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Preliminaries (1)
Programs and Computable Functions (2)

This course aims to cover . . .

I the development of computability theory using an extremely
simple abstract programming language,

I the various different formulations of computability and their
equivalence
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Preliminaries (1)
Programs and Computable Functions (2)

By the end of this course, you should be able to . . .

I appreciate the existence of universal digital computers,

I understand there are well-defined functions that cannot be
computed even by the universal computers,

I know that certain problems are truly harder than others,

I use various formalized computation models to solve your
problems, and

I show that some problems are just too difficult for the models
at hand.
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Programs and Computable Functions (2)

Textbook

Martin Davis, Ron Sigal, and Elaine J. Weyuker. Computability,
Complexity, and Languages: Fundamentals of Theoretical
Computer Science, 2nd edition. February 1994, Morgan
Kaufmann. ISBN: 0122063821.

I Written for people who may know programming, but from a
mathematical view of the subjects. Enjoyably readable but
very rigorous.

I “It is our purpose . . . to provide an introduction to the various
aspects of theoretical computer science for undergraduate and
graduate students that is sufficiently comprehensive that
. . . research papers will become accessible to our readers.”
(the authors)

I We will cover just one half of the materials in the book.
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Programs and Computable Functions (2)

Outline of Lecture

I Review some preliminary materials.

I Define an abstract programming language S that is
extremely simple.

I Write some programs in S .
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Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Cartesian Product

I If S1,S2, . . . ,Sn are given sets, then we write
S1 × S2,× · · · × Sn for the set of all n-tuples (a1, a2, . . . , an)
such that a1 ∈ S1, a2 ∈ S2, . . . , an ∈ Sn.

I S1 × S2,× · · · × Sn is called the Cartesian product of
S1,S2, . . . ,Sn.

I In case S1 = S2 = · · · = Sn = S we write Sn for the Cartesian
product S1 × S2,× · · · × Sn.
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Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Functions

I A function f is a set whose members are ordered pairs (i.e.,
2-tuples) and has the special property

(a, b) ∈ f and (a, c) ∈ f implies b = c .

We write f (a) = b to mean that (a, b) ∈ f .
I The set of all a such that (a, b) ∈ f for some b is called the

domain of f . The set of all f (a) for a in the domain of f is
called the range of f .

I A partial function on a set S is a function whose domain is a
subset of S . If a partial function on S has the domain S , then
it is called a total function.

I We write f (a) ↓ and say that f (a) is defined if a is in the
domain of f ; if a is not in the domain of f , we write f (a) ↑
and say that f (a) is undefined.
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Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Examples of Functions

I Let f be the set of ordered pairs (n, n2) for n ∈ N. Then, for
each n ∈ N, f (n) = n2. The domain of f is N. The range of
f is the set of perfect squares. f is a total function.

I Assuming N is our universe, an example of a partial function
on N is given by g(n) =

√
n. The domain of g is the set of

perfect squares. The range of g is N. g is not a total function.

I For a partial function f on a Cartesian product
S1 × S2,× · · · × Sn , we write f (a1, . . . , an) rather than
f ((a1, . . . , an)).

I A partial function f on a set Sn is called an n-ary partial
function on S , or a function of n variables on S . We use
unary and binary for 1-ary and 2-ary, respectively.
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Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Predicate

A predicate, or a Boolean-valued function, on a set S is a total
function P on S such that for each a ∈ S , either

P(a) = TRUE or P(a) = FALSE

We also identify the truth value TRUE with number 1 and the
truth value FALSE with number 0.
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Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Logic Connectives

The three logic connectives, or propositional connectives, ∼,∨,&
are defined by the two tables below.

p ∼ p

0 1
1 0

p q p & q p ∨ q

1 1 1 1
0 1 0 1
1 0 0 1
0 0 0 0
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Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Characteristic Function

Given a predicate P on a set S , there is a corresponding subset R
of S consisting of all elements a ∈ S for which P(a) = 1. We write

R = {a ∈ S | P(a)}.
Conversely, given a subset R of a given set S , the expression x ∈ R
defines a predicate P on S:

P(x) =

{
1 if x ∈ R
0 if x 6∈ R.

