COT 5310: Theory of Automata and Formal Languages

Lecture 1

Florida State University
Department of Computer Science

Slides Credit: Dr. Michael Mascagni, CS FSU

This course aims to cover . ..

» the development of computability theory using an extremely
simple abstract programming language,

» the various different formulations of computability and their
equivalence

)

33

By the end of this course, you should be able to ...

P appreciate the existence of universal digital computers,

» understand there are well-defined functions that cannot be
computed even by the universal computers,

» know that certain problems are truly harder than others,

» use various formalized computation models to solve your
problems, and

» show that some problems are just too difficult for the models
at hand.

Textbook

Martin Davis, Ron Sigal, and Elaine J. Weyuker. Computability,
Complexity, and Languages: Fundamentals of Theoretical
Computer Science, 2nd edition. February 1994, Morgan
Kaufmann. ISBN: 0122063821.

» Written for people who may know programming, but from a
mathematical view of the subjects. Enjoyably readable but
Vvery rigorous.

> “lt is our purpose ...to provide an introduction to the various
aspects of theoretical computer science for undergraduate and
graduate students that is sufficiently comprehensive that
... research papers will become accessible to our readers.”
(the authors)

» We will cover just one half of the materials in the book.

Outline of Lecture

» Review some preliminary materials.

» Define an abstract programming language . that is
extremely simple.

» Write some programs in ..

es, and functions (1.1, 1.2)

Preliminaries (1)

Cartesian Product

> If 51,5,,...,5, are given sets, then we write
S1 % S, % -+ x 5, for the set of all n-tuples (a1, a2,...,a,)
such that a1 € 51,2, € 5y,...,a, € 5,..

> S1 X Sy, x---x S, is called the Cartesian product of
51,5%.,...,5,.

» Incase 51 =S5 =--- =5, =5 we write S” for the Cartesian

product 51 X Sp, x - -+ X 5.

6/33

ples, and functions (1.1, 1.2)
Preliminaries (1) s (1.4)

s (1.5)
6, 1.7)

Functions

» A function f is a set whose members are ordered pairs (i.e.,
2-tuples) and has the special property

(a,b) € f and (a,c) € f implies b=c.

We write f(a) = b to mean that (a, b) € f.

» The set of all a such that (a, b) € f for some b is called the
domain of f. The set of all f(a) for a in the domain of f is
called the range of f.

» A partial function on a set S is a function whose domain is a
subset of S. If a partial function on S has the domain S, then
it is called a total function.

» We write f(a) | and say that f(a) is defined if a is in the
domain of f; if a is not in the domain of f, we write (a) 1
and say that f(a) is undefined.

es, and functions (1.1, 1.2)

Preliminaries (1)

Examples of Functions

> Let f be the set of ordered pairs (n, n?) for n € N. Then, for
each n € N, f(n) = n?>. The domain of f is N. The range of
f is the set of perfect squares. f is a total function.

» Assuming NN is our universe, an example of a partial function
on N is given by g(n) = /n. The domain of g is the set of
perfect squares. The range of g is V. g is not a total function.

» For a partial function f on a Cartesian product
S1x Sp,x - x S, , we write (a1, ..., a,) rather than

» A partial function f on a set S” is called an n-ary partial
function on S, or a function of n variables on 5. We use
unary and binary for 1-ary and 2-ary, respectively.

Sets, n-tuples, and functions (1.1, 1.2)

Preliminaries (1)

Predicate

A predicate, or a Boolean-valued function, on a set S is a total
function P on S such that for each a € S, either

P(a) = TRUE or P(a)=FALSE

We also identify the truth value TRUE with number 1 and the
truth value FALSE with number 0.

