Automatic Tag Recommendation for Software Development
Video Tutorials

Esteban Parra
Florida State University
Tallahassee, Florida
parrarod@cs.fsu.edu

ABSTRACT

Software development video tutorials are emerging as a new re-
source for developers to support their information needs. However,
when trying to find the right video to watch for a task at hand,
developers have little information at their disposal to quickly de-
cide if they found the right video or not. This can lead to missing
the best tutorials or wasting time watching irrelevant ones.

Other external sources of information for developers, such as
StackOverflow, have benefited from the existence of informative
tags, which help developers to quickly gauge the relevance of posts
and find related ones. We argue that the same is valid also for videos
and propose the first set of approaches to automatically generate
tags describing the contents of software development video tuto-
rials. We investigate seven tagging approaches for this purpose,
some using information retrieval techniques and leveraging only
the information in the videos, others relying on external sources of
information, such as StackOverflow, as well as two out-of-the-box
commercial video tagging approaches. We evaluated 19 different
configurations of these tagging approaches and the results of a
user study showed that some of the information retrieval-based ap-
proaches performed the best and were able to recommend tags that
developers consider relevant for describing programming videos.

CCS CONCEPTS

- Software and its engineering — Software libraries and reposi-
tories; Documentation; « Information systems — Summarization;
Multimedia and multimodal retrieval;

KEYWORDS

Video tutorials, automatic tagging, software engineering, informa-
tion retrieval

ACM Reference Format:

Esteban Parra, Javier Escobar-Avila, and Sonia Haiduc. 2018. Automatic Tag
Recommendation for Software Development Video Tutorials. In ICPC ’18:
ICPC °18: 26th IEEE/ACM International Confernece on Program Comprehension
, May 27-28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3196321.3196351

1 INTRODUCTION

Nowadays, software developers often rely on online resources (e.g.,
Q&A sites, online API documentation, online tutorials, etc.) to stay
up to date and learn new information relevant to their daily tasks.

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

2018. This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in ICPC ’18:
ICPC ’18: 26th IEEE/ACM International Confernece on Program Comprehension , May
27-28, 2018, Gothenburg, Sweden, https://doi.org/10.1145/3196321.3196351.

Javier Escobar-Avila
Florida State University
Tallahassee, Florida
escobara@cs.fsu.edu

Sonia Haiduc
Florida State University
Tallahassee, Florida
shaiduc@cs.fsu.edu

Software engineering video tutorials are one such resource. These
videos usually deliver introductory or in-depth information regard-
ing software engineering topics, such as explaining programming
language syntax, step-by-step instructions for designing and imple-
menting algorithms or data structures, demonstrating the use of
APIs or design patterns, configuring programming environments,
solving errors, and so on [19]. While videos are becoming more and
more popular on video-sharing websites such as YouTube [42], soft-
ware development video tutorials are still an underused resource
due to several existing limitations which can hinder their adoption
[27]. One such limitation is the difficulty in quickly determining
if a video contains the answer to a particular information need
somewhere in its contents without having to watch the video. Be-
ing able to assess the contents of a video quickly is particularly
useful given the increasing number of software development videos
available, and therefore the need to sift through many videos that
may potentially contain the needed information.

While videos hosted on platforms like YouTube usually have
a title and description which provide a general overview of the
video’s contents, they are not always the best solution for getting
a quick, concise overview of the most important concepts in the
video. The title usually does not capture all the key topics discussed
in the video, while the description can sometimes be irrelevant (e.g.,
listing the social media channels of the author), or too long to read,
given that people spend less than a second analyzing an online
resource to determine its relevance [13].

Tagging is the labeling of a particular resource using keywords
that are relevant for describing the content of that resource. Tag-
ging has been successfully used to classify and label a wide variety
of online resources such as news, website bookmarks, scholarly
references, pictures, reusable software libraries, text-based tuto-
rials, and posts in developer Q&A sites, such as StackOverflow!.
We believe that similar to these other online resources that have
benefited from tagging, tags for software development videos could
help developers in various ways [12]. First, they could provide them
with the list of the most representative concepts discussed in the
video in a clear, concise, and effective way, which could help them
better gauge the relevance of a particular video in a short amount
of time. Second, tags could support navigation and discovery of
related content to a video of interest, by looking for other videos
having the same or similar tags.