The predicate P is called the characteristic function of the set R.
Note the easy translations between the two notations:

{x ∈ S | P(x) &Q(x)} = {x ∈ S | P(x)} ∩ {x ∈ S | Q(x)},
{x ∈ S | P(x) ∨ Q(x)} = {x ∈ S | P(x)} ∪ {x ∈ S | Q(x)},
{x ∈ S | ∼ P(x)} = S − {x ∈ S | P(x)}.
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Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Bounded Existential Quantifier

Let P(t, x1, . . . , xn) be a (n + 1)-ary predicate. Let predicate
Q(y , x1, . . . , xn) be defined by

Q(y , x1, . . . , xn) = P(0, x1, . . . , xn)

∨ P(1, x1, . . . , xn)

∨ . . .

∨ P(y , x1, . . . , xn)

That is, Q(y , x1, . . . , xn) is true if there is a value t ≤ y such that
P(t, x1, . . . , xn) is true. We write this predicate Q as

(∃t)≤yP(t, x1, . . . , xn)

“(∃t)≤y” is called a bounded existential quantifier.
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Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Bounded Universal Quantifier

Let P(t, x1, . . . , xn) be a (n + 1)-ary predicate. Let predicate
Q(y , x1, . . . , xn) be defined by

Q(y , x1, . . . , xn) = P(0, x1, . . . , xn)

& P(1, x1, . . . , xn)

& . . .

& P(y , x1, . . . , xn)

That is, Q(y , x1, . . . , xn) is true if for all value t ≤ y such that
P(t, x1, . . . , xn) is true. We write this predicate Q as

(∀t)≤yP(t, x1, . . . , xn)

“(∀t)≤y” is called a bounded universal quantifier.
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Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Proof by Contradiction

In a proof by contradiction, we begin by assuming the assertion we
wish to prove is false. We then derive a contradiction based on this
(faulty) assumption along with (faultless) logical reasoning. We
then conclude that the original assertion must be true.
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Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Proof by Contradiction: Example

Prove that the equation 2 = (m/n)2 has no solution m, n ∈ N.

Proof. Assume 2 = (m/n)2 has a solution m, n ∈ N. Then it must
also have a solution where not both m and n are even. This is so
because we can repeatedly “cancel” 2 from m and n until at least
one of them becomes odd, and still have the two “reduced”
numbers as a solution.

However, the equation 2 = (m/n)2 can be rewritten as m2 = 2n2

which shows that m must be even. Let m = 2k , then
m2 = (2k)2 = 4k2. But this implies n2 = 2k2. Thus n is even.
Now both m and n are even, which is a contradiction.

We conclude that 2 = (m/n)2 has no solution m, n ∈ N. 2
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Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Mathematical Induction

Given a predicate P(x), and the assertion “P(n) is true for all
n ∈ N”, we can use mathematical induction to try to establish this
assertion. One proceeds by proving a pair of auxiliary statements
about P(x), namely,

P(0)
and

For all n ∈ N, P(n) implies P(n + 1)

In the second statement above, P(n) is called an induction
hypothesis. If both statements above are proved to be true, one
then concludes that

For all n ∈ N, P(n)
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Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Mathematical Induction: Example

Prove that for all n ∈ N,
∑n

i=0(2i + 1) = (n + 1)2.

Proof. For n = 0, then
∑0

i=0(2i + 1) = 1 = (0 + 1)2, which is true.
It remains to show that for all n ∈ N, if

∑n
i=0(2i + 1) = (n + 1)2 is

true, then
∑n+1

i=0 (2i + 1) = (n + 2)2 is also true.
We expand

∑n+1
i=0 (2i + 1) by its definition,

n+1∑
i=0

(2i + 1) =
n∑

i=0

(2i + 1) + 2(n + 1) + 1

= (n + 1)2 + 2(n + 1) + 1 (by induction hypothesis)

= (n + 2)2.

We conclude that for all n ∈ N,
∑n

i=0(2i + 1) = (n + 1)2. 2
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Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

The Programming Language S

I Values: natural numbers only, but of unlimited precision.
I Variables:

I Input variables X1,X2,X3, . . .
I An output variable Y
I Local variables Z1,Z2,Z3, . . .

I Instructions:
V ← V + 1 Increase by 1 the value of the variable V .
V ← V − 1 If the value of V is 0, leave it unchanged;

otherwise decrease by 1 the value of V .
IF V 6= 0 GOTO L If the value of V is nonzero, perform the

instruction with label L next; otherwise proceed
to the next instruction in the list.

I Labels: A1,B1,C1,D1,E1,A2,B2,C2,D2,E2,A3, . . .
I Exit label: E .
I All variables and labels are in the global scope.
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Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Programming in S

I A program is a list (i.e., a finite sequence) of instructions.

I The output variable Y and the local variables Zi initially have
the value 0.