Sets, n-tuples, and functions (1.1, 1.2)
Preliminaries (1) Predicat:

Qua S 5
Proofs (1.6, 1.7)

Logic Connectives

The three logic connectives, or propositional connectives, ~,V, &
are defined by the two tables below.

p ~p p qg p&q pVg

0 1 1 1 1 1

1 0 01 0 1
1 0 0 1
0 0 0 0

10/33

Sets, n-tuples, and functions (1.1, 1.2)

Preliminaries (1)
Qua ers (1.5)
Proofs (1.6, 1.7)

Characteristic Function

Given a predicate P on a set S, there is a corresponding subset R
of S consisting of all elements a € S for which P(a) = 1. We write

R={acS|P(a)}

Conversely, given a subset R of a given set S, the expression x € R
defines a predicate P on S:

1 ifxeR
W”Z{OiugR

The predicate P is called the characteristic function of the set R.
Note the easy translations between the two notations:

{xeS|PX)&Q(x)} = {xeS|P(x)} N {xeS|RKx)},
{xeS|PXx)VQ(x)} = {xeS|Px)} U {xeS|Qx)},
{xeS| ~P(x)} = S—{xeS|Px)}.

11/33

Preliminaries (1)

Bounded Existential Quantifier

Let P(t,x1,...,x,) be a (n+ 1)-ary predicate. Let predicate
Q(y,x1,...,x,) be defined by

Q(yvxla"'vxn) = 'D(O'/Xl:"'vxn)

Vo P(1l,x1,...,Xn)
V .
Vo P(y,x1,...,Xn)
Thatis, Q(y, x1,...,xy,) is true if there is a value t < y such that

P(t,x1,...,x,) is true. We write this predicate Q as
(Ht)gyp(t, X1yen- ,Xn)

“(3t)<,” is called a bounded existential quantifier.

12/33

s, and functions (1.1, 1.2)

Preliminaries (1)

Proofs

Bounded Universal Quantifier

Let P(t,x1,...,x,) be a (n+ 1)-ary predicate. Let predicate
Q(y,x1,...,x,) be defined by

Q(yvxla"'vxn) = 'D(O'/Xl:"'vxn)
& P(1l,x1,...,%p)
& P(y,x1,...,Xn)

Thatis, Q(y, x1,...,xy) is true if for all value t < y such that
P(t,x1,...,x,) is true. We write this predicate Q as

(Vt)<, P(t, X1, ..., Xn)

“(Vt)<," is called a bounded universal quantifier.

13/33

Preliminaries (1)

Proof by Contradiction

In a proof by contradiction, we begin by assuming the assertion we
wish to prove is false. We then derive a contradiction based on this
(faulty) assumption along with (faultless) logical reasoning. We
then conclude that the original assertion must be true.

14 /33

and functions (1.1, 1.2)
Preliminaries (1) r)

Qua ers)
Proofs (1.6, 1.7)

Proof by Contradiction: Example
Prove that the equation 2 = (m/n)? has no solution m,n € N.

Proof. Assume 2 = (m/n)? has a solution m,n € N. Then it must
also have a solution where not both m and n are even. This is so
because we can repeatedly “cancel” 2 from m and n until at least
one of them becomes odd, and still have the two “reduced”
numbers as a solution.

However, the equation 2 = (m/n)? can be rewritten as m? = 2n?
which shows that m must be even. Let m = 2k, then

m? = (2k)? = 4k>. But this implies n> = 2k?. Thus n is even.
Now both m and n are even, which is a contradiction.

We conclude that 2 = (m/n)? has no solution m,n € N. O

15/33

and functions (1.1, 1.2)
Preliminaries (1) r)

Qus ers 2))
Proofs (1.6, 1.7)

Mathematical Induction

Given a predicate P(x), and the assertion “P(n) is true for all
n € N", we can use mathematical induction to try to establish this
assertion. One proceeds by proving a pair of auxiliary statements
about P(x), namely,
PO) and
For all n € N, P(n) implies P(n+ 1)

In the second statement above, P(n) is called an induction
hypothesis. If both statements above are proved to be true, one
then concludes that

For all n € N, P(n)

16 /33

Preliminaries (1)

Mathematical Induction: Example
Prove that for all n € N, > ((2i +1) = (n+ 1)

Proof. For n =0, then Z?:0(2i+ 1) =1 = (0+ 1), which is true.
It remains to show that for all n € N, if .7 ((2i + 1) = (n+1)%is
true, then > (2i + 1) = (n +2)? is also true.

