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Abstract—Text Retrieval (TR) has been widely used to support
many software engineering tasks, including bug localization (i.e.,
the activity of localizing buggy code starting from a bug report).
Many studies show TR’s effectiveness in lowering the manual
effort required to perform this maintenance task; however,
the actual usefulness of TR-based bug localization has been
questioned in recent studies. These studies discuss (i) potential
biases in the experimental design usually adopted to evaluate TR-
based bug localization techniques and (ii) their poor performance
in the scenario when they are needed most: when the bug report,
which serves as the de facto query in most studies, does not
contain localization hints (e.g., code snippets, method names, etc.)
Fundamentally, these studies raise the question: do bug reports
provide sufficient information to perform TR-based localization?

In this work, we approach that question from two perspectives.
First, we investigate potential biases in the evaluation of TR-based
approaches which artificially boost the performance of these
techniques, making them appear more successful than they are.
Second, we analyze bug report text with and without localization
hints using a genetic algorithm to derive a near-optimal query
that provides insight into the potential of that bug report for use
in TR-based localization. Through this analysis we show that in
most cases the bug report vocabulary (i.e., the terms contained
in the bug title and description) is all we need to formulate
effective queries, making TR-based bug localization successful
without supplementary query expansion. Most notably, this also
holds when localization hints are completely absent from the bug
report. In fact, our results suggest that the next major step in
improving TR-based bug localization is the ability to formulate
these near-optimal queries.

I. INTRODUCTION

Text Retrieval (TR) techniques have become a popular
means of automating numerous software engineering tasks
[1], including feature and bug localization in source code [2],
traceability link recovery [3], impact analysis [4], bug triaging
[5], and software refactoring [6] among others. One of the most
popular applications among these has been bug localization.
When using TR techniques for this task, the user formulates a
natural language query with the goal of describing the observed
bug. That query is run through a TR engine, which returns
a ranked list of code components (e.g., classes or methods,
depending on the desired granularity), containing the most
relevant results (i.e., the components likely related to the bug)
in the top most positions.

While TR techniques have been successfully applied for this
and other software engineering tasks for more than a decade,

the actual usefulness of TR-based techniques to support some
of these tasks has been questioned by recent studies.

In the context of bug localization, the effectiveness of
these approaches has generally been demonstrated through
experiments using issue reports marked as bugs for TR queries
to search source code for relevant, buggy methods, classes, or
files. In these experiments, the code components modified in the
corresponding bug-fixing commits are used as the ground truth
for evaluation. Recent work has called these prior studies into
question by identifying key concerns with this experimental
design [7]. In particular, three main biases have been identified.
First, using miss-classified bugs, e.g., issues that have been
classified as bugs, when in fact they represent new features.
Second, using bloated ground truths that include code changes
irrelevant to a bug fix. Third, using bugs reports that contain
localizing information, that is, reports that explicitly point to
a code location such as a code snippet, file or class name, or
identifier, which we refer to as localization hints. Kochhar et al.
[7] showed that while the first two do not significantly impact
the evaluation, bug reports containing localization hints have a
major impact on TR results.

Wang et al. [8] further analyzed the bias introduced by three
types of localization hints: program entity names, test cases,
and stack traces. Of the three, they found that program entity
names significantly boost retrieval results. Basically, these
studies highlight the fact that TR-based approaches perform
very well when the bug report description already includes
the bug localization, by listing all (or some) of the buggy
code components. However, in such scenarios TR-based bug
localization techniques are not needed in the first place, as
the bug has already been localized [7]. On the other hand,
when hints to localize the bug are not found in the bug report
description (e.g., when the bug report is written by a user
of the system that lacks knowledge of the system’s technical
implementation), the studies showed that the performance of
TR-based bug localization techniques significantly drops, thus
questioning their usefulness in this scenario as well.

One commonality between the aforementioned studies, as
well as many before them, is that they use the whole text
of the bug report (i.e., its title and description) as the TR
query, without considering alternatives. Since TR effectiveness
strongly depends on the quality of the formulated query [9],
the choice of query is a crucial factor in ensuring the success



of TR. Bug reports, however, can often be lengthy and contain
“noise” (i.e., words that do not efficiently describe the bug).
This is supported by the findings of a recent study [10] which
showed that removing even a few of the “noisiest” terms in
a bug report can lead to improved TR results. We therefore
conjecture that TR approaches have a lot more potential for
bug localization than they have been given credit for, so long
as they can be provided with an optimized query for a bug.

In this paper we present the results of a large empirical
study providing new evidence on the true potential of TR
bug localization approaches and the significant impact that
optimizing queries can have on their effectiveness. Further, we
show that given a bug report, we can often obtain such a query
using only words selected from its vocabulary, even when
localization hints are not present. In short, bug reports typically
contain sufficient information to perform bug localization even
without specific localization hints or the need for additional
sources of context such as dictionaries or historical information.

To perform this study, we first collected 620 bug reports
from 13 open source systems used in previous bug localization
experiments [8], [10]. To account for the potential biases named
above, we manually analyzed each bug report (BR) and its
fixing commits. From the BR, we extracted two queries: one
containing all terms in BR’s title and description (Qall), and
one (QnoHint) obtained by removing all code-related terms
possibly representing localization hints (e.g., class/method/file
names, stack traces, test cases, etc.) from Qall. This allowed
us to investigate the bias that the presence of localization
information can have on the TR results, as discussed by Wang
et al. [8] and Kochhar et al. [7]. Then, in the fixing commit of
BR, we also manually analyzed each modified file to verify that
two conditions were met. First, the change was actually made
to fix the bug rather than being the result of a tangled commit
[11]. Second, the change actually modified the functionality
of the system and was not purely aesthetic (e.g., changes to
comments or code formatting). This manual verification of the
changes ensured a reliable ground truth for our experiments,
free of the miss-classified bugs and bloated ground truth biases
identified by Kochhar et al. [7]. With this extracted data, we
show that it is almost always possible to formulate an effective
query returning relevant results in the top positions of the
ranked result list by only using the terms present in Qall or in
QnoHint. Therefore, we are able to derive an effective query
in either case: with or without localization hints in the BR
description and title.

Our study differs from previous work in that we are interested
in establishing the potential of TR for bug localization by
finding the most effective query that can be extracted from the
BR and evaluating the performance of that query, rather than
considering the default query composed of the entire bug title
and/or description. Finding this query by brute force, however,
would require testing all possible queries of any length that can
be obtained from the BR’s vocabulary. For example, assuming
a BR description composed of n distinct terms, the number of
possible queries to test is the sum of factorials of descending
natural numbers beginning with n: n! + (n − 1)! + . . . + 1!.

