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ABSTRACT
Background: Video programming tutorials are becoming a popular
resource for developers looking for quick answers to a specific
programming problem or trying to learn a programming topic in
more depth. Since the most important source of information for
developers in many such videos is source code, it is important to
be able to accurately extract this code from the screen, such that
developers can easily integrate it into their programs. Aims: Our
main goal is to facilitate the accurate and noise-free extraction
of code appearing in programming video tutorials. In particular,
in this paper we aim to accurately predict the location of source
code in video frames. This will allow for the dramatic reduction of
noise when using extraction techniques such as Optical Character
Recognition, which could otherwise extract a large amount of irrel-
evant text (e.g., text found in menu items, package hierarchy, etc.).
Method: We propose an approach using a deep Convolutional Neu-
ral Network (CNN) to predict the bounding box of fully-visible code
sections in video frames. To evaluate our approach, we collected
a set of 150 Java programming tutorials, having more than 82K
frames in total. A sample of 4,000 frames from these videos were
then manually annotated with the code bounding box location and
used as the ground truth in an experiment evaluating our approach.
Results: The results of the evaluation show that our approach is
able to successfully predict the code bounding box in a given frame
with 92% accuracy. Conclusions: Our CNN-based approach is able
to accurately predict the location of source code within the frames
of programming video tutorials.

CCS CONCEPTS
• Software and its engineering→ Documentation; • Computer
vision→ Image recognition; • Computer systems organization
→ Neural networks;
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1 INTRODUCTION
Nowadays developers spend 20-30% of their time online, looking for
information they need for their daily development andmaintenance
tasks [2, 6]. Most of this time is spent consulting online documen-
tation in the form of Q&A websites, tutorials, API documentation,
etc. Programming video tutorials are one documentation source
that has seen a rapid growth in production and usage [13], though
some limitations still prevent developers to use them to their full
potential. In particular, given that copy-pasting code is the most
common task developers perform online [2], video tutorials are
currently not very helpful in that regard. Code appearing on the
screen is often not available for download or copy-pasting, which
makes videos often inconvenient to use as a resource. Therefore,
designing tools and techniques that can automatically extract cor-
rect code appearing in video tutorials is of extreme importance, as
it would give developers access to a wealth of documented source
code currently not leveraged.

Recent approaches have started moving in this direction [20, 24]
by using Optical Character Recognition (OCR) techniques in order
to extract the code found in software development video tutorials.
However, when used on a video frame containing source code,
OCR will not only extract the code, but every piece of text that is
appearing on the screen, including text found in menu items, file
and package hierarchies in IDEs, desktop icons, error messages,
the program output, etc. Given that OCR reads text line by line, it
often mixes the non-code text with the source code [23], resulting
in noise and incorrect, unusable code being extracted. Therefore,
it is necessary to first accurately identify the section of the screen
where the code is located and then apply OCR only to that section,
in order to eliminate the noise.

Current approaches [20, 24] have made use of heuristics and
assumptions in order to determine the location of the code on
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the screen, such as generalizing its location based on only one
video [24], or setting hard thresholds and dividing images into
predefined fixed-size sub-images [20]. However, these heuristics
are not generalizable and fail to identify the location of the code
on the screen when videos do not follow the assumptions made.

In this paper we propose a novel, robust approach based on
object identification and deep learning algorithms to predict the
presence and precise location of source code in the frames of a
software development video tutorial, which is the first important
step towards the extraction of correct code from videos. Our ap-
proach starts off by segmenting a programming video, obtaining
one static frame for every second of footage in the video. Then,
given that many of the frames of a programming screencast contain
the same image [3], it detects and removes redundant or duplicate
frames using object identification algorithms. Finally, for each of
the remaining frames, the approach uses a Convolutional Neural
Network (CNN) to predict the bounding box surrounding any code
fragment found in the frame (or zero if the frame does not contain
code).

We evaluated our approach on a set of frames extracted from
150 Java video programming tutorials hosted on YouTube1. The
videos initially contained more than 82K frames in total, with 50K
remaining after the redundant frame reduction step. From these, a
sample of 4,000 frames were manually annotated with their code
bounding boxes and used as ground truth in our evaluation exper-
iment. The results of the experiment show that our approach is
able to accurately determine the area of the screen where the code
is located, achieving an accuracy of 92% on the used dataset. We
make our dataset, scripts, and results available in our replication
package2 (17GB in total).

The rest of the paper is organized as follows: Section 2 presents
some background information on deep learning for image analysis,
Section 3 introduces our approach and its components, and Sec-
tion 4 describes our evaluation on predicting the location of code
in Java video programming tutorials. Further, Section 5 presents
current limitations of our approach, Section 6 discusses threats to
the validity of our results, Section 7 presents the related work and
finally Section 8 concludes the paper.

2 DEEP LEARNING FOR IMAGE ANALYSIS
In our approach for determining the location of code in video frames
we employ deep learning techniques, and in particular Convolu-
tional Neural Networks (CNN), which are a type of Artificial Neural
Networks (ANN) that have been shown to perform the best for im-
age analysis and classification [8]. In this section we give a brief
introduction to deep learning and the networks we use.