I A program halts when there is no more instruction to execute.

I A program also halts if an instruction labeled L is to be
executed, but there is no instruction with that label.

I What does this program do?

[A] X ← X − 1
Y ← Y + 1
IF X 6= 0 GOTO A
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Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Bug?

I What does this program do?

[A] X ← X − 1
Y ← Y + 1
IF X 6= 0 GOTO A

I The above program computes the function

f (x) =

{
1 if x = 0
x otherwise.
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Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x) = x

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

I What does Z actually do?
I What does the following do?

Z ← Z + 1
IF Z 6= 0 GOTO L

I That is an unconditional goto!

GOTO L
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Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Macro for Unconditional GOTO

I Before macro expansion:

[A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

I After macro expansion:

[A] IF X 6= 0 GOTO B
Z1 ← Z1 + 1
IF Z1 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z2 ← Z2 + 1
IF Z2 6= 0 GOTO A

I Fresh local variables are always used during macro expansions. 22 / 33
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Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Copy The Value of Variable X to Variable Y

I [A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

I Anything wrong?

I The value of X is “destroyed” while copied to Y !
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Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Copy The Value of Variable X to Variable Y , Continued

I [A] IF X 6= 0 GOTO B
GOTO C

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
GOTO A

[C ] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
X ← X + 1
GOTO C

I Anything wrong?
I This program is correct only when Y and Z are initialized to

the value 0. It cannot be used as a macro.
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Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Macro for V ← V ′

I V ← 0
[A] IF V ′ 6= 0 GOTO B

GOTO C
[B] V ′ ← V ′ − 1

V ← V + 1
Z ← Z + 1
GOTO A

[C ] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
V ′ ← V ′ + 1
GOTO C

I Anything wrong?
I V ← 0 is not an instruction in S .
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Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Macro for V ← 0

[L] V ← V − 1
IF V 6= 0 GOTO L
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Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x1, x2) = x1 + x2

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

Note that Z is used to preserve the value of X2 so that it will not
be destroyed during the computation.
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A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x1, x2) = x1 · x2

I Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Z1 ← X1 + Y
Y ← Z1

GOTO B

I OK!
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Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Shorter Program That Computes f (x1, x2) = x1 · x2?

I Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Y ← X1 + Y
GOTO B

I NO GOOD!

I Why?
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A Programming Language (2.1)
Some Examples of Programs (2.2)

I The macro for f (x1, x2) = x1 + x2

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

I Macro expanding Y ← X1 + Y :

Y ← X1

Z ← Y
[B] IF Z 6= 0 GOTO A

GOTO E
[A] Z ← Z − 1

Y ← Y + 1
GOTO B

I The above actually computes f (x1, x2) = 2 · x1 30 / 33
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Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x1, x2) = x1 · x2, Revisited

I Need to macro expand Z1 ← X1 + Y .
I After macro expansion:

Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Z1 ← X1

Z3 ← Y
[B2] IF Z3 6= 0 GOTO A2

GOTO E2

[A2] Z3 ← Z3 − 1
Z1 ← Z1 + 1
GOTO B2

[E2] Y ← Z1

GOTO B 31 / 33
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A Programming Language (2.1)
Some Examples of Programs (2.2)

Note on The Macro Expansion

I The output variable Y in the macro f (x1, x2) = x1 + x2 is now
fresh variable Z1 in the expanded form.

I The local variable Z in the macro f (x1, x2) = x1 + x2 is now
fresh variable Z3 in the expanded form (as variables Z1 and Z2

are already used).

I Fresh labels A2,B2, and E2 are used in the expanded form (as
the original labels A,B, and E are already used).

I The instruction GOTO E2 only terminates the addition. The
computation must continue to place following the addition.
Hence, the instruction immediately following the addition is
labeled E2.

I Unlimited supply of fresh local variables and local labels!

I More about macro expansion next week.
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A Programming Language (2.1)
Some Examples of Programs (2.2)

A Final Example
I What does this program compute?

Y ← X1

Z ← X2

[C ] IF Z 6= 0 GOTO A
GOTO E

[A] IF Y 6= 0 GOTO B
GOTO A

[B] Y ← Y − 1
Z ← Z − 1
GOTO C

I If we begin with X1 = 5 and X2 = 2, . . .
I If we begin with X1 = 2 and X2 = 5, . . .
I This program computes the following partial function

g(x1, x2) =

{
x1 − x2 if x1 ≥ x2

↑ if x1 < x2 33 / 33