Given that our QnoHint and Qall queries have on average 40
and 133 terms, respectively, this would mean running between
8.2E+47 and 1.5E+226 queries for each bug report, which is
clearly computationally infeasible.

For this reason, we devised a Genetic Algorithm (GA) able
to converge towards an optimal query that can be obtained from
a bug report vocabulary, knowing a priori the ground truth
for the query. While our GA can not be used in a real bug
localization scenario where the ground truth is unknown,
it represents a needed tool to run our large-scale study and
provide evidence on the potential of TR bug localization with
optimal queries. The contributions of our study are:
1) Strong supporting evidence for the potential of TR-based

bug localization techniques despite their limitations and
biases, using queries extracted from a bug report. We
clearly show that the bug report vocabulary is all we
need to formulate optimal queries making TR-based bug
localization successful in most cases. We also emphasize
the absolute need and importance of applying techniques
that automatically formulate good, selective queries starting
from a bug report vocabulary, rather than settling for the
default query. We also show that such queries are able to
mitigate the negative impact that the absence of localization
information in bug reports has on TR effectiveness.

2) A manually curated dataset, reporting a reliable ground
truth at the file/class level, as well as the optimal queries
that can be obtained using our GA starting from the bug
report vocabulary [12]. This dataset represents an important
contribution for researchers interested in evaluating their
bug localization techniques. Moreover, the dataset can also
be used by researchers working on query reformulation
techniques [42], [13], since we provide an “upper-bound” in
terms of the optimal queries that can be derived starting from
the bug report vocabulary. Finally, having a large set of high-
performing queries could help to study their characteristics,
in turn fostering the development of approaches supporting
automatic query formulation.

II. BACKGROUND AND RELATED WORK

A. TR Approaches to Bug Localization

TR allows users to search in a corpus (i.e., a set of text
documents) for documents relevant to a given text-based query.
In bug localization, developers must find buggy code given
a bug report describing the observed unexpected behavior.
Both the system’s code and the bug report can be stored as
textual documents. Therefore, TR perfectly fits in the bug
localization process: the source code can be seen as the
document corpus (e.g., by considering each class/method/file as
a different textual document), while the text in the bug report
can be used to formulate a query aimed at retrieving code
documents that are semantically similar to the bug report. The
underlying assumption of TR-based bug localization is that
code components which contain terms similar to the formulated
query are likely related to the observed bug, and thus are
recommended for inspection.



Many studies have focused on the application of TR to
the bug localization domain [2], [14], [15], providing tool
support [16], [17], [18], [19], [20], [21], [22] and improvements
over standard TR techniques [23], [24], [25], [26]. Due to the
breadth of existing research and space constraints, we direct
the interested reader to a survey conducted by Dit et al. [27],
which contains a detailed account of many approaches to bug
localization, including TR-based techniques.

Our study focuses on the actual effectiveness of these tech-
niques and on how they are evaluated in the context of analytical
studies based on information extracted from bug repositories.
The effectiveness of TR-based bug localization techniques has
generally been demonstrated through experiments on issue
reports marked as bugs, using the whole text in the bug
reports as the textual query, and referencing as ground truth the
code components modified in their corresponding bug-fixing
commits. However, the data contained in these repositories is
not always completely accurate [28] and using bug reports as
de facto queries for empirical evaluation of TR techniques is
the source of potential experimental bias.

B. Potential Biases in Empirical Evaluations of TR-based Bug
Localization

Kochhar et al. [7] empirically investigated three potential
biases: bug misclassification, bloated golden sets, and localized
bug reports. In their study, they find that localized bug reports
(i.e., bug reports which already list in their text the code
location where the bug is present) lead to significantly better
results for TR-based bug localization (no significant impact
was observed for the other two potential biases). This finding
questions the usefulness of TR-based bug localization, as this
process is actually needed only when localization hints are not
present in the bug report (i.e., exactly the scenario in which
the performance of TR-based bug localization significantly
drops) [7]. We partially replicate this study by investigating
TR performance on localized vs unlocalized bug reports in our
dataset. Our study is conducted on a larger set of software
projects and above all it shows that the chosen query matters
more than the presence of localization information. More
specifically, we show that it is almost always possible to
formulate a good query which retrieves buggy code components
in the top positions using only terms selected from the bug
report vocabulary, even when the bug report description does
not include any localization hint.

Kawrykow and Robilliard [29] reported the presence of
changes unneeded to fix a bug in bug-fixing commits (e.g.,
renaming a variable) as a possible source of bias in the
evaluation of bug localization techniques. Indeed, these changes
artificially increase the number of code components that appear
relevant to a bug fix, but are actually unrelated. This is the same
form of bias defined by Herzig and Zeller as “tangled commits"
[11], meaning commits containing changes addressing a specific
bug mixed with unrelated changes (e.g., refactoring). If TR
approaches are evaluated on these commits, their performance
might be artificially boosted by the fact that there are many
more “relevant" files to be found in the search space, even

though finding some of these files would not practically assist
with localizing the bug. In order to remove such a bias from
our study, we manually analyzed all the changed files in each
bug fix commit and removed any file whose changes were not
directly related to the bug being fixed.

Wang et al. [8] provide a detailed analysis of the impact that
localized bugs have on evaluating TR-based bug localization.
In their study, they consider different types of identifiable
information that localize a bug explicitly: program entity names,
stack traces, and test cases. They found that the presence of
program entity names significantly improves the performance
of TR-based bug localization. Our study also addresses the
impact of localization hints on TR performance, but does so
in a different way. First, Wang et al. classify bug reports
as containing/not containing localization hints on the basis
of the information that they report, and then compare the
performance of TR-based bug localization on these disjoint
sets of bugs. Instead, we manually derive from each bug two
versions: one containing the complete title and description, and
one from which we manually remove any reference to code
components (i.e., any possible localization hint). This allows us
to compare the performance of TR-based bug localization with
and without localization hints between the same set of bugs,
thus removing conflating variables such as bug type or severity
that are introduced by comparing disjoint bug sets. Through this
analysis, we show that the formulated query is more important
than the presence or absence of localization hints in ensuring
the success of TR in bug localization. Specifically, we show
that it is possible to formulate a near-optimal query from the
bug report vocabulary, which leads to successful TR-based bug
localization with or without localization hints in that vocabulary.