An ANN is a collection of connected nodes called neurons [5].
These neuron nodes are interconnectedmuch like neurons are in the
human brain. Each neuron is characterized by its weight, bias, and
activation function. Each connection is initially assigned a random
weight which increases or decreases the strength of the signal at
a connection. Each neuron node is responsible for processing a
signal sent to it, then sending the processed signal to all of the
other neurons connected to it. This signal is a number, and the

1https://youtube.com/
2https://goo.gl/R7yGiD

output of each neuron node is calculated by a non-linear function
of the sum of its inputs.

An ANN is composed of different layers of neural nodes: an input
layer, a number of hidden layers, and an output layer [5]. Each node
in a layer is connected to every node in the previous layer. The
neuron nodes in the initial hidden layer are fed input from the
input layer. They then process this input and send a signal forward
through all of their connections. This continues until the signal
reaches the output layer. As learning in the network progresses, the
weights are re-calibrated during a backpropagation phase based
on errors that were found in the output [22]. This increases the
accuracy of the predictions that the ANN makes.

A Convolutional Neural Network (CNN) [9], also known as a
ConvNet is a type of ANN that has proven to be very effective
when it comes to image recognition and classification [8]. CNNs
are particularly good at detecting patterns in images through the
use of filters. The filters slide or "convolve" across the image until
the entire image is covered. These filters can detect things like
edges, shapes, textures, etc. and where they are located in an image.

The convolutional layer is what separates a CNN from other
ANNs and is where most of the computation happens. In a CNN the
convolutional layer is typically followed by a non-linear layer and
sometimes a pooling layer. At the end of the network there is a fully
connected layer to equip the network with the ability to classify
samples. So, in general there are four main operations in a CNN
architecture: convolution, non-linearity, pooling, and classification.

Convolution: A convolutional layer consists of a set of filters, also
known as kernels or feature detectors. A filter is a set of weights
which are learned using backpropagation. These filters are used
to extract features from the image. The first layers in a CNN can
detect large features while later layers can detect smaller and more
abstract features. The filters’ size is set as one of the parameters in
a convolution layer. Every image can be considered as a matrix of
pixel values, and every filter is a matrix of weighted values. Features
are extracted by sliding the filter over the image pixel by pixel, and
at every stop, or stride, computing the element-wise multiplication
between the two matrices, then summing all the multiplication
outputs to get the single element for the output matrix, or feature
map. The size of the feature map is controlled by three parameters:
depth, stride and zero padding. The depth is determined by the
amount of filters used in the convolutional layer. For example, if
eight filters are used then there are eight different feature maps.
The stride is the number of pixels that the filter is sliding over in the
original image after each dot product is computed. A larger stride
produces a smaller feature map. Zero padding is when the input
matrix is padded with zeros around the borders so that features
can be extracted from the border of the images. Every neuron in
a convolutional layer is connected to only a small region of the
input volume, i.e., the region that the filter is covering, which is
also referred to as the receptive field.

Non-Linearity: A Rectified Linear Unit (ReLU) layer is used for
non-linearity. It uses an activation function to define the output
of each node [14]. The ReLU replaces all negative pixel values in a
feature map with a 0. This helps to decide whether the information
the neuron is receiving is relevant or should be ignored.

Pooling: The pooling layer, also referred to as the downsampling
layer reduces the dimensionality of each feature map, but keeps
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the most important information. This layer typically takes a filter
of size 2x2 with a stride of the same size, and convolves it across
the feature map, performing calculations after each stride. The
feature map can be downsampled in many different ways. One of
the most popularly used downsampling techniques is max pooling
[5]. When using max pooling, the 2x2 filter takes the maximum
value that it is covering on the feature map and then it slides to the
next region by its stride distance, where it performs this calculation
again until it has covered the entire image. The resulting feature
map is dimensionally reduced. This is an important step because it
reduces the number of parameters or weights, which then lessens
the computational cost. It also helps control overfitting, which is
when a model gets so tuned to the training examples that it is not
able to predict well on testing data.

Classification: The fully connected layers are placed at the end
of the network, and give the network the ability to classify samples.
These layers are called fully connected because every neuron in
these layers is connected to every other neuron in the previous
layer. The output of the ReLU and pooling layers represent features
of the input image. The purpose of the fully connected layer is to
use these features to classify the input image into various classes
based on the training data. The fully connected layer uses a softmax
activation function in the output layer to give a probability that
the input image is one of the various classes. This softmax function
takes a vector of real-values and normalizes it into a vector of values
between 0 and 1 that sum up to one. The value with the greatest
magnitude in this vector represents the prediction of the model.

3 APPROACH
This section presents the two steps of our approach in detail, namely
the redundant frame removal step and the detection of the code
bounding box.

3.1 Redundant Frame Removal
Recent work [3] found that programming screencasts are much
more static than other types of videos. In other words, the footage
remains fixed on the same images for longer periods of time. This is
especially true when the tutors in the videos start coding on the fly.
In these video fragments, the tutor first writes some code and then
stops and explains it while the image remains static on the code
editor. Moreover, some of these videos do not only contain source
code, but also material presented on slides, in API documentation,
on a board, etc. where tutors spend some time explaining the static
material shown on screen. This means that when segmenting videos
in frames extracted every few seconds, as it is customary when
analyzing programming tutorials [3, 15, 18–20, 24], this results in
many redundant images as a result of a frame being idle for a while.