We expand Y771 (2i + 1) by its definition,

n+1 n

d@i+1) = Y (2i+1)+2n+1)+1

i=0 i=0
= (n+1)>4+2(n+1)+1 (by induction hypothesis)
= (n+2)

We conclude that for all n.€ N, 37 ((2i + 1) = (n+ 1) 0

17/33

A Programming Language (2.1)

Programs and Computable Functions (2) Some Exa es of Programs (2.2)

The Programming Language .7

» Values: natural numbers only, but of unlimited precision.
» Variables:

» Input variables X1, X5, X3,...

» An output variable Y

» Local variables 71, 2>, Z3, . ..
» Instructions:

V <= V 41 Increase by 1 the value of the variable V.

V < V — 1 If the value of V is 0, leave it unchanged;
otherwise decrease by 1 the value of V.

IF V£ 0 GOTO L If the value of V is nonzero, perform the
instruction with label L next; otherwise proceed
to the next instruction in the list.

> Labels: Al, Bl, Cl, Dl, El,Az, BQ, Cz, D2, E2, Ag, .
> Exit label: E.

» All variables and labels are in the global scope.
18 /33

A Programming Langua

Programs and Computable Functions (2) Some Examples of Prog

Programming in .%/

» A program is a list (i.e., a finite sequence) of instructions.

» The output variable Y and the local variables Z; initially have
the value 0.

» A program halts when there is no more instruction to execute.

» A program also halts if an instruction labeled L is to be
executed, but there is no instruction with that label.

» What does this program do?
[A] X<+ X-1
Y+~ Y+1
IF X #£0 GOTO A

19/33

ogramming Langua

Programs and Computable Functions (2) Examples of Prog

A Bug?

» What does this program do?

[A] X+ X-—1
Y+~ Y+1
IF X #0 GOTO A

» The above program computes the function

f(x):{ 1 ifx=0

x otherwise.

20/33

A Programming La

Programs and Computable Functions (2) Some Examples of

A Program That Computes f(x) = x

[A] IF X#0GOTO B
Z+—Z7Z+1
IF Z#0GOTO E
[B] X<+ X-1
Y+ Y+1
<+ Z+1
IF Z#0GOTO A

» What does Z actually do?
» What does the following do?

Z<+—7Z+1
IF Z£0GOTO L

» That is an unconditional goto!

GOTO L

21/33

A Programming Language (2.1)

Programs and Computable Functions (2) Some Examples of Programs (2.2)

A Macro for Unconditional GOTO

» Before macro expansion:
[A] IF X #0GOTO B
GOTO E
[B] X+ X-1
Y+~ Y+1
GOTO A
> After macro expansion:
[A] IF X #0GOTO B
L1+ 21+1
IF 21 #0 GOTO E
[B] X+ X-1
Y+—~Y+1
Iy 7o +1
IF Z, 0 GOTO A
» Fresh local variables are always used during macro expansions. 2233

A Programming Language (2.1)

Programs and Computable Functions (2) Some Examples of Programs (2.2)

Copy The Value of Variable X to Variable Y

> [A] IF X #£0GOTO B
GOTO E
[B] X+ X-1
Y+—Y+1
GOTO A
» Anything wrong?
» The value of X is “destroyed” while copied to Y'!

23 /33

A Programming Language (2.1)

Programs and Computable Functions (2) Some Examples of Programs (2.2)

Copy The Value of Variable X to Variable Y, Continued

> [A] IF X #0GOTO B
GOTO C
[B] X+ X-1
Y+~Y+1
Z+—Z2Z+1
GOTO A
[C] IFZ+#0GOTO D
GOTO E
[D] Z+Z-1
X+—X+1
GOTO C
» Anything wrong?
» This program is correct only when Y and Z are initialized to

the value 0. It cannot be used as a macro.
24 /33

A Programming Language (2.1)

Programs and Computable Functions (2) Some Examples of Programs (2.2)

A Macro for V « V/

> V0
[A] IF V40 GOTO B
GOTO C
[B] V' «V -1
V—V+1
Z+—Z7Z+1
GOTO A
[C] IFZ+#0GOTO D
GOTO E
[D] Z+Z-1
ViV +1
GOTO C
» Anything wrong?