Finally, according to Bettenburg et al. [30], the inclusion
of identifiable information is considered to be important when
writing a good bug report, yet developers answering a survey
indicated that few bugs contain error messages (53%), code
examples (36%), or test cases (56%). Moreover, developers who
took the survey indicated that the biggest detracting factors in
bug reports were unstructured, lengthy text and non-technical
language. This further suggests that localization techniques
should focus on optimizing performance in these difficult
situations. Through investigating queries in the QnoHint set,
this study also investigates whether sufficient information
to localize a bug exists even for bugs composed of strictly
unstructured, natural language. This concept is related to other
work which has sought to quantify the quality of a query used
for a software engineering task [31], [9] and derive a more
effective query when required.

C. Query Reformulation for TR-based Bug Localization Ap-
proaches

In the event that a query leads to poor results, there have
been numerous techniques devised to reformulate the query
[32], [13], [33], [34] using either expansion [35] (i.e., adding
additional terms to broaden the query) or reduction [13](i.e.,
removing words unlikely to contribute to the inherent meaning
of the query, in order to reduce noise). Query reformulation



addresses situations in which the available query, whether in
the form of a bug report or otherwise, offers an insufficient
representation of the information need required to localize a bug.
A recent study [10] empirically quantified the improvement in
verbose queries achieved by removing words that negatively
impact effectiveness. Chaparro et al.’s study [10] removes up
to six “noisy" terms from the query. These terms are identified
though a brute-force approach. In a subsequent study [36],
Chaparro et al. manually reduce noisy, ineffective queries
to reformulated queries that contain only terms that describe
observed behaviors, and find that the reformulated queries have
much improved performance. Since this study is related to the
work presented in this paper, we include a post-hoc analysis
using queries common to both studies in Section IV.

Different from previous studies, we leverage a GA which
allows us to perform any reformulation (using the bug report)
that converges to an improved, near-optimal query using
effectiveness as a cost function. From this perspective, a major
contribution of our study is empirical evidence that more
complex techniques leveraging external sources of context
[37], or linguistic information [38] are not needed to optimize
queries in most cases. Further, our results show that while
observable behaviors help with refining a query based on bug
report text, there exist even more effective queries that can
be derived from the bug report. That is, there exists some
combination of terms from the bug report text that serve as an
effective query for localization that may or may not have any
relationship to the observable behavior of the bug.

III. STUDY DESIGN

Our main goal is to assess the potential effectiveness of
TR-based bug localization assuming the ability to formulate
an optimal query starting from the bug report vocabulary. In
particular, our study addresses the following research questions:

RQ0: What is the effectiveness of TR-based bug localization
techniques when using the whole bug report text as a query?
This is a preliminary research question where we establish a
baseline by studying the performance of out-of-the-box TR-
based bug localization techniques when using the whole text
contained in the bug report (i.e., a concatenation of its title and
description) as a query, as usually done in empirical evaluations
of these techniques [7]. RQ0 serves as a term of comparison
for our main research question (RQ1), in which we study what
the potential effectiveness of these techniques could be, given
the ability to formulate an “optimal query” starting from the
bug report vocabulary. As part of this research question we
also present a differentiated, partial replication of the work
by Kochhar et al. [7], in which we analyze the impact that
localization hints in the bug report text have on the performance
of TR-based bug localization.

RQ1: What is the effectiveness of TR-based bug localization
techniques when using an optimal query selected from the
vocabulary of the bug report? We study what the potential
effectiveness of out-of-the-box TR-based bug localization
techniques truly is. In particular, we devised an experimental
design allowing us to formulate an “optimal query” from a bug

TABLE I
STUDY DATASET

Project # Original
Bugs

# Cleaned
Bugs

Avg. Changed
Files

Avg. Qall

Size
Avg. QnoHint

Size
AspectJ 286 188 2.50 224.35 49.10
BookKeeper 40 24 3.96 83.63 24.83
Derby 96 49 2.64 190.41 44.14
JodaTime 9 7 1.00 126.57 46.14
Lucene 34 32 2.09 232.90 27.43
Mahout 30 25 3.12 97.72 34.24
OpenJpa 18 16 2.06 166.06 41.06
Pig 48 36 1.53 117.44 25.00
Solr 55 45 2.22 87.80 42.93
SWT 98 85 1.68 100.56 42.80
Tika 23 21 2.38 74.33 26.00
ZooKeeper 80 78 1.91 106.09 38.14
ZXing 20 14 1.07 123.31 73.23

Total 837 620 2.16 133.17 39.62

report, (i.e., the most effective query that can be derived from
solely the vocabulary of the bug report). We also compare the
performance of the formulated optimal query when localization
hints are present/absent in the bug report vocabulary, to study
the impact of this factor on the potential usefulness of TR-based
bug localization techniques.

A. Data Collection

We used a set of 620 bug reports manually extracted and
verified from 13 software systems. To obtain these bug reports,
we initially started from datasets that were used in two previous
studies to analyze the effectiveness of TR-based bug/feature
localization techniques [8], [10]. We then manually inspected
each bug report in these datasets and their corresponding
commit and further cleaned the data, as described below.

First, each commit associated with a bug report BR in the
datasets was manually analyzed, in order to verify the validity
of the ground truth (i.e., the set of files actually modified
to fix the bug described in BR). This step was necessary to
ensure that only valid files and bugs are being used in our
study. To do this verification, two of the authors manually
verified the data, each of them focusing on around half of
the bug reports in the dataset and their fixes. Moreover, a
third author double-checked the manual labeling done by the
other two authors, in order to identify any involuntary errors
or misunderstandings, as well as to determine any cases in
which additional screening or discussion was required. The
authors first identified each BR’s bug-fixing commit fixBR,
by looking in the project’s versioning system for commit notes
explicitly reporting the BR id (e.g., DERBY− 6150). Note that
git is used by all subject systems except JodaTime, which
uses SVN; however, the process for JodaTime remains the same
using analogous SVN features. The mapping between bugs and
their respective fixing commits was possible for all the bugs
included in our study. Since the presence of a bug id does not
always guarantee that the commit contains only the needed bug
fix [29], a manual inspection of the actual changes was needed
to ensure that only files relevant to the bug are included in the
ground truth. Therefore, the two authors manually inspected
the changes performed in fixBR by exploiting the git show

command (or the equivalent svn diff −c command), and
tagged each modified file as true positive (i.e., the file has
been actually modified to fix the bug reported in BR) or as
false positive (i.e., the file has been modified as the result of a
tangled commit and/or the changes in the file do not indicate
the fixing of a bug). For false positive changes, the authors also



tagged the change with a reason why it was considered not
relevant to fixing the bug; these tags are available as part of the
replication package for our study [12]. In total, 1344 files have
been modified in the bug-fixing commits, but only 496 of them
were indeed found to be true positives. The most common
reasons for which the two evaluators excluded modified files
from the set of true positives are reported in Table II.