Analyzing video frames is computationally intensive and the
evaluation of these techniques often involves some form of manual
labeling by participants [15], which is time consuming. Therefore,
reducing the amount of redundant information analyzed is a very
important step towards scalability. While the frames could be sam-
pled at longer periods of time to reduce redundancy, this would
inevitably lead to the loss of important information, as some of the
frames skipped may contain new material. Our approach employs
a novel technique that aims not only at reducing redundant frames,
but also at ensuring that new information is not omitted.

We first extract frames for each video at every second. Then,
the first step towards identifying and removing redundant frames
is detecting the similarity between neighboring frames. A variety
of algorithms for computing a similarity value between two im-
ages can be employed. Previous work on analyzing programming
video tutorials has made use of pixel-by-pixel metrics [3, 19, 20]
to compute the similarity between frames. This however, has two
main disadvantages. First, it is very computationally intensive. For
example, comparing two 1080p HD frames pixel-by-pixel requires
a huge number of comparisons as each frame contains more than
two million pixels. Second, the comparison can be inaccurate, since
two images containing the same information, but having different
scales, rotation, quality, etc. can be considered as different images.
This is a limitation acknowledged in previous work [18] and is
important to consider as we noticed that in some of the videos the
tutors zoomed-in while explaining a code snippet.

In this paper we leverage a faster and more robust algorithm
called Scale-Invariant Feature Transform (SIFT) for determining
the similarity between neighboring frames. SIFT compares frames
based on their features rather than their individual pixels and has
been successfully used in image matching [11, 12]. SIFT is based
on identifying key-points in the images, which are important areas
that are used as discriminating points and are the basis for the com-
parison between two images. SIFT’s algorithm has four main steps:
approximating key-point locations, refining key-point locations,
assigning orientations to key-points and then obtaining features
for each key-point. SIFT uses a Difference of Gaussians (DoG) to
find the key-points in images. DoG is obtained by computing the
difference of a Gaussian blur of an image with two different scaling
factors. Once the DoG are found, the images are searched for local
extrema, which represent the set of potential key-points. This set is
then refined by eliminating any low-contrast and edge key-points.
SIFT then assigns the remaining key-points an orientation and a
vector of features (also called descriptors) that are invariant to ro-
tations, scale, and illumination. At the end of this process, SIFT
provides the key-points and their feature vectors that will be used
to compare an image to another.

Starting from the original set of frames, we use SIFT to compare
neighboring frames and remove the redundant or duplicate ones,
leaving a set of frames that contain unique information. In order
to determine which frames to keep, we first extract the key-points
from each frame and obtain their feature vectors using SIFT. Then,
given two neighboring frames f1 and f2, for each key-point kf1,i
in frame f1, we find the best matching key-point kf2,j and the
second-best matching key-point kf2,l in f2 based on the Euclidean
distance between their features. If the Euclidean distance between
kf1,i and kf2,j is smaller than 75% of the distance between kf1,i and
the kf2,l (i.e., the best matching point is significantly closer than
the second-best match) then the pair of key-points (kf1,i ,kf2,j ) is
considered a strong match and added to the set s1,2 of matching
key-point pairs for f1 and f2. This process is called a "ratio test"
and was introduced by Lowe [12]. The threshold of 75% for the
distance was determined empirically, based on testing different
values. This process is repeated for all key-points in f1 and at
the end the number of matched key-points in s1,2 represents the
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Frame 1 Frame 2

Frame 1 Frame 2

Figure 1: An example of two images matched based on key-points using SIFT

similarity measure between frames f1 and f2 (i.e., the more similar
key-points in s1,2, the more similar the two frames are).

Figure 1 shows a pair of similar frames extracted from a pro-
gramming video tutorial. A line is drawn between each pair of
matched key-points. Because there were two lines of code added
in the second frame, these lines were not matched with any line in
the first frame as they do not have common features. Furthermore,
as the parameter of the system.out.print function call was changed
from destination to b, there was no line drawn between the features
representing the parameters.

In order to determine which frames to keep for a video, we em-
ployed the following procedure. Consider a video and its frames V
= { f1, f2, . . . , fn }, and si,j as the similarity value between a pair of
frames fi and fj . We start from f1 and compare it with its successive
frame f2 and save their similarity s1,2. We then compare f1 with f3.
If their similarity s1,3 is within 10% of s1,2 (threshold determined
empirically), we consider frames f1, f2, and f3 to be similar enough
and continue by comparing f1 to f4. The comparison of consecutive
frames continues until a similarity s1,j between the two frames f1
and fj differs by more than 10% compared to the first similarity
value (i.e., s1,2). In this case, the frame fj is considered to be dis-
similar to the previous ones and the following process is employed.
First, frame f1 is kept, then all the frames between f1 and fj are
removed as they are considered similar to f1 and each other. Frame
fj is also kept and the comparison of successive frames restarts at
fj . At the end of this process for the entire video, what is left are
frames that contain considerably different information. These are
the set of frames we use in the next step of our approach.

3.2 Detecting the Code Bounding Box
Our main goal in this paper is to determine the exact location of a
code snippet in video frames, in the form of a bounding box. A code
bounding box in a frame is defined as (x, y, w, h), where (x, y) is the
center of the quadrilateral or box where the code is located and w,
h are the width and height of the box. The aim is to include the
entire visible source code in this box while limiting the noise (i.e.,
other text that is not code).