We therefore propose augmenting the available user metadata
of software development videos with relevant tags that capture the
main concepts discussed in the video. In particular, in this paper
we focus on videos hosted on YouTube, as it is the most popular
video-sharing platform at the moment. We propose and evaluate a

!https://stackoverflow.com/

https://doi.org/10.1145/3196321.3196351
https://doi.org/10.1145/3196321.3196351
https://stackoverflow.com/

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

set of 19 different configurations across seven approaches for auto-
matically tagging software development videos. The approaches
we investigate leverage a variety of information retrieval and nat-
ural language processing techniques in order to extract the most
relevant keywords for a video from the pool of words in its title,
description, audio transcript, as well as from external resources
related to the content of the video, such as StackOverflow posts
and tags. We also investigate two out-of-the-box, closed-source
commercial video tagging approaches and evaluate how well they
perform on software development videos.

To evaluate the quality of the tags produced by the automatic
tagging approaches, we performed a user study where 57 partici-
pants provided manual tags for a set of 75 software development
videos about Java programming extracted from YouTube. The man-
ual tags were then compared with the automatically generated
ones to determine the performance of the 19 approaches. To better
understand the process of manual vs. automatic tag generation, we
also investigated the provenance of manual and automatic tags to
determine if the users and the tagging approaches chose terms from
the same source or not.

Our results show that the tags recommended by one of the infor-
mation retrieval tagging configurations, based on BM25F, performs
the best, reaching a high level of agreement with the tags pro-
vided by the study participants. The study also revealed that the
approaches leveraging external sources of information (i.e., Stack-
Overflow) perform poorly when tagging software development
video tutorials, indicating that knowledge transfer between differ-
ent developer documentation platforms is a challenging problem.

The rest of the paper is structured as follows: section 2 introduces
the process and the techniques we used to recommend tags for
software development videos, section 3 presents the user study
we performed for evaluating the automatic tagging approaches
explored, while section 4 summarizes the results of the study. We
discuss threats to validity in section 5, section 6 presents related
work, and section 7 concludes the paper and discusses future work.

2 AUTOMATIC TAGGING FOR SOFTWARE
ENGINEERING VIDEOS

In this section, we describe the approaches we consider to automat-
ically generate tags for software development videos. We divide

them into three categories: information retrieval-based, StackOverflow-

based, and commercial, closed-source approaches. Many of the ap-
proaches make use of a video’s metadata (i.e., title, description, and
audio transcripts) in a direct or indirect way to recommend tags.
Some approaches can only produce tags representing words that
appear in the video metadata; we call these approaches extractive.
Other approaches, however, could return tags that do not appear
anywhere in the video. This is due to either the fact that they ab-
stract the topics discussed in the video on a higher-level, or because
they use external information such as StackOverflow to produce
the tags. We call these types of approaches abstractive.

2.1 Information Retrieval-based Approaches

Approaches based on information retrieval (IR) have been success-
fully used for term-based summarization and tagging of natural
language documents and software artifacts [9, 14]. Therefore, we
believe this type of techniques may be useful for tagging other

Esteban Parra, Javier Escobar-Avila, and Sonia Haiduc

types of software artifacts, such as software development video
tutorials. We propose a few IR approaches for video tagging, which
we briefly describe below. For more information about them, we
refer the reader to [6, 7].

Term Frequency - Inverse Document Frequency (TF-IDF) is
a popular, yet simple extractive approach to identify important
keywords for a document (i.e., video) by rewarding terms that fre-
quently appear in the document but are not found across many
other documents in a corpus [15]. Term frequency (TF) is the num-
ber of times the term appears in a document, whereas, Inverse
Document Frequency (IDF) is the logarithm of the inverse of the
number of documents in which the term appears in the corpus. The
TF-IDF score of a term is the product of its TF and IDF values. For
our purposes, we use the Terrier [18] implementation of TF-IDF to
extract the terms in a video’s metadata (i.e, title, description, and
transcript) with the highest TF-IDF score.

Latent Dirichlet Allocation (LDA) is an abstractive approach
that determines topics from a set of documents via a statistical
model that represents each document as a mixture of topics, with
each topic having a particular probability of generating a term in
the document. In our experiments, we use LDA-GA [22] to find
a near optimal parameter configuration for LDA using a genetic
algorithm.

BM25F is a semi-structured ranking function based on a proba-
bilistic retrieval framework [32] where terms can be given different
weights (i.e., importance) depending on the field in which they ap-
pear in a document (i.e., title, description, or transcript in our case).
We denote a particular choice of weights for the three fields as
BM25F(T, D, Tr), where T, D, and Tr are the weight factors given
to terms from the title, description, and transcripts, respectively.