This manual verification process resulted in the exclusion
of 198 bug reports from our study out of a total of 837 found
in the original datasets. These bugs were excluded since no
modified files were left for them in the true positives set after
verification. An additional 19 bug reports were excluded due
to insufficient information in the downloaded source files to
reconcile the bug’s golden set with the code used to construct
the corpus (e.g., package migrations with no documentation
linking the old and new location, platform-specific code that
was not available in the current source download, etc.). These
cases arose most frequently for the ZXing project, which has
been migrated between several version control systems. The
final result was a set of 620 bugs that we used in our study.

Such a cleaning process of our dataset was needed to avoid
the use of a bloated ground truth or misclassified bugs in our
study [7]. Table I shows the number of bugs before and after
the manual verification process in each dataset we used.

Next, for each remaining bug report BR in our data, we
extracted a basic query by concatenating BR’s title and
description. This type of query (from now on called Qall,
as it contains all the terms in the bug report) is the one most
often used to automatically assess the effectiveness of TR-
based bug localization techniques [7]. In addition, we also
manually extracted a second query (from now on, QnoHint)
obtained from Qall by removing all code-specific terms that
could represent localization hints: package, class, method, and
identifier names, stack traces, code snippets, file paths, fully
qualified names, and version control URLs pointing to code
locations. Note that for words embedded in a localization hint
(e.g., the word “pointcut” in the localization hint "IfPointCut"),
the word itself is still considered relevant and kept. However,
the complete localization hint (i.e., "IfPointCut") refers to a
specific class and is removed from both the bug title and
description. In total, we extracted 1240 queries from the 620
bug reports. Table I reports the systems we considered, the
number of bug reports per system, and the average size of the
extracted queries in number of words.

We then downloaded the source code of each system and
constructed a document corpus by considering each Java file
as a document. We applied preprocessing to both the queries
we previously extracted and the corpus documents in order to
remove English stop words and reserved Java keywords, stem
words to their root form, and split identifiers in the source
code based on CamelCase and the underscore separator. Each
preprocessed query was then run on its corresponding document
corpus (i.e., the code files of the related project) by using the
lucene1 implementation of the Vector Space Model (VSM).

1https://lucene.apache.org/

The retrieved ranked list was stored for future analysis aimed
at answering RQ0 (see Section III-B).

While the above-described data is enough to answer RQ0,
it is not sufficient for answering RQ1. Indeed, we still need
to extract from the vocabulary of each bug report an “optimal
query”. Given the vocabulary of BR (i.e., the Qall query)
composed of n terms, it would be computationally unfeasible
to try all possible queries of any length that can be extracted
from Qall in order to observe which one leads to the best
results (this would result in running n! + (n− 1)! + . . .+ 1!
queries through the TR engine). For this reason, we instead opt
for an approximation of the “optimal” query obtained using
a single-objective Genetic Algorithm (GA) [39] that quickly
converges towards a “near-optimal” query2 composed starting
from a given vocabulary (in our case, the terms in Qall).

The solution representation (chromosome) and the GA
operators are defined as follows. Given a vocabulary composed
of n terms, the chromosome is represented as an n-sized
integer array, where the value of the ith element equals 1 if
that term is part of the formulated query, and 0 otherwise. The
only constraint we set on the generated solutions is that the
chromosome must contain at least one “1” (i.e., the query must
contain at least one term). The crossover operator is a one-point
crossover, while the mutation operator randomly identifies a
gene (i.e., a position in the array), and modifies it by randomly
assigning it to 0 or 1. This translates to removing/adding a
term to the query. The selection operator is the roulette-wheel.

The single-objective GA uses as a fitness function (to be
minimized) the rank of the first relevant document in the list of
results when running the query represented by the chromosome
through lucene on the corpus. This fitness function is possible
thanks to the fact that the ground truth is know for each bug
report. Basically, we look for the query optimizing the retrieval
performance as represented by the effectiveness measure, which
is often used to evaluate TR-based bug localization [27].

Our GA is built on top of the jmetal framework3 and uses
the following parameter configuration: population size: 500;
maximum number of generations: 30,000; crossover probability:
0.9; mutation probability: 1/n (where n is the number of
terms in the bug report). Also, given that a run of the GA
involves some elements of randomness (e.g., in the roulette-
wheel selection), we run the algorithm ten times and average
the results to mitigate threats to validity introduced by chance.

We acknowledge that in many cases, modern automatic
query formulation techniques would not be able to derive such
an optimal query without knowing a priori the ground truth.
However, our goal in this study is not to present the GA as
a query formulation technique. Rather, we seek to identify a
near-optimal query that can be formulated from a bug report
in order to empirically assess the potential of TR-based bug
localization, thus answering RQ1.

We use our GA to extract the near-optimal query from
both Qall (resulting in the near-optimal query QGAall) and

2We use the term “near-optimal” since the GA will ultimately converge to
a local optimal solution which may or may not be the global optima.

3http://jmetal.sourceforge.net



TABLE II
CHANGES UNRELATED TO BUG-FIXING IDENTIFIED BY THE TWO EVALUATORS

Change Description #Files %Files
Added code only A file was changed by only adding new code (i.e., existing code was not modified/deleted) 395 46.58
Test code Changes to the test code, not impacting the system’s behavior 262 30.90
Refactoring Changes do not affect the system’s behavior (e.g., renaming a variable) 74 8.73
Comments Adding/removing/modifying code comments 72 8.49

QnoHint (QGAnoHint), thus also studying the possibility of
formulating a high-performing query when localization hints
are not present in the starting vocabulary. Note also that we
provided to the GA the vocabulary in Qall and in QnoHint

after first preprocessing the queries, therefore ensuring the same
treatment is applied to both queries and corpus documents.

B. Data Analysis

We answer RQ0 by presenting the performance of TR-based
bug localization when using Qall and QnoHint as queries. For
this purpose, we adopt well-established IR metrics:
• Effectiveness - The highest rank in the list of results of any

relevant document (i.e., Java file) in the golden set. The
intuition behind this metric is that given a single relevant file
in the top results, developers can then easily navigate from
it to the other relevant files using built-in IDE navigation.
Because the effectiveness distributions in this study are highly
skewed by outlying queries that perform particularly poorly,
we report the median scores to provide a fair depiction of
the overall effectiveness of queries in each project.

• HITS@K - For a set of queries run on a document corpus,
it is the percentage of queries that retrieve a relevant file in
the top K positions of the ranked list. For example, HITS@1
provides the percentage of queries that return a relevant file
as the topmost result. In this study, similar to [8], we use
HITS@1, HITS@5, and HITS@10.