To reach our goal, we start from the set of unique frames remain-
ing after the redundant frame removal step and then: (1) identify the
frames that contain visible code, (2) locate the bounding box of the
visible code. In order to determine the code bounding box, CNNs are
particularly useful, as each video is a sequence of changing frames.
In our case, the object of interest is the visible code bounding box.
A CNN convolves throughout the entire video frame and extracts
spatial features which aid towards detecting the bounding box of
the code.

With CNNs, bounding box extraction could be done in two ways.
One way would be to perform pixel-wise classification and then seg-
ment out the bounding box in the input frame using existing deep
architectures like SegNet [1]. To test this approach, we performed
a preliminary experiment and used a SegNet implementation3 to
train a model on a dataset of 800 frames. On testing the model on
200 unseen frames, we found the segmentation to be noisy and
irregular.

A second approach would be to directly learn to predict the
code bounding box without having to go through a pixel-by-pixel

3https://github.com/alexgkendall/caffe-segnet
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Figure 2: Our YOLO network with nine convolutional layers and six max pooling layers. The input frames are 416 × 416 × 3.
The output is a 13 × 13 × 30 tensor (a 3-dimensional matrix) containing predictions for five bounding boxes per grid. Each
bounding box prediction contains the x and y coordinates, width, height, bounding box confidence, and class probability.

classification first. In this paper, we leverage this second approach
and make use of a state-of-the-art deep architecture called the
You Only Look Once (YOLO) neural network [21] to predict the
bounding box of a code section. YOLO is a unified CNN architecture
which not only detects the position of the bounding box of each
object present in an image but also predicts its class. Thus, YOLO
looks at an input image just once and performs both detection and
classification of multiple objects in one shot. Although YOLO can
detect objects of multiple classes, in our case we only consider a
single class: the code region.

YOLO is extremely fast since it does not require a complex
pipeline and can make predictions at 150 frames per second, which
makes it highly applicable to real-time video streams [21]. It ana-
lyzes the entire frame during training and test time and encodes
contextual information about classes as well as their appearance.
YOLO also learns the generalizable representations of objects, so it
is less likely to crash when given unexpected inputs.
The YOLO Architecture:
We use the YOLO architecture given in Figure 2. We consider this
shallower version of YOLO for speed and because we have only
one class of objects to detect, namely the code region. The input
layer accepts 416 × 416 × 3 sized RGB images. The architecture
has 9 convolutional layers followed by two fully connected layers.
All convolutional layers have ReLU activations except for the last,
which has a linear activation. As it is almost entirely composed of
convolutional layers, this YOLO architecture has significantly fewer
number of model parameters as compared to a neural network with
fully connected layers. Each of the first five convolutional layers
are followed by a 2 × 2 max pool layer with a stride of 2. Every
such max pooling layer downsamples the input by half. Due to this
downsampling, YOLO is able to utilize the global context of the
entire frame to detect the code bounding box. As the frame shrinks,
the filters in the deeper convolutional layers gain a wider coverage.

The sixth 2 × 2 max pool layer does not downsample because its
stride is 1. In the final fully connected layer, the input frame is
divided into S × S cells. In our case S = 13 since we start out with
an input of size 416 and halve it 5 times. For each cell, the network
gives 30 predictions. Thus, the final output is a 13 × 13 × 30 tensor
(i.e., a 3-dimensional matrix).

The bounding box predictions and their confidences are encoded
within the 13 × 13 × 30 output tensor (see Figure 2). The network
predicts five bounding boxes for each cell. Each bounding box
prediction has six numbers associated with it: x, y, w, h, bboxconf
and Pr (codebox |O ). x and y represent the coordinates of the center
of the bounding box, while w and h are the width and the height of
the box. If O is a candidate object that might be a code bounding
box, bboxconf is a score encompassing two measures about this
predicted bounding box: (1) its confidence of containing O , Pr (O )
(2) its accuracy in terms of Intersection over Union (IoU) compared
to the ground truth bounding box, IoU pred

дt .
Intersection over Union (IoU), also known as the Jaccard in-

dex, is a metric used to compare the similarity and diversity of
sample sets, and is defined as the size of the intersection divided
by the size of the union of the sample sets. In our case, we divide
the area of overlap between the bounding box in the prediction
and the one in the ground truth by the area of the union of the
bounding box in the prediction and that in the ground truth. In
the frame analysis literature, when IoU is 50%, it is considered as
a correct bounding box [23, 25]. However, in our case, it is really
important to accurately identify the bounding box of the source
code in order to ensure the extraction of correct code. Therefore,
we considered a stricter rule, with an IoU greater than 75% to be
a successful prediction, and anything below it to be an incorrect
prediction.

Bboxconf is then defined by the following equation:
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bboxconf = Pr (O ) ∗ IoU
pred
дt (1)

Pr (codebox |O ) measures the class conditional probability of O be-
ing a code bounding box. From all the predicted bounding boxes,
YOLO picks the optimal bounding box based on the code bounding
box specific confidence score given by Eq. 2.

Confidence = Pr (codebox |O ) ∗ bboxconf

= Pr (codebox |O ) ∗ Pr (O ) ∗ IoU
pred
дt

= Pr (codebox ) ∗ IoU
pred
дt

(2)

YOLO optimizes a loss function composed of different types of
loss: (1) SoftMax loss for the class probabilities, (2) IoU loss for the
bounding box coverage, (3) mean squared loss for the bounding box
centers, and (4) loss metric that puts more emphasis on the errors
in smaller objects.

