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A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Coding Programs by Numbers

For each program P in language S , we will devise a method

I to associate a unique number, #(P), to the program P, and

I to retrieve a program from its number.

In addition, for each number n ∈ N, we will retrieve from n a
program.
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Arranging Variables and Labels

I The variables are arranged in the following order

Y ,X1,Z1,X2,Z2,X3,Z3, . . .

I The labels are arranged in the following order

A1,B1,C1,D1,E1,A2,B2,C2,D2,E2,A3, . . .

I #(V ) is the position of variable V in the ordering. So is #(L)
for label L.

I Thus,
#(X2) = 4, #(Z1) = #(Z ) = 3, #(E ) = 5, #(B2) = 7, . . ..

3 / 29



A Universal Program (4)
Coding Programs by Numbers (4.1)
The Halting Problem (4.2)
Universality (4.3)

Coding Instructions by Numbers

Let I be an instruction of language S . We write

#(I ) = 〈a, 〈b, c〉〉

where

1. if I is unlabeled, then a = 0; if I is labeled L, then a = #(L);

2. if variable V is mentioned in I , then c = #(V )− 1;

3. if the statement in I is

V ← V or V ← V + 1 or V ← V − 1

then b = 0 or 1 or 2, respectively;

4. if the statement in I is

IF V 6= 0 GOTO L′

then b = #(L′) + 2.
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Coding Instructions by Numbers, Examples

I The number of the unlabeled instruction

X ← X + 1

is
〈0, 〈1, 1〉〉 = 〈0, 5〉 = 10.

I The number of the labeled instruction

[A] X ← X + 1

is
〈1, 〈1, 1〉〉 = 〈1, 5〉 = 21.
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Retrieving The Instruction from A Number

For any given number q, there is a unique instruction I with
#(I ) = q. How?

I First we compute l(q). If l(q) = 0, I is unlabeled; otherwise I
has the l(q)th label L in our list.

I Then we compute i = r(r(q)) + 1 to locate the ith variable V
in our list as the variable mentioned in I .

I Then the statement in I will be

V ← V if l(r(q)) = 0
V ← V + 1 if l(r(q)) = 1
V ← V − 1 if l(r(q)) = 2
IF V 6= 0 GOTO L′ if j = l(r(q))− 2 > 0

and L′ is the jth label in the list.
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Coding Programs by Numbers, Finally

Let a program P consists of the instructions I1, I2, . . . , Ik . Then
we set

#(P) = [#(I1),#(I2), . . . ,#(Ik)]− 1

We call #(P) the number of program P. Note that the empty
program has number 0.
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Coding Programs by Numbers, Examples

Consider the following “nowhere defined” program P

[A] X ← X + 1
IF X 6= 0 GOTO A

Let I1 and I2, respectively, be the first and the second instruction
in P, then

#(I1) = 〈1, 〈1, 1〉〉 = 〈1, 5〉 = 21

#(I2) = 〈0, 〈3, 1〉〉 = 〈0, 23〉 = 46

Therefore
#(P) = 221 · 346 − 1
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Coding Programs by Numbers, Examples

What is the program whose number is 199?
We first compute

199 + 1 = 200 = 23 · 30 · 52 = [3, 0, 2]

Thus, if #(P) = 199, then P consists of 3 instructions whose
numbers are 3, 0, and 2. As

3 = 〈2, 0〉 = 〈2, 〈0, 0〉〉
2 = 〈0, 1〉 = 〈0, 〈1, 0〉〉

We conclude that P is the following program

[B] Y ← Y
Y ← Y
Y ← Y + 1

This is not a very interesting program, as it just computes
f (x) = 1.
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A Problem with Number 0

I The number of the unlabeled instruction Y ← Y is

〈0, 〈0, 0〉〉 = 〈0, 0〉 = 0

I By the definition of Gödel number, the number of a program
will be unchanged if an unlabeled Y ← Y is appended to its
end. Note that this does not change the output of the
program.

I However, we remove even this ambiguity by requiring that the
final instruction in a program is not permitted to be the
unlabeled statement Y ← Y .

I Now, each number determines a unique program (just as each
program determines a unique number)!
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HALT(x , y): A Predicate on Programs and Their Inputs

We define predicate HALT(x , y) such that

HALT(x , y)⇔ program number y eventually halts on input x .

Let P be the program such that #(P) = y . Then

HALT(x , y) =

{
1 if Ψ

(1)
P (x) is defined,

0 if Ψ
(1)
P (x) is undefined.

Note that HALT(x , y) is a total function.