• Mean Average Precision (MAP) - Average precision is
calculated as the mean of precision values at each k such
that the document returned at position k is relevant. MAP
is the mean across all average precision values within a set
of queries.

• Mean Reciprocal Rank (MRR) - The reciprocal rank is the
inverse of the rank of the first relevant document in a result
set. MRR is the average of all reciprocal ranks within a set
of queries.
For RQ0 we also statistically compare the TR-based bug

localization performance (as assessed by the four metrics)
when using Qall vs QnoHint (i.e., when localization hints
are present/not present in the bug report). While the Mann-
Whitney U or Kolmogorov-Smirnov tests provide a mechanism
to compare two potentially non-normal, independent distribu-
tions, neither of these tests handle frequent ties in compared
distributions well. As such, these tests are not directly suitable
for our case where, as will be shown in Section IV, many
queries are able to achieve a perfect effectiveness score of one.
Therefore, we applied the Asymptotic General Independence
test [40] implemented in the coin R package. This is a
generalized permutation test that uses random sampling to
determine the independence of two distributions based on
mean-differences. It is applicable to non-normal, independent,

discrete distributions despite the presence of ties. We also
assess the magnitude of the observed difference using Cliff’s
delta (d) effect size [41], suitable for non-parametric data.
Cliff’s d ranges in the interval [−1, 1] and is negligible for
|d| < 0.148, small for 0.148 ≤ |d| < 0.33, medium for
0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474. The same
four performance metrics/statistical analysis are also computed
to answer RQ1, in which we compare the performance of Qall

and QnoHint with the performance of the near-optimal queries
QGAall and QGAnoHint, obtained by the GA starting from
the vocabulary present in Qall and in QnoHint, respectively.

C. Replication Package
All the data from our study are publicly available [12]. In

particular, we provide:
• The dataset we manually built, reporting for each bug report:

(i) its id, title, description, and link to the issue tracker, (ii) the
related bug-fixing commits, (iii) all files modified in the bug-
fixing commits, (iv) the list of files modified in the bug-fixing
commits tagged as true positive (i.e., changed to fix the bug),
(v) Qall, (vi) QnoHint, (vii) the near-optimal query QGAall

obtained starting from Qall, and (viii) the near-optimal query
QGAnoHint obtained starting from QnoHint;

• The raw data used to answer our two research questions;
• The R scripts used to perform statistical analyses;
• The jar file implementing our GA accompanied by a
README file explaining how to use it to obtain the near-
optimal query for a given vocabulary and document corpus.

IV. RESULTS

A. RQ0: Evaluation of Qall and QnoHint

Table III shows all evaluation metrics for each project in
the dataset when using the complete bug report as query,
both including (Qall) and excluding (QnoHint) localization
hints. For each metric calculated for each project, a pair of
bold values indicates statistical significance between them at
95% confidence with at least a small effect size. Asterisks
indicate medium effect sizes. We observed that the impact
of localization hints is not statistically significant across all
data; however, there are instances where localization hints are
seen to substantially boost TR performance. Overall, looking
at the last row in Table III, it is clear that while localization
hints definitely help TR-based bug localization, the difference
in performance between Qall and QnoHint is not as strong
as observed in previous studies [26], [7]. Indeed, Wang et al.
[26] and Kochhar et al. [7] found a statistically significant
difference in the performance of TR-based bug localization
when using queries containing/not containing localization hints,
accompanied by a large effect size.

These differences in findings might be due to several reasons.
First, it is worth noting that the dataset used in our experiment



TABLE III
RQ0 : COMPARISON OF QUERIES Qall AND QnoHint . A PAIR OF BOLD VALUES INDICATES STATISTICAL SIGNIFICANCE BETWEEN THEM AT 95%

CONFIDENCE WITH AT LEAST A SMALL EFFECT SIZE AND * INDICATES MEDIUM EFFECT SIZES.
Median Effectiveness HITS@1 HITS@5 HITS@10 MAP MRR

Project Qall QnoHint Qall QnoHint Qall QnoHint Qall QnoHint Qall QnoHint Qall QnoHint

AspectJ 33 36 0.04 0.06 0.17 0.18 0.28 0.26 0.09 0.10 0.12 0.13
BookKeeper 2 3 0.29 0.21 0.79 0.67 0.83 0.75 0.38 0.33 0.51 0.41
Derby 15 26 0.16 0.12 0.39 0.31 0.43 0.39 0.17 0.16 0.25 0.21
JodaTime 2* 13* 0.14 0.14 0.57 0.14 0.57 0.29 0.38 0.21 0.38 0.21
Lucene 2.5* 11* 0.31 0.20 0.69 0.33 0.78 0.47 0.38 0.25 0.47 0.28
Mahout 5* 25* 0.36 0.12 0.64 0.32 0.80 0.40 0.46* 0.18* 0.46* 0.19*
OpenJpa 5.5 18.5 0.19 0.13 0.50* 0.25* 0.56 0.31 0.32 0.15 0.35 0.22
Pig 9 10.5 0.25 0.19 0.44 0.39 0.53 0.50 0.30 0.28 0.35 0.30
Solr 2 7 0.33 0.18 0.67 0.42 0.76 0.56 0.42 0.26 0.49 0.30
SWT 3 5 0.35 0.31 0.61 0.53 0.78 0.69 0.43 0.37 0.48 0.43
Tika 2* 16* 0.43* 0.10* 0.62 0.29 0.81 0.38 0.38* 0.16* 0.53* 0.21*
ZooKeeper 2 5 0.41* 0.17* 0.73 0.52 0.79 0.64 0.49 0.28 0.55 0.32
ZXing 2 6 0.36 0.31 0.57 0.46 0.64 0.54 0.45 0.36 0.49 0.40
Total 6 13 0.24 0.16 0.48 0.36 0.58 0.46 0.36 0.24 0.42 0.28

is different from those used in these previous studies [26],
[7]. Second, as explained in Section II, we adopt a different
experimental design. More specifically, we use the same set
of bug reports to derive Qall and QnoHint: the latter is
a “worst case scenario" in which all terms matching code
components have been manually redacted from the bug report
(i.e., from Qall). This allows us to review the performance of
TR-based localization in the presence of a potentially elevated
vocabulary mismatch (since matching terms between the code
identifiers and the bug report have been removed from the
latter) and directly compare the same bug report with and
without localization hints. Previous studies classify instead the
set of bug reports on the basis of the degree of bug localization
they contain (e.g., bug is fully localized in the report, partially
localized, or not localized) and compare the performance of
TR-based bug localization on these (disjoint) sets of bugs.
These differences make a direct comparison of the results
achieved in our study versus previous studies difficult. At
minimum, these results underscore the fact that the impact
of localization hints on the performance of TR-based bug
localization is inextricably linked to the specific project under
study and the set of considered bug reports from that project.