BM25F computes the final weight of a term as its accumulated
weight over all the fields in a document, as given by equation (1),
where f rqu ¢ is the term frequency of the term ¢ in field ¢ of
document d, boost, is the boost factor or importance of field c, I is
the length of field ¢ in the document (i.e., the number of terms in the
field), and avl; is the average length of field ¢ across all documents
in the corpus.

freq‘ti ¢ * boost.

weight(t,d) = Z (0

= (1= be)+b, - -

avl,

The weight of a term is adjusted by a non-linear saturation
weight(t,d)
ki+weight(t,d)
the final score. This model requires two parameters, k1 and b,
where ki is a free parameter usually set to 2 and b, € [0,1] is
usually set to 0.75 [32]. We used the default values as we found

they produce good results in our experiments.

In BM25F, field boosting factors (boost, in equation (1)) are used
to modify the importance of each field in the ranking function. The
choice of boosting factors can have a major impact on the weight
of terms [32]. We evaluated 12 different BM25F configurations,
using various degrees of importance for the different fields. We
used the Terrier IR engine to compute the score of each term and
then extracted the terms in a video with the highest BM25F score
as its tags. These BM25F-based approaches are extractive in nature.

function to reduce the effect of term frequency on

Automatic Tag Recommendation for Software Development Video Tutorials

2.2 StackOverflow-based Approaches

StackOverflow (SO) is a Q&A site for programming topics that
employs tags to categorize questions. Every post in SO is tagged by
its creator using up to five tags from a set of more than 45,000 tags
curated by the community. We propose a new abstractive tagging
approach for software development videos which uses IR tech-
niques and leverages the tags contained in SO, considering them as
potential tags for video tutorials. We also adapt the state-of-the-art
tag recommendation approach for large-scale software informa-
tion sites, called TagMulRec [44] and use it to recommend tags for
software development videos. We describe both approaches below.

IR StackOverflow-based Tagging: We propose a new approach
that employs IR techniques and uses SO tags to label software de-
velopment videos. The approach works as follows: 1) using the
SO dump?, collect all the questions related to particular topics of
interest. In our case, we were interested in labeling Java-related
videos, so we focused only on SO questions having the “java” tag;
2) collect all the tags appearing in the set of relevant questions
and compute their frequency (i.e., how many questions are labeled
using each tag). We removed the tags whose frequency was be-
low the first quartile, to account for specialized tags that appear in
very few SO questions; 3) create a single text document for each
considered SO tag. This text document contains the text of all the
questions and accepted answers labeled with that tag; 4) index each
text document using Apache Lucene®; and 5) use the metadata (i.e.,
title, description, and transcript) of a particular video as a query
and retrieve the most relevant documents (i.e., tags) to it. The tags
represented by these documents will be recommended as tags for
the video considered as a query.

Lucene can be parametrized with the similarity measure used
to compare the query and an indexed document. We used two
different similarity measures based on language models, namely
LMDirichletSimilarity and LMJelinekMercerSimilarity. These re-
sulted, therefore, in two different tagging configurations based on
using SO data.

TagMulRec [44] is the state-of-the-art tag recommendation ap-
proach for large-scale software information sites (e.g., StackOver-
flow). It is a tag propagation approach that uses existing tagged
Q&A posts to automatically recommend tags for new Q&A posts.
Given a new Q&A post, TagMulRec first locates the top n posts that
are the most semantically similar to it and uses their respective tags
as an initial set of candidate tags. For each candidate tag a relevance
score is computed by aggregating the semantic similarities of all
the posts in the top n most similar posts that are tagged with it.
Then the tags are ordered based on this score and those with the
highest relevance are assigned as tags for the new post.

We adapted TagMulRec to tag programming video tutorials in-
stead of SO posts as follows: we first created a document represent-
ing each video, by concatenating all the video metadata (i.e., the
title, description, and transcript); then, we used TagMulRec trained
with the full SO data dump ? to retrieve the most relevant SO tags
for each video document (instead of a SO post).

2We used the one published as of March 2017
3https://lucene.apache.org/core/

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

2.3 Closed-Source Commercial Approaches

We also investigate two existing, closed-source commercial ap-
proaches for tagging videos, described below.

Semantic Fingerprint (Cortical.io API): Semantic fingerprint-
ing [38], as implemented in the Cortical.io* API, is a machine
learning approach that proposes a new semantic representation for
terms and documents. Using an existing trained model®, Cortical.io
builds a semantic fingerprint for an entire text document and for
every term in such document. The fingerprints of each term are
then compared with the fingerprint of the document to compute
their overlap. The overall importance of a term is given by its over-
lap with the documents’ fingerprint, weighted by the frequency
of the term in the document. We choose the top words identified
by Cortical.io for a video as its recommended tags based on this
extractive approach.