Even after determining the YOLO architecture, there are multiple
parameters that govern how the training proceeds. We define a few
of these parameters here:
• An Epoch is one forward and backward pass of every training
sample through the neural network. Since the per batch average
loss stopped oscillating after 100 epochs in our experiments, we
trained our final model for 100 epochs.
• Batch size is the total number of training samples that will be
passed through the network at once. We use a batch size of 16
(default for YOLO).
• Subdivisions is the amount of sub-batches that each batch will
be divided into. Each can hold 8 frames.
• Solver denotes the gradient descent optimization method which
minimizes the loss of the network that is being trained. We used
RMSprop in our implementation (default for YOLO).
• Learning Rate is a parameter that controls how much we adjust
the weights of our network with respect to the loss. A learning
rate of .001 was used in our implementation (default for YOLO).

4 EVALUATION
We performed an empirical study in order to evaluate our approach
on identifying the location of source code on the screen, in particu-
lar code bounding boxes in Java video programming tutorials. Our
main research question is:

RQ. How well can our approach identify code bounding
boxes in Java programming video tutorials?

The following subsections present our data collection, method-
ology, and results.

4.1 Data Collection
We first collected a set of 150 Java programming tutorials from
YouTube having a high quality resolution (i.e., 1280 X 720 pixels).
We manually selected these tutorials such that they contain a wide
variety of topics and are created by a diverse set of tutors. We also
considered videos where code was written in a variety of IDEs such
as Netbeans, IntelliJ, Eclipse, etc. as well as a variety of editors such
as vim, Notepad++, etc. Moreover, we included different background
colors for each IDE and code editor (i.e., white and black). It was
important to have a mix of configurations between our videos in
order to make our model more robust and accurate. Another aspect

we looked at when it came to IDEs was their layout. IDEs usually
have at least 3 different sections: the main editing window, the file
explorer and the output window. We made sure to find videos using
differently sized and shaped sections in the layout. We also included
videos that had different numbers of sections in the layout.

We downloaded the videos using the Python library PyTube4.
The length of the videos we collected this way varies between 12
and 3,327 seconds, with an average of 548 seconds. We make our
dataset, scripts, and results available in our replication package5

(17GB in total).
Note that although the collected dataset for this study contains

only Java programming video tutorials, our code bounding box detec-
tion approach can be applied to videos created for any programming
language by training the model with video tutorial examples of that
programming language.

4.2 Methodology
We extracted one frame per second for the videos we collected
and obtained 82,335 frames in total from all 150 videos. We then
applied the redundant frame removal algorithm described in Section
3.1, which resulted in over 70% of the frames being removed. The
number of frames were therefore reduced to only 23,576 as shown
in Table 1. On average, we reduced the number of frames in the
original set from 548 to 157 per video, leading to a much reduced
analysis time.

Table 1: Results of the redundant frame removal step
(fpv=frame per video)

Total frames Max fpv Min fpv Average fpv
Original 82,335 3,327 12 548
Selected 23,576 927 5 157
Deleted 58,759 2,400 7 391

After removing redundant frames, we asked developers to clas-
sify each remaining frame according to the visibility of the code in
it. More specifically, we considered three classes:
• Fully-Visible Code (FVC). A frame contains fully visible code
if the main editing window is not obstructed in any way and
every line of code is clear and readable.
• Partially-Visible Code (PVC). A frame contains partially visi-
ble code if the main editing window is visible, but it is obstructed
in some way (drop down menu, settings pop-up, etc.) or the code
is obstructed by something like code completion suggestions.
• No Code (NC). A frame is considered to contain no code if it
does not contain a main code editing window. These could be
frames from a video where the tutor is explaining a topic on
slides or a board, is searching in their browser, or intro and exit
scenes, etc.
To make the frame classification process easier for the partici-

pants, we created a web-based classifier. This tool allowed multiple
participants to classify frames in parallel. We had a total of 10 partic-
ipants classifying the frames. All were Computer Science students,
with six being PhD students, two MS students, and two BS students.
Each participant was presented with one frame at a time and asked

4https://github.com/nficano/pytube
5https://goo.gl/R7yGiD
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Table 2: Manual Classification Results (FVC=Fully-Visible
Code; PVC=Partially-Visible Code; NC=No Code)

First Participant
FVC PVC NC

Second Participant
FVC 14,081 78 27
PVC 150 1,565 144
NC 69 103 7,359

to classify it with the class they believed most accurately described
the frame (FVC, PVC, or NC). The web classifier utilized SQLite to
maintain a database of each participant’s classifications.

To ensure accuracy, we had two participants independently clas-
sify each frame, so each participant was assigned a fifth of the
23K remaining frames. Table 2 shows the results of the manual
classification, specifically where the pairs of participants agreed
and disagreed about the classification of a frame. In particular, the
diagonal of the table shows the number of frames where the pair
of participants assigned to a frame agreed on its classification. The
numbers outside the diagonal represent the cases where the two
participants had a disagreement about the classification of a frame.
The least disagreements occurred when one participant classified a
frame as having fully-visible code (FVC) and the other as having
no code (NC). This is to be expected as these two classes of frames
are very different and easily distinguishable from each other.