But, is HALT(x , y) computable?
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HALT(x , y) Is Not Computable

Theorem 2.1. HALT(x , y) is not a computable predicate.
Proof. Suppose HALT(x , y) were computable. Then we could
construct the following program P:

[A] IF HALT(X ,X ) GOTO A

It is clear that

Ψ
(1)
P (x) =

{
undefined if HALT(x , x)
0 if ∼ HALT(x , x).

Let #(P) = y0. Then, for all x ,

HALT(x , y0) ⇔ Ψ
(1)
P (x) is defined ⇔ P halts on x ⇔ ∼ HALT(x , x)

Let x = y0, we arrive at

HALT(y0, y0) ⇔ ∼ HALT(y0, y0)

which is a contradiction. 2
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“HALT(x , y) Is Not Computable.” What’s that?

Let’s be precise on what have be proved.

I HALT(x , y) is a predicate on programs in language S . It is a
predicate on the computational behavior of the programs, i.e.,
whether a program y of language S will halt on input x .

I It is shown there exists no program in language S that
computes HALT(x , y).

I As HALT(x , y) is a total function, we now have as an example
a total function that cannot be expressed as a program in S .

I But can HALT(x , y) be expressed in languages other than S ?
Will HALT(x , y) become “computable” if other (more
powerful) formalisms of computation are used?
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The Unsolvability of Halting Problem

There is no algorithm that, given a program of S and an
input to the program, can determine whether or not the
given program will eventually halt on the given input.

I In this form, the result is called the unsolvability of halting
problem.

I The statement above is stronger than the statement “there
exists no program in language S that computes HALT(x , y),”
as an algorithm can refer to a method in any formalism of
computation.

I However, language S can be been shown to be as powerful as
any known computational formalism. Therefore, we reason
that if no program in S can solve it, no algorithm can.
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Church’s Thesis

Any algorithm for computing on numbers can be carried
out by a program of S .

I This assertion is called Church’s Thesis.

I As the word algorithm has no general definition separated
from a particular language, Church’s thesis cannot be proved
as a mathematical theorem.

I We will use Church’s thesis freely in asserting the
nonexistence of algorithms whenever we have shown that the
problem cannot be solved by a program of S .
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Why The Halting Problem Is So Hard? (Unsolvable!)

I This shall not be too surprising, as it is easy to construction
short programs of S such that it is very difficult to tell
whether they will ever halt.

I Example: Fermat’s last theorem.

I Example: Goldbach’s conjecture.

I Actually it is always hard to prove whether programs of S
will exhibit specific computational behaviors (which are of
sufficient interest).
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Fermat’s Last Theorem

The equation xn + yn = zn has no solution in positive
x , y , z and n > 2.

I It is easy to write a program P of language S that will
search all positive integers x , y , z and numbers n > 2 for a
solution to the equation xn + yn = zn.

I Program P never halts if only if Fermat’s last theorem is true.

I That is, if we can solve the halting problem, then we can
easily prove (or dis-prove) the Fermat’s last theorem!

I (Fermat’s last theorem was finally proved in 1995 by Andrew
Wiles with help from Richard Taylor.)
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Goldbach’s Conjecture

Every even number ≥ 4 is the sum of two prime numbers.

I Check: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, . . .
I Is there a counterexample?
I Let’s write a program P in S to search for a counterexample!
I Note that the test that a given even number n is an

counterexample only requires checking the primitive recursive
predicate:

∼ (∃x)≤n(∃y)≤n[Prime(x) & Prime(y) & x + y = n]

I The statement that P never halts is equivalent to Goldbach’s
conjecture.

I The conjecture is still open; nobody knows yet whether P
will eventually halt.
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Compute with Numbers of Programs

I Programs taking programs as input: Compilers, interpreters,
evaluators, Web browsers, . . . .

I Can we write a program in language S to accept the number
of another program P, as well as the input x to P, then

compute Ψ
(1)
P (x) as output?

I Yes, we can! The program above is called a universal program.
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Universality

For each n > 0, we define

Φ(n)(x1, . . . , xn, y) = Ψ
(n)
P (x1, . . . , xn), where #(P) = y .

Theorem 3.1. For each n > 0, the function Φ(n)(x1, . . . , xn, y) is
partially computable. 2

We shall prove this theorem by showing how to construct, for each
n > 0, a program Un which computes Φ(n). That is,

Ψ
(n+1)
Un

(x1, . . . , xn, xn+1) = Φ(n)(x1, . . . , xn, xn+1).

The programs Un are called universal.
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“Computer Organization” of Un

I Program Un accepts n + 1 input variables of which Xn+1 is a
number of a program P, and X1, . . . ,Xn are provided to P
as input variables.