Google Cloud Video Intelligence API®, referred to as GVI thro-
ugh the remainder of the paper, is Google’s implementation of a
Video2Text approach [2]. GV is a large scale deep learning system
that uses a pre-trained neural network model to analyze the au-
diovisual signal of a video and automatically extract key entities
from the video (e.g., dog, flower, car), and when they occur within
the video. We uploaded the videos in our dataset to Google Cloud
storage and processed them with GVI to obtain all the labels for
the video, and their confidence score. For each video, we sorted the
results by confidence level in descending order and selected the top
labels as tags. GVI is an abstractive approach by construction.

3 STUDY DESIGN

We performed an empirical study with the goal of evaluating the
automatic tagging approaches described in Section 2 by comparing
their video tag recommendations with tags manually created by
software developers. In this study, we particularly focus on tagging
Java programming videos hosted on YouTube. The quality focus of
the study concerns the quality and provenance of the automatically
generated video tags, as compared to manual tags. The perspective is
that of researchers interested in understanding the extent to which
IR-based, SO-based, and out-of-the-box commercial approaches can
be used to generate tags for software development videos and the
factors that can impact their performance.

In the context of our study, we specifically aim to answer the
following research questions:

RQ1 - Quality: What is the quality of the tags produced by
the automatic tagging approaches for software development
videos? This is the main research question of our study and aims
at quantifying the performance of the studied automatic tagging
approaches in recommending tags that resemble those produced by
software developers. We are particularly interested in determining
the best performing approaches, as well as studying some of the
factors that can impact their performance in producing quality tags.
In particular, we study the following subquestions:

e RQ1.1 Which automatic video tagging approach produces the best
tags? In this subquestion we were interested in determining the

4http://www.cortical.io

5The trained model is an internal implementation of the APL Details about the imple-
mentation are not disclosed.

®https://cloud.google.com/video-intelligence/

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

best performing approach among the ones studied and how well

it can approximate the tags given by developers.

e RQ1.2 Do singularization and stemming impact the performance
of the automatic video tagging approaches? Morphological trans-
formations of words can have an effect on the performance of
Natural Language Processing and Information Retrieval systems
[3]. Therefore, we study the effect of singularization and stem-
ming on the approaches for tagging software development videos.
Singularization is the transformation of a word in the plural form
to a singular form (e.g., classes — class, arrays — array), whereas
stemming is the modification of an inflected word to its word
stem or root form (e.g., programming — program, properties;
property — properti). We used the jBoss’ Inflector for singular-
ization and the Stanford-NLP? Porter Stemmer for stemming.
RQ2:Where do the tags that developers perceive to be rel-

evant for software development videos come from?

This research question aims at analyzing the origin of tags pro-
vided by developers and compare it to that of the automatic tags.
This information could be used as guidelines to produce better tags
for software development videos by future approaches.

The following subsections describe the context of our study and
the methodology used to address our research questions.

3.1 Participants

In total, 57 participants took part in our user study, all of whom had
experience with software engineering tasks and at least six months
programming experience in Java. The participants were 15 Junior
and Senior undergraduate students, 22 Master students, 17 Ph.D.
students, two professional developers, and one faculty member.
The participants were recruited across several higher education
institutions in the USA and South America.

3.2 Video Dataset

In this study, our focus is on tagging Java-related videos hosted on
YouTube. YouTube provides a REST API which allows developers to
search for videos using keywords and extract detailed information
about a video given its unique identifier. To obtain a comprehensive
dataset of YouTube videos about programming in Java, we used
the YouTube API to search for the query “Java programming” and
retrieve the videos that were obtained in response to it and were
uploaded on YouTube between January 2010 and June 2016. We
also restricted our search to videos in the English language. The
API also provides the option to retrieve the Freebase topic of a
video, which is a field used to link the video to a single high-level
topic within a collaborative knowledge base®. We use the Freebase
topics associated with the videos to filter out irrelevant results. In
particular, we collected and manually reviewed all the Freebase
topics associated with our initial set of videos, obtaining a list of 69
Freebase topics relevant to Java programming. We then only kept
videos associated with the topics on this Freebase topics list, result-
ing in almost 53,000 videos. We extracted the title and description
for each of these videos, but the YouTube API does not offer an
option to download the transcripts of a video.

"www.jboss.org/

Shttps://nlp.stanford.edu/software/
“https://goo.gl/eJAvZn

Esteban Parra, Javier Escobar-Avila, and Sonia Haiduc

Since the audio transcript of a video is a crucial component
in generating tags using our proposed approaches, we needed to
extract also the audio transcript of videos when one was available.
Based on the method used for their creation, transcripts of software
development videos can be either manual or automatic [8]. Manual
transcripts are created when a person manually transcribes the
content of the video into a text file, whereas, automatic transcripts
are created via Automatic Speech Recognition (ASR) software that
transforms an audio signal into text.