We then discarded any frames that had different classifications
between a pair of participants. After discarding these cases we were
left with 14,081 frames classified as having fully-visible code. We
did not consider frames having only partially visible code for the
rest our study, as our main focus is identifying bounding boxes that
contain fully visible code that can be eventually extracted for reuse.
Ensuring Balance and Variety in the Training Set:
To train a robust model, we should ensure that the frames in the
training set are balanced in terms of the occurrence frequency of
their class. In addition, having a variety of frames within every
class is also advantageous since the model can learn from a more
diverse set of examples.

Since annotating the entire set of 14,081 frames having fully-
visible code with their respective code bounding boxes was un-
feasible, we aimed at sampling 2,000 frames to annotate and later
train our deep learning model on. We also aimed at selecting 2,000
frames from the set classified as not containing code, in order to
have counter-examples to train our deep model with. However, in
order to ensure diversity in the training set, we did not select these
frames completely randomly from the two sets, but first applied a
simple clustering technique to the 14,081 frames. Clustering was
used to group the similar frames together and allowed us to maxi-
mize the diversity of our training set by ensuring we choose frames
from all the different clusters.

We clustered the frames in a lower dimensional space because
their original size was too large to efficiently process. We reduced
the frame dimensions in two stages: (a) we resized all frames to 416×
416, which is also the input size expected by YOLO (see Figure 2) (b)
we then projected the 416 × 416 frames into a low pc dimensional
space. For the latter, we first selected a small, random sample of
1400 frames from the set of 14,081 resized frames containing fully
visible code (almost 10%). We then performed Principal Component
Analysis (PCA) on these frames and sorted and visualized the top

100 Eigen values. Based on these results we chose pc = 12 as the
number of principal components, such that the majority of the
variance is preserved. We then projected all 14,081 frames to a 12
dimensional space using the first pc = 12 principal components.
We then applied the KMeans algorithm [7], a popular clustering
scheme, with k = 1,000 to cluster the frames in this reduced space
and obtained 1,000 clusters. After clustering, we randomly selected
2 frames from each cluster. This resulted in a diverse set of 2,000
frames with fully-visible code that were ready to be annotated with
code bounding boxes. We similarly also clustered the 7,359 frames
containing no code into 1,000 clusters and randomly selected 2
from each cluster to get our set of 2,000 no-code frames serving as
counter-examples. We can see in Table 3 the min, max, and average
frames per cluster between the 1,000 clusters in each of the two
categories (FVC and NC).

Table 3: Statistics for the 1,000 clusters in each category
FVC=Fully-Visible Code; NC=No Code;

fpc=frames per cluster

Total frames Max fpc Min fpc Average fpc
FVC 14,081 149 1 14
NC 7,359 108 1 7

Annotating the FVC frames with Bounding Boxes:
To make annotating the frames with bounding boxes easy for deve-
lopers, we implemented an annotation tool. This tool allowed the
user to click and drag a box over the code section of each frame.
The box could then be edited or accepted. Once accepted, the tool
would save the relevant data to an XML file. This XML file contained
important information about the annotation of a frame such as the
directory in which the frame resided, the filename of the frame,
the width and height of the frame and the code bounding box of
that frame. The bounding box is defined by (xmin, ymin, xmax and
ymax). These four values represent the top left and bottom right
corners of the bounding box. The 2,000 non code frames needed to
be annotated as well, but their annotations are all the same since
there is no code bounding box at all. To annotate these we just set
all x and y min and max values to 0.

To annotate all of the fully-visible code frames, we recruited the
same group of 10 students that classified the initial set of frames
to take on this task. We divided the set of frames into 5 subsets,
where each student was assigned a subset to annotate. We made
sure that each subset was annotated separately by two different
participants so that we could check for accuracy. Each student then
used our annotation tool to annotate their set, and submitted their
annotations to us.

To ensure we had accurate annotations, we had two different
students annotate a set of frames and then validated that both of
the annotations were in agreement on where the bounding box
should be. To validate that both students agreed on the location of
the bounding box we created a script to compute the IoU between
both students’ annotations. If the IoU of a frame had a value below
90% then the frame was discarded, as the students did not fully
agree on the location of the bounding box. If the IoU value was
90% or above, we randomly selected one of the annotations, as they
were almost overlapped.
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Metric:
We used the Intersection over Union (IoU) metric [25] to validate
our model and measure the accuracy of a predicted code bounding
box. Formally, IoU divides the area of overlap between the bounding
boxes of the prediction and ground truth by the area of the union
of the bounding boxes of the prediction and ground truth. When
the IoU is 50%, it is considered as a correct bounding box [10, 25].
However, in our case, it is very important to accurately identify the
bounding box of the source code in order to ensure a correct code
extraction and reuse later on. Therefore, we considered a prediction
with an IoU of greater than 75% to be a successful prediction, and
anything below it to be an incorrect prediction.

Let Aдt and Apred be the area of the ground truth and the pre-
dicted bounding boxes respectively. IoU is given by the equation:

IoU =
Aдt ∩Apred

Aдt +Apred − (Aдt ∩Apred )
(3)

Aдt ∩ Apred represents the area of the overlap between the
predicted and the ground truth bounding boxes. In Equation 3, IoU
is computed by dividing the area of intersection by the area of the
union. This results in a ratio between 0 and 1, where 1 denotes a
perfect overlap. In other words, if the ground truth bounding box
has exactly the same coordinates as the predicted bounding box,
then IoU = 1.