» V < 0 is not an instruction in .¥.
25 /33

A Programming Language (2.1)

Programs and Computable Functions (2) Some Examples of Programs (2.2)

A Macro for V + 0

] V+Vv-1
IF V #0GOTO L

26 /33

A Programming Language (2.1)

Programs and Computable Functions (2) Some Examples of Programs (2.2)

A Program That Computes f(x1, %) = x1 + X

Y%Xl
Z%XQ

[B] IFZ+#0GOTO A
GOTO E

Al Z+Z-1
Y+—Y+1
GOTO B

Note that Z is used to preserve the value of X, so that it will not
be destroyed during the computation.

27 /33

A Programming Language (2.1)

Programs and Computable Functions (2) Some Examples of Programs (2.2)

A Program That Computes f(x1, %) = x1 - X

| 2 Ly +— Xy
[B] IF Z, #0GOTO A
GOTO E
[A] Z2 — Z2 -1
Z1+— X1 +Y
Y + Zl
GOTO B

> OKI

28 /33

A Programming Language (2.1)

Programs and Computable Functions (2) Some Examples of Programs (2.2)

A Shorter Program That Computes f(x1, xp) = X1 - X7

> Z2 — X2
[B] IF Z, #0 GOTO A
GOTO E
[A] Z2 — Zg —1
Y~ X14+Y
GOTO B
» NO GOOD!
> Why?

29/33

A Programming Language (2.1)

Programs and Computable Functions (2) Some Examples of Programs (2.2)

» The macro for f(x1,x) = x1 + x2
Y + X1
Z %Xz
[B] IFZ+#0GOTO A
GOTO E
[A] Z+Z-1
Y+~ Y+1
GOTO B
» Macro expanding Y < X; + Y:
Y + X1
Z<+Y
[B] IFZ#0GOTO A
GOTO E
[A] Z+Z-1
Y+—~Y+1
GOTO B

» The above actually computes f(x1,x) =2 - x1 0 as

A Programming Language (2.1)

Programs and Computable Functions (2) Some Examples of Programs (2.2)

A Program That Computes f(x1, %) = x1 - X2, Revisited

» Need to macro expand Z; + X; + Y.
> After macro expansion:
Z2 < X2
[B] IF Z, 0 GOTO A
GOTO E
[A] ZQ — Z2 -1
Zl — Xl
Z3 +Y
[B2] IF Z3 #0 GOTO A
GOTO E
[Ag] Z3 — Z3 —1
21+ 21+ 1
GOTO B,
[E2] Y + Zl
GOTO B 31/33

A Programming Langua

Programs and Computable Functions (2) Some Examples of Prog

Note on The Macro Expansion

» The output variable Y in the macro f(xi, x2) = x1 + x2 is now
fresh variable Z; in the expanded form.

» The local variable Z in the macro f(x1,x2) = x1 + X2 is now
fresh variable Z3 in the expanded form (as variables Z; and Z»
are already used).

» Fresh labels Ay, By, and E; are used in the expanded form (as
the original labels A, B, and E are already used).

» The instruction GOTO E; only terminates the addition. The
computation must continue to place following the addition.

Hence, the instruction immediately following the addition is
labeled E.

» Unlimited supply of fresh local variables and local labels!
» More about macro expansion next week.

32/33

A Programming Language (2.1)

Programs and Computable Functions (2) Some Examples of Programs (2.2)

A Final Example

» What does this program compute?
Y + X1
Z +— X2
[C] IFZ#0GOTO A
GOTO E
[A] IFY+#0GOTO B
GOTO A
[B] Y+~Y-1
Z+—Z7Z-1
GOTO C
P> If we begin with X; =5and Xo =2, ...
» If we begin with X; =2 and X5 =5, ...
» This program computes the following partial function

(x1,%0) = X1 —xo if x1 > xo
gV, x2) = T if x1 < xo

33/33