To better address this situation, future work will investigate
in more detail the impact of specific types of localization hints
removed from each query and manually clean a larger set of
data to further mitigate any potential sampling bias.

Finally, it is worth commenting on the overall performance
achieved by using as query the whole textual content of the bug
report, especially when localization hints are not present (i.e.,
QnoHint, the scenario in which TR-based bug localization is
needed the most). The median effectiveness across all projects
is 13, meaning that for half of the queries the first relevant
document is retrieved after position 13 in the ranked list.
Considering that our study is run at file level, the effort required
to analyze false positives in the ranked list would likely be too
high to be considered acceptable by developers. Also, QnoHint

was able to retrieve a buggy file in the top five positions
(HITS@5) for only 36% of queries and in the top ten positions
(HITS@10) for 46% of queries, on average. This translates to
poor performance also across the rest of the metrics.

The achieved results support doubts raised in previous
work about the actual usefulness of TR-based bug localization

when localization hints are not provided. However, there is an
important detail to remember: as done in previous work, we
are using here the whole textual content of the bug report as a
query (all the terms in the bug title and the bug description
that remain after filtering out localization hints and applying
preprocessing), which, as previous studies showed [10], can
contain noise that hinders TR performance. In the next research
question we investigate what the potential effectiveness of TR-
based bug localization is given the ability of formulating a
near-optimal query instead of using the default one.

Summary for RQ0: The presence of localization hints can
boost the results of TR-based bug localization at the project-
level, but not necessarily for all bug reports and/or in all
projects. We also observed that the performance of TR-based
bug localization is poor in the scenario it is needed the most,
with less than 50% of queries able to retrieve a relevant result
in the top 10 positions of the ranked list.

B. RQ1: Evaluation of the Near-Optimal Queries QGAall and
QGAnoHint

Table IV shows all evaluation metrics for each project in
the dataset when using a near-optimal query generated by our
GA based on the bug report vocabulary with and without
localization hints. The improvements made by selectively
formulating a query rather than using the complete bug report
vocabulary are immediately noticeable. Beginning with median
effectiveness, we now see that for at least half of the queries a
user will arrive at a buggy file after inspecting only the first item
in the result set. Note that this holds both when localization
hints are present in the bug report (QGAall) and when they
are not (QGAnoHint). This finding is further supported by the
average HITS@1 score over the entire dataset, which shows
that overall 69% and 67% of the queries with and without
localization hints respectively, are able to return a relevant file
in the first position in the list of results. This is a more than
three-fold improvement over the queries before applying GA,
which are the default queries generally used in the evaluation of
TR techniques. Moreover, the MAP and MRR of each dataset
also improves dramatically, indicating that not only is one
relevant file being pushed to the top of the result set, but many
of the other relevant files are moving up the list as well.

For this research question we performed the same statistical
tests between queries that contain localization hints and those



TABLE IV
RQ1 : PERFORMANCE OF Near-optimal Queries QGAall AND QGAnoHint

Median Effectiveness HITS@1 HITS@5 HITS@10 MAP MRR
Project QGAall QGAnoHint QGAall QGAnoHint QGAall QGAnoHint QGAall QGAnoHint QGAall QGAnoHint QGAall QGAnoHint

AspectJ 1 1 0.46 0.60 0.72 0.79 0.78 0.86 0.41 0.49 0.58 0.68
BookKeeper 1 1 0.88 0.75 1.00 0.96 1.00 0.96 0.56 0.48 0.92 0.85
Derby 1 1 0.55 0.53 0.67 0.65 0.67 0.73 0.40 0.40 0.61 0.60
JodaTime 1 1 0.57 0.57 1.00 0.86 1.00 0.86 0.79 0.73 0.79 0.73
Lucene 1 1 0.80 0.63 0.93 0.80 0.97 0.80 0.63 0.49 0.85 0.72
Mahout 1 1 0.88 0.56 0.96 0.72 1.00 0.76 0.84 0.52 0.91 0.63
OpenJpa 1 1 0.75 0.75 0.88 0.94 0.94 1.00 0.63 0.61 0.82 0.83
Pig 1 1 0.69 0.64 0.86 0.81 0.89 0.86 0.65 0.61 0.77 0.71
Solr 1 1 0.84 0.71 0.91 0.84 0.93 0.89 0.68 0.57 0.88 0.77
SWT 1 1 0.79 0.76 0.89 0.91 0.94 0.93 0.69 0.67 0.85 0.83
Tika 1 1 0.90 0.71 0.90 0.86 0.90 0.86 0.59 0.42 0.91 0.78
ZooKeeper 1 1 0.81 0.74 0.95 0.88 0.96 0.94 0.74 0.70 0.86 0.80
Zxing 1 1 0.93 0.85 1.00 0.92 1.00 1.00 0.91 0.86 0.95 0.90
Total 1 1 0.69 0.67 0.84 0.83 0.88 0.88 0.66 0.58 0.82 0.76

that do not. We found that in the case of queries formulated by
the GA, the difference in values other than median effectiveness
are statistically significant only for Mahout, but even then only
with a negligible effect size. Otherwise, near-optimal queries
manage to mitigate the lack of localization hints every time.
In addition, we calculated the same statistical tests to measure
differences between the queries composed by using the whole
text in the bug report (i.e., those used in RQ0) and the near-
optimal queries formulated by the GA, finding a statistically
significant difference with medium or large effect sizes in
every case. Summarizing these findings, the achieved results
show that the vocabulary of the bug report is all we need
to formulate a good query and make the application of
TR-based bug localization successful in most cases.

It is also worth noting that these results have been achieved
by using a simple Vector Space Model (VSM) as the TR engine,
configured with default parameters and publicly available in
an open source library (i.e., lucene). While our goal in this
study was to determine the best results we can get by only
manipulating the query, a more robust TR engine capable
of better handling issues such as vocabulary mismatch, may
lead to even better performance. Further, these results show
that even though there are numerous studies which have
itemized and dissected the limitations of applying TR to source
code, specifically for bug localization, the query itself is a
tremendously important aspect of optimizing TR, potentially
more than internal parameters or even the choice of TR engine
(a claim supported by the fact that we are able to achieve such
good results even with a rudimentary TR approach).