We have to adjust the IoU computation to accommodate the
cases when the ground truth of the test frame does not have any
annotated code bounding box in it. Otherwise, Equation 3 would
give a “division by zero” error. The IoU adjustments are as follows:

• If Apred = 0 and Aдt = 0, then IoU = 1. This happens when
our model predicted that there was no bounding box and it was
correct.
• If Apred = 0 and Aдt , 0, then IoU = 0. This happens when our
model did not predict any bounding box but the ground truth
actually had one.
• If Apred , 0 and Aдt = 0, then IoU = 0. This happens when our
model predicted there was a bounding box when there actually
was none. So, it predicted incorrectly.
• If Apred , 0 and Aдt , 0, then IoU is calculated according to
Equation 3.

4.3 Results
We conducted all the experiments on a machine with an Intel Xeon
3.40GHz processor, 128GB RAM, and a GeForce GTX 1080 GPU
with 8 GB of memory.
Training: We used the dataset we created previously in our evalu-
ation, which has two sets (fully visible code and no code) of 2,000
frames each and their annotations. We split each of the two sets
separately at random and kept 80% for training and used the rest
of 20% for testing. We then merged the two training sets and sepa-
rately the two test sets such that each includes both FVC and NC
frames. Finally, we obtained training and testing set sizes of 3,200
and 800 respectively.
Testing: We applied the trained model on the test dataset that
includes 800 frames. For each test frame, we computed the IoU as
described in Section 4.2. The results indicated that our approach

(a) IoU = 95% (b) IoU = 92%

(c) IoU = 82% (d) IoU = 73%

Figure 3: Predicted code bounding boxes of three sample
frames from different videos

was extremely effective at detecting the exact code bounding box,
having on average the IoU of the testing set 92%.

We present a few example predictions in Figure 3. Each frame
shows their respective ground truth and predicted bounding boxes.
The green bounding box represents the ground truth while the red
bounding box represents the prediction. Figure 3a has an IoU of
95%; the predicted bounding box is almost exactly the same as the
ground truth bounding box. This may be because the main editing
window is a different shade of gray, so it is very clear there is a box
and the model was able to find the window very easily. On average,
we have a prediction accuracy that looks like Figure 3b which has
an IoU of 92%. Again, the predicted bounding box is very close to
the ground truth box. This frame, like Figure 3a and Figure 3c, has a
good amount of contrast between the code editing window and the
surrounding features. These are ideal predictions to eventually use
OCR on. We can see in Figure 3d that the red and green bounding
boxes do not match up quite as nicely as we would hope. The IoU
for this frame is 73%. We consider this a poor prediction, as the
bounding box covers more information than we would want. If we
were to use OCR on this bounding box we would pick up text from
the file tabs that contain filenames. This may be predicted poorly
because there is not much contrast around the area of the box, i.e.,
it is hard to locate the box.

5 LIMITATIONS OF OUR APPROACH AND
POTENTIAL IMPROVEMENTS

Although the network successfully predicts the bounding box of
code, there are some limitations as follows. First. there are still a
few cases in which the approach predicts the bounding box for an
image poorly. In this paper we considered an IoU of below 75% to be
a poor prediction. One potential reason for a poor prediction could
be that the network was not trained enough on a particular type of
image. This could be probably addressed by including more images
similar to the bad predictions in the training set. We believe doing
so would result in better predictions overall. Another way to solve
this problem could be through the use of contours. A contour can be
explained simply as a curve joining all the continuous points along
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a boundary that have the same color or intensity. For example, if
an image has a confidence value (described in Section 3.2) of below
30%, then we could consider this method. Once we have an image
with a low confidence value like this, we could check to see if there
is at least one contour for it. If so, we could compute the IoU of
each contour with the predicted bounding box and consider the
highest IoU that is above 75% to be the prediction. This threshold
is to ensure that we would not consider invalid contours, or ones
that do not cover the editing window.

While it has proven relatively easy for people and machines to
distinguish between a frame containing source code and a frame
with no source code at all, this is much more challenging when
comparing frames containing fully-visible source code to those with
partially-visible source code. Fully-visible code could be truncated
by only few words or even a mouse cursor. In these cases, we had
questions from participants if they should consider these frames
as containing fully-visible or partially-visible code. When it comes
to our approach, it failed to distinguish between these types of
frames in some cases, such as when having a mouse cursor hovering
over the code. Yet, in other cases, when the approach predicted a
bounding box for a frame that has code obstructed by a drop-down
menu, a new opened window, etc. it successfully returns an area of
zero that indicates the obstruction of the code bounding box.

For now, our approach can predict the bounding box successfully
for the frames that contain typed code. However, we have not tested
it on predicting the bounding box of handwritten code. Handwritten
code can be on a board, piece of paper, etc. We did not yet consider
handwritten code in our dataset, but we plan to analyze such frames
in the future.

In our dataset, we have a few IDE frames with no source code
written in them. These were classified by the participants as having
no code. However, as the overall features of these frames look very
similar to the ones of frames containing code, the model predicts
a code bounding box. This, however, may not be a major issue,
since the OCR will not extract anything from this kind of box, as it
contains no text.

6 THREATS TO VALIDITY
The threats to internal validity in our study include the impact of
learning and fatigue on the quality of the participants’ responses.
To mitigate this, we had two people classify each image and define
each code bounding box and only used those images and bounding
boxes on which the participants agreed. In order to mitigate the
potential learning effect, we made sure the different frames seen
by each participant varied across videos.