I All variables used by P are arranged in the following order

Y ,X1,Z1,X2,Z2, . . .

and their state is coded by the Gödel number
[y , x1, z1, x2, z2, . . .].

I Let variable S in program Un store the current state of
program P coded in the above manner.

I Let variable K in program Un store the number such that the
K th instruction of program P is about to be executed.

I Let variable Z in program Un store the instruction sequence of
program P coded as a Gödel number.
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Setting Up

As program Un computes Φ(n)(X1, . . . ,Xn,Xn+1), we begin Un by
setting up the initial environment for program (number) Xn+1 to
execute:

Z ← Xn+1 + 1
S ←

∏n
i=1(p2i )

Xi

K ← 1

I If Xn+1 = #(P), where P consists of instructions I1, . . . , Im,
then Z gets the value [#(I1), . . . ,#(Im)].

I S is initialized as [0,X1, 0,X2, . . . , 0,Xn] which gives the first
n input variables their appropriate values and gives all other
variables the value 0.

I K , the instruction counter, is given the initial value 1.
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Decoding Instruction

We first see if the execution of program P shall halt. If not, we
fetch the K th instruction and decode the instruction.

[C ] IF K = Lt(Z ) + 1 ∨ K = 0 GOTO F
U ← r((Z )k)
P ← pr(U)+1

I If the computation has ended, GOTO F , where the proper
value will be output. (The case for K = 0 will be explained
later.)

I (Z )k = 〈a, 〈b, c〉〉 is the number of the K th instruction. Thus
U = 〈b, c〉 is the code of the statement to be executed.

I The variable mentioned in the statement is the (r(U) + 1)th
in our list S , and its current value is stored as the exponent to
which P divides S .
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Instruction Execution

IF l(U) = 0 GOTO N
IF l(U) = 1 GOTO A
IF ∼ (P|S) GOTO N
IF l(U) = 2 GOTO M

I If l(U) = 0, the instruction is a dummy V ← V and the
computation does nothing. Hence, it goes to N (for Nothing).

I If l(U) = 1, the instruction is V ← V + 1 . The computation
goes to A (for Add) to add 1 to the exponent on P in the
prime power factorization of S .

I If l(U) 6= 0, 1, the instruction is either V ← V − 1 , or

IF V 6= 0 GOTO L . In both cases, if V = 0, the
computation does nothing so goes to N. This happens when
P is not a divisor of S .

I If P|S and l(U) = 2, the computation goes to M (for Minus).
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Branching

K ← mini≤Lt(Z)[l((Z )i ) + 2 = l(U)]

GOTO C

I If l(U) > 2 and P|S , the current instruction is of the form

IF V 6= 0 GOTO L where V has a nonzero value and L is

the label whose position in our label list is l(U)− 2.

I The next instruction should be the first with this label.

I That is, K should get as its value the least i for which
l((Z )i ) = l(U)− 2. If there is no instruction with the
appropriate label, K gets the 0, which will lead to termination
the next time through the main loop.

I Once the instruction counter K is adjusted, the execution
enters the main loop by GOTO C .
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Subtraction and Addition

[M] S ← bS/Pc
GOTO N

[A] S ← S · P
[N] K ← K + 1

GOTO C

I 1 is subtracted from the variable by dividing S by P.

I 1 is added to the variable by multiplying S by P.

I The instruction counter is increased by 1 and the computation
returns to the main loop to fetch the next instruction.
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Finalizing

[F ] Y ← (S)1

I One termination, the value of Y for the program being
simulated is stored at the exponent on p1 in S .
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Un, Finally

Z ← Xn+1 + 1
S ←

∏n
i=1(p2i )

Xi

K ← 1
[C ] IF K = Lt(Z) + 1 ∨ K = 0 GOTO F

U ← r((Z)k )
P ← pr(U)+1

IF l(U) = 0 GOTO N
IF l(U) = 1 GOTO A
IF ∼ (P|S) GOTO N
IF l(U) = 2 GOTO M
K ← mini≤Lt(Z)[l((Z)i ) + 2 = l(U)]

GOTO C
[M] S ← bS/Pc

GOTO N
[A] S ← S · P
[N] K ← K + 1

GOTO C
[F ] Y ← (S)1
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Notations

For each n > 0, the sequence

Φ(n)(x1, . . . , xn, 0),Φ(n)(x1, . . . , xn, 1), . . .

enumerates all partially computable functions of n variables. When
we want to emphasize this aspect we write

Φ
(n)
y (x1, . . . , xn) = Φ(n)(x1, . . . , xn, y)

It is often convenient to omit the superscript when n = 1, writing

Φy (x) = Φ(x , y) = Φ(1)(x , y).
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