The results achieved in RQ1 are very promising for re-
searchers working on TR-based bug localization and its many
derivatives, as well as practitioners that have implemented or
are interested in implementing these systems to improve their
development process. However, these findings also come with
some practical implications that need to be addressed in the
evaluation of future TR approaches. Mainly, evaluating TR
techniques using the standard approach of building queries
by concatenating the contents of the bug report title and
description is an additional factor that could introduce bias in
a TR experiment’s results. Indeed, our data suggests that the
particular query formulated starting from a given bug report
is a major factor in the performance of even a rudimentary
TR approach. Therefore, great care should be taken when

formulating queries from bug reports for evaluation to not only
address potential biases such as the presence of localization
hints and bloated ground truths, but also biases imposed by the
query itself. For example, it has been suggested that queries
which contain a large volume of text are also likely to contain a
large volume of noise [10], which innately lowers performance.
This is supported also by the results of our study, where the
GA queries that obtained better results than the original queries
were also shorter (see Table V).

Clearly, it is often a non-trivial task to read a bug report and
convert its text into a meaningful query that TR approaches
can use to locate buggy files. In fact, previous work on
iterative query refinement through user feedback [42] found
that developers were often unable to reach a good query given
a sufficiently bad starting point. Because the quality of a query
is not always readily apparent, one can imagine situations
in which studies have an imbalance of queries with various
degrees of quality. It is then entirely possible that this balance,
whether in favor of poor or high quality queries, injects bias
into the evaluation results.

Given that initial query formulation is so important to the
outcome of a TR approach, it is natural to ask questions about
how the research community can best support query formulation
given a bug report vocabulary without a priori knowledge of
the ground truth. As mentioned in Section II, previous work
has focused on how to reformulate a query from an initial
query. We see the set of near-optimal queries publicly available
in our replication package [12] as a precious source that can
represent the starting point of further research on this topic,
such as studying what the characteristics of high-performing
queries are. This is part of our future work. As a hint on how
different the near-optimal queries formulated by our GA are
with respect to the queries including the whole textual content
of the bug report, Table V shows the average size of Qall

and QnoHint before and after the application of the GA. We
report the size in terms of unique and non-unique terms. In a
vast majority of cases, the GA reduces the terms used in the
original query by more than 50%, and in each case it results in
a higher ratio of unique to non-unique terms. This supports the
idea that there are words in the original queries in both Qall

and QnoHint whose relevance is diminished by other noisy
terms, such that the TR approach is not able to appropriately
leverage the information represented by meaningful terms.



TABLE V
AVERAGE QUERY SIZES IN NUMBER OF WORDS BEFORE AND AFTER APPLYING THE GA

Qall QnoHelp

Before GA After GA Before GA After GA
project Non-Unique Unique Non-Unique Unique Non-Unique Unique Non-Unique Unique
AspectJ 224.35 61.10 104.63 39.34 49.10 29.89 20.83 14.95
BookKeeper 83.63 35.83 40.25 22.75 24.83 17.92 11.13 9.29
Derby 190.41 53.29 89.94 35.33 44.14 26.65 19.43 14.43
JodaTime 126.57 44.00 59.86 27.00 46.14 29.43 19.43 15.43
Lucene 232.90 98.00 114.27 57.53 27.43 21.63 11.53 10.17
Mahout 97.72 45.72 47.28 28.36 34.24 24.96 13.96 11.60
OpenJpa 166.06 61.00 77.69 39.63 41.06 29.94 17.50 15.19
Pig 117.44 46.25 53.28 28.61 25.00 19.11 10.50 8.72
Solr 87.80 41.09 41.51 25.00 42.93 29.13 19.16 15.22
SWT 100.56 41.01 47.80 25.13 42.80 27.84 19.31 14.91
Tika 74.33 34.76 35.05 20.57 26.00 19.48 10.90 9.57
ZooKeeper 106.09 43.36 52.18 27.65 38.14 25.58 17.92 14.35
ZXing 123.31 72.92 58.62 40.54 73.23 54.92 33.23 27.92
Total (Avg.) 133.17 52.18 63.26 32.11 39.62 27.42 17.29 12.82

Table VI also shows some examples of queries before and
after the GA application. These queries possess some interesting
properties. From this data, we can see extreme cases in which
the GA significantly reduces the number of terms in the query,
by one order of magnitude. Finding the right query in these
cases could prove challenging for a human, given so many term
combinations, which stresses the need for automatic techniques
to help with this task.

For example, for bug 40257 in AspectJ, the GA is able to
derive a two-word query from an original eleven-word query
which boosts the effectiveness from 124 to 9. Similarly, for
the bug tika-1083, the GA is able to improve the effectiveness
from 208 to 24 by reducing an originally 17-word query to
the much simpler “add xml".

For the bug lucene-4469, the algorithm derives a query
with maximum effectiveness from the original query with
an effectiveness of 249 by reducing the 31-word query to
a seven-word one. Each of these cases illustrate the amount
of information buried in bug reports that could potentially
be uncovered by automated formulation techniques, thus
increasing the performance of TR-based bug localization.

It is also interesting to note that given a query that is already
able to retrieve a relevant document in position one (i.e., the
effectiveness of the query before applying the GA is 1), the
GA is still able to reduce the number of words in the query
while maintaining the same, perfect effectiveness. For example,
bug pig-3327 results in an original query of 21 words having
perfect effectiveness. The GA is able to derive from it a query
still exhibiting perfect effectiveness but using as few as seven
words. This indicates that not all noisy words in a query are
equivalent. There are some sources of benign noise that do
not affect the overall effectiveness of the query and are just
ancillary words not really required to represent the information
sought in the document corpus. Our future work will focus on
determining factors that can lead to automatically identifying
these terms without knowing the ground truth a priori.

Additionally, we note that there is often not a single and
unique near-optimal query derived by the GA. In fact, for bug
37576 in AspectJ (see table VI), the algorithm is able to derive
ten distinct queries (i.e., one for each iteration), with lengths
ranging from three to ten words, all having perfect effectiveness.
This suggests that automatic formulation techniques should

not always look for one single, ideal query. Rather, many
alternative queries built from the text in the bug report could
all lead to exceptional retrieval results.

Finally, it is important to compare these results to those
reported by Chaparro et al. [36]. Table VII shows the median
effectiveness and HITS@k metrics for the subset of 102 bugs
from 10 different projects that were common between the two
studies. To perform this analysis, we obtained the observable
behavior-based queries from Chaparro et al.’s replication
package, and used our ground truth and TR engine to evaluate
query effectiveness. We see that while considering only terms
related to observable behavior does improve query performance
compared to the original queries Qall and QnoHint, there is
still room for improvement, as the GA is able to derive queries
with even better performance. This is not unexpected, however,
since as compared to the observable behaviors approach, the
GA is able to derive queries based on patterns in data that
might be unrecognizable to a human user. For example, for bug
bookkeeper-326, the query derived from observable behaviors
contains 9 terms with an effectiveness of 151 and is easily
recognized by a human: “deadlock during ledger recovery
deadlock found during ledger recovery." Alternatively, the
largest query derived by the GA for the same bug report
consists of 5 terms with an effectiveness of 3, and is much
more opaque from the perspective of human comprehension:
“lock ledger deadlock ledger thread".