Regarding the threats to external validity, our results may not be
generalizable to all the software development videos available or all
their frames. However, we aimed at increasing the generalization of
the findings for Java tutorials by considering 150 different videos on
a wide variety of topics and created by numerous developers. This is
the largest set of videos considered so far in studies concerning the
identification or extraction of source code from video tutorials. In
our evaluation we also made sure we select a diverse set of frames,
covering all 150 videos.

Threats to construct validity refer in our case to how we mea-
sured the effectiveness of the approach. We mitigated threats to
construct validity by employing the IoU metric to measure the

overlap between the predicted code bounding box and the ground
truth, which is a well established measurement in the field of object
identification in images [10, 25].

7 RELATEDWORK
Software development video tutorials are becoming a form of docu-
mentation that developers create and also consult to support their
programming tasks [13, 18]. Studying the motivation that deve-
lopers have to create these forms of documentation, MacLeod et
al. [13] found through a set of interviews that one of the goals is
sharing knowledge they gained while performing a programming
task. Other work analyzing video tutorials focused on tagging video
tutorials with expressive labels that could help developers decide if
a tutorial is helpful or not for their task at hand [4, 16]. Poché et
al. [17] leveraged the term frequency of words in the comments of
software development videos to identify and extract general user
concerns about the video. Ellmann et al. [3] studied the properties
of programming screencasts in order to understand how similar or
different they are from other types of screencasts, and found that
programming tutorials are more static than others (i.e., the images
change at a slower rate). This is an important finding for research
analyzing programming video tutorials, as it indicates that many
frames in such screencasts are duplicates. This also motivates the
frame duplicate removal step in our approach.

The most related to our approach is, however, work that iden-
tified or extracted code from programming video tutorials [15, 19,
20, 24]. Ponzanelli et al. [19, 20] introduced CodeTube, web-based
tool that enables developers to query software development videos
and view only the specific fragments related to their query. As part
of indexing the video tutorials’ content for search, the authors also
extract any Java source code that they identify on the screen. How-
ever, to identify the part of the screen that contains the code, the
authors use heuristics and make assumptions that do not always
hold and can lead to incorrectly extracted code. One example is the
heuristic which divides the image into fixed-size sub-images and
then selects the one having the most Java keywords as containing
the code. As discussed in their paper, this can lead to incorrectly
identifying an entire IDE window or a part of it such as the pack-
age explorer as containing the source code, or truncating the code
that did not fit into the fixed-size image. This, however, is not a
deal-breaker in the case of CodeTube, which uses the extracted text
and code only as supplemental information for indexing a video,
in addition to the video’s description, transcript, etc. In our case,
however, things are different. We aim to determine the location of
the code as accurately as possible, since our goal is to enable the
correct extraction of source code to support its reuse. Our deep
learning approach does not use any kind of assumptions on the
size or location of the code on the screen and is therefore able to
overcome the limitations that CodeTube faces.

One other closely related work is that by Yadid and Yahav [24],
which introduce ACE, a tool that combines language models and
image processing techniques to extract source code from software
development videos. In order to extract the code from a video, they
initially identify the location of themain editingwindow in only one
frame of the video and then set that location for all other frames in
the video. While this is convenient and computationally efficient, it
can also be incorrect inmany situations, when thewindow ismoved,
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split, resized, overlapped, etc. This can be problematic when the
goal is to extract correct code throughout the video. Our approach
overcomes these limitations by extracting the location of the code
for each frame independently, and does not rely on assumptions
about its location.

Finally, in a recent work by Ott et al. [15] the authors applied
a CNN to classify the presence or absence of code in about 20K
frames extracted from 40 programming videos. While they also
use deep learning as their main approach, our work is different
than theirs in several ways. The most important difference is that
Ott et al. do not identify the location of the code in video frames,
but rather just its presence or absence. We go one step further and
identify the exact location of source code within each frame, which
is an essential step towards the extraction of reusable source code
from videos. One other important difference is that we employ a
duplicate detection and removal mechanism in our approach, which
significantly reduces the number of frames to be analyzed within
a video. This allowed us to increase the number of videos used in
our study to 150, ensuring more diversity in the dataset.

8 CONCLUSIONS AND FUTUREWORK
In this paper we proposed a novel approach for detecting the precise
location of source code in the video frames of programming tuto-
rials. Our approach first identifies and removes duplicate frames
from a video and then uses a Convolutional Neural Network to
identify the precise bounding box where source code is being dis-
played on the screen. We performed an evaluation study on a set
of 4,000 frames extracted from 150 Java programming videos. The
frames were manually annotated by developers with the correct
code bounding box and used as ground truth in the evaluation.
When comparing the predicted code bounding box and the ground
truth, our approach was able to correctly predict the precise loca-
tion of the code with a 92% accuracy. To the best of our knowledge,
this is the first approach that is able to detect the location of source
code with such accuracy and without relying on heuristics or as-
sumptions about its location.

Our long-term goal is the extraction of correct, reusable code
from software development video tutorials, in order to allow deve-
lopers to easily integrate this code into their programs. Our future
work will move forward in this direction, focusing on extracting
the source code from the area determined by our approach, and
then correcting it and augmenting it as needed, until the end result
can be efficiently reused.
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