}, Finally

$$
\begin{array}{ll}
& Z \leftarrow X_{n+1}+1 \\
& S \leftarrow \prod_{i=1}^{n}\left(p_{2 i}\right)^{X_{i}} \\
& K \leftarrow \leftarrow \\
\text { [C] } & \text { IF } K=L t(Z)+1 \vee K=0 \text { GOTO } F \\
& U \leftarrow r\left((Z)_{k}\right) \\
& P \leftarrow p_{r(U)+1} \\
& \text { IF } I(U)=0 \text { GOTO } N \\
& \text { IF } I(U)=1 \text { GOTO A } \\
& \text { IF } \sim(P \mid S) \text { GOTO } N \\
& \text { IF } I(U)=2 \text { GOTO } M \\
& \left.K \leftarrow \min _{i \leq L t(Z)} I\left((Z)_{i}\right)+2=I(U)\right] \\
& \text { GOTO } C \\
\text { [M] } S \leftarrow\lfloor S / P\rfloor \\
& \text { GOTO } N \\
\text { [A] } S \leftarrow S \cdot P \\
{[N]} & K \leftarrow K+1 \\
& G O T O C \\
{[F]} & Y \leftarrow(S)_{1}
\end{array}
$$

Notations

For each $n>0$, the sequence

$$
\Phi^{(n)}\left(x_{1}, \ldots, x_{n}, 0\right), \Phi^{(n)}\left(x_{1}, \ldots, x_{n}, 1\right), \ldots
$$

enumerates all partially computable functions of n variables. When we want to emphasize this aspect we write

$$
\Phi_{y}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\Phi^{(n)}\left(x_{1}, \ldots, x_{n}, y\right)
$$

It is often convenient to omit the superscript when $n=1$, writing

$$
\Phi_{y}(x)=\Phi(x, y)=\Phi^{(1)}(x, y)
$$