Summary for RQ1: We find strong evidence that bug
reports themselves provide sufficient information to perform
bug localization and a near-optimal query extracted from the
bug report vocabulary significantly improves the performance of
TR-based bug localization compared to the default query. This
indicates the potential usefulness of TR bug localization, even
in cases where the bug report does not contain localization hints,
which is an especially problematic situation for developers [30].
We strongly believe that the definition of techniques supporting
the formulation of an optimal query should be the main research
direction to investigate in TR-based bug localization.

V. THREATS TO VALIDITY

Internal validity. We reduced these threats by considering
bug reports used in previous studies [8], [10]. Also, we
performed a manual verification and cleaning process, which



TABLE VI
SELECTED GA FORMULATIONS

BugId Initial Eff Initial Query GA Eff GA Query

AspectJ-40257 124 pars path lst file broken rel path longer parser properli ajd 9 lst ajd

tika-1083 208 add link uti valu tika metadata
xml tika 1012 ad tika link tika uti patch fill valu 24 add xml

lucene-4469 249

test appear useless reason guess
debug explicitli disabl mdw call dont check valu test current fail wouldnt
rememb right catch throwabl record insid statu test chang let mdw run search
test

1 appear disabl check valu test
wouldnt rememb

pig-3327 1 pig hit oom fetch task report gc
overhead limit exceed hit 23 script launch job ha 80k map arrai caus oom 1 oom task report map arrai caus

oom

AspectJ-37576 4 ant task switch boot classpath entiti rc2 ajc task iajc task take nest
bootclasspath entiti classpath vice versa 1 ant rc2 ajc iajc take entiti versa

AspectJ-37576 4 ant task switch boot classpath entiti rc2 ajc task iajc task take nest
bootclasspath entiti classpath vice versa 1 ant switch rc2 iajc bootclasspath entiti classpath

AspectJ-37576 4 ant task switch boot classpath entiti rc2 ajc task iajc task take nest
bootclasspath entiti classpath vice versa 1 ant switch iajc nest entiti classpath versa

AspectJ-37576 4 ant task switch boot classpath entiti rc2 ajc task iajc task take nest
bootclasspath entiti classpath vice versa 1 ant classpath entiti rc2 iajc take bootclasspath entiti vice versa

AspectJ-37576 4 ant task switch boot classpath entiti rc2 ajc task iajc task take nest
bootclasspath entiti classpath vice versa 1 ant switch rc2 iajc take nest bootclasspath versa

AspectJ-37576 4 ant task switch boot classpath entiti rc2 ajc task iajc task take nest
bootclasspath entiti classpath vice versa 1 classpath iajc take

AspectJ-37576 4 ant task switch boot classpath entiti rc2 ajc task iajc task take nest
bootclasspath entiti classpath vice versa 1 ant switch boot classpath ajc iajc nest entiti versa

AspectJ-37576 4 ant task switch boot classpath entiti rc2 ajc task iajc task take nest
bootclasspath entiti classpath vice versa 1 ant switch classpath iajc

AspectJ-37576 4 ant task switch boot classpath entiti rc2 ajc task iajc task take nest
bootclasspath entiti classpath vice versa 1 rc2 ajc iajc take classpath vice versa

AspectJ-37576 4 ant task switch boot classpath entiti rc2 ajc task iajc task take nest
bootclasspath entiti classpath vice versa 1 ant switch boot classpath ajc iajc take nest entiti

TABLE VII
COMPARISON WITH OBSERVABLE BEHAVIORS QUERIES

Qall QnoHint Obs. Behavior QGAall QGAnoHint

Med. Effectiveness 20 29 23.50 1.05 1
HITS@1 0.12 0.06 0.11 0.50 0.53
HITS@5 0.25 0.22 0.29 0.75 0.75
HITS@10 0.34 0.31 0.36 0.78 0.81

resulted in slightly less data for addressing external validity,
but provides more confidence in the correctness of our data.

To lessen the likelihood of errors in the manual cleaning
process, the two authors in charge of (i) labeling files changed
in bug-fixing commits as true or false positive and (ii) removing
localization hints from the text of the bug report, followed
an agreed upon definition of localization hints and of the
distinction between relevant and irrelevant code changes, as
described in the study design. Moreover, a third author verified
the correctness of the labeling, identifying cases in which
additional screening or discussion was required.

There is also a threat introduced by the randomness of the
GA. Because two executions of the GA on the same input
can lead to different results, we performed ten trials for each
application of the GA, averaging across the resulting metrics.
For 80% of the Qall queries and 95% of the QnoHint queries
there was no change in effectiveness between trials.

External validity. Our results may not be generalizable to
software projects different than the ones used in this study.
Most notably, we use only Java open source projects in our
study. Thus, results may not generalize to commercial systems
or those written in other languages. Also, while we focus on
file-level bug localization, in future we plan to assess whether
our results also hold when working at method-level granularity.

Construct validity. We mitigated these threats by em-
ploying four different metrics widely used to measure the
performance of TR-based bug localization [7]. Also, we used
the Asymptotic General Independence test to determine the

statistical significance of our results because, when looking
at the effectiveness of individual queries within a system, we
are comparing non-normal distributions with a high percentage
of ties. For continuity and comparability of results, we use
the same generalized test for all data analysis, as its statistical
assumptions hold even for data having lower instances of ties.
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VII. CONCLUSIONS AND FUTURE WORK

In this study we first show that TR-based approaches to
bug localization exhibit poor performance when using the
full text in a bug report as query, particularly in the case
when localization hints are not present. This is consistent with
previous work that raised localization hints as a possible bias in
evaluations [7], [8]. More importantly, we show that given only
the vocabulary of a bug report, there exists a near-optimal query
capable of drastically improved performance compared to a
query containing the entire bug vocabulary. This holds even in
the absence of localization hints and when using a rudimentary
TR implementation. As a result, we show the potential of TR-
based bug localization in the presence of a near-optimal query
and the importance of research seeking to formulate a good
initial query given only a bug report vocabulary.

In future work we will focus on manually cleaning a larger
set of bug reports from other systems and extending our analysis
also to method-level. Additionally, we plan to use the data
obtained from our GA implementation to better understand
the properties of optimal queries and how they can be used to
improve query formulation and quality prediction.
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