We used the YouTube API to determine if a video has manual
transcripts provided by the creator of the video. From the initial
53,000 videos, we identified 1,045 with manual transcripts, while
the rest either had automatic transcripts or no transcripts at all.
The YouTube API does not allow downloading transcripts, so we
used youtube-dI'® to download the available manual and automatic
transcripts of the videos. Out of the initial set, we were able to
extract only 846 manual transcripts (i.e., provided by developers)
and 31,539 automatic transcripts (generated by YouTube’s ASR) in
English.

After the analysis of a subset of the extracted transcripts, we
detected that the automatic transcripts created by YouTube via ASR
are very noisy and contain numerous mistakes. Since automatically
extracting correct transcripts is an entirely different problem, we
chose to focus for now on video tutorials for which manual tran-
scripts were available. However, the proposed approaches can be
applied on automatic transcripts as well, though their output will
be dependent on the quality of those transcripts.

At a closer look we also detected that some manual transcripts
provided by the creator of the video did not correspond to what was
spoken. For example, some authors used the transcript to publicize
their web pages or include contact information instead of transcrib-
ing the audio of the video. We refer to this kind of transcripts as
“low-quality” manual transcripts. We used heuristics to filter out the
videos that had low-quality manual transcripts. First, we collected
the duration of every video in the 846 that had manual transcripts
associated with them. Then, we computed the number of words in
their manual transcripts per second of video duration. Next, by an-
alyzing the distribution of the word-per-second ratio, we observed
that the transcripts that had less than one word per second were
usually incorrect, corresponding mostly to ads or other text that did
not reflect what was being talked about in the video. We therefore
removed all videos whose transcripts had a word-per-second ratio
lower than one. As a result of this process, we were left with 533
videos with good manual transcripts according to our heuristic. We
want to underline the fact that, even though for feasibility purposes
we further reduce this number of videos to 75 in our user study,
some of our automatic tagging approaches make use of metadata
and transcript information from all the 533 videos. For example,
LDA uses this entire set to extract topics from the whole video
collection that are then used to generate tags for particular videos.

3.3 User Tags and the Ground Truth

The length of the 533 videos in our dataset ranged from 2 to over
20 minutes, with a median duration of 6.9 minutes. To ensure the
evaluation of more videos while limiting the fatigue effect on our

Ohttps://rg3.github.io/youtube-dl/

www.jboss.org/
https://nlp.stanford.edu/software/
https://goo.gl/eJAvZn

Automatic Tag Recommendation for Software Development Video Tutorials

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

Ordered set of reccommended

java tags (S)
program Tag Weight
buffer
reader 3
reader buffer 3
input reader, W=3 !
buffer input 2
class name 0
oop . . tutorial 0
eclipse Input, java w=2 online 0
Annotation 1 r erpake 0
‘eclipse, parse, program, user. voiee 0
’ ’ >\ WEL http 0
muffin muffin, oop, stream, age, class facebook 0
. 3+3+2+0+0 8
buffer - Pyramid (P) Y PyramidScore (P, S, 5) = ———— = ;= 0.72
reader
stream l
Annotation 2
- w=3
java ﬂ
buffer
reader we /e o} OptimalScore (P, 5) =3+ 3+2+2+1=11
input /
user
parse =1 ° o /o0 o
° o o ©
Annotation 3

—

Figure 1: Pyramid creation and pyramid score computation

study participants, we only considered videos with a length of up to
7 minutes. This resulted in a reduced set of 315 videos. Based on the
number of participants recruited for our user study, we randomly
generated a sample of 75 videos that we use in our study.

We used an online questionnaire for data collection. The ques-
tionnaire was composed of two sections. Section 1 was used to
collect demographic information regarding the participants (e.g.,
programming experience, known programming languages, and ed-
ucation level), whereas section 2 asked the participants to watch
a set of three or five randomly selected videos, one at a time, and
then provide manual tags to describe each video. In particular, 40
participants watched three videos, whereas the other 17 partici-
pants watched five videos. In addition to the videos themselves, the
questionnaire also showed the title and description of each video
to the participants, to mimic what they would see on YouTube.

For the tagging of each video in the questionnaire, the partici-
pants were asked to watch the video from beginning to end and to
provide tags that describe the video, in the order of their relevance.
In the context of our study, a relevant tag is one that effectively
describes what the video — or a part of it — is about. We did not
set any limitations on the number of tags a participant could use
to describe the video because we were interested in collecting a
comprehensive set of tags.

To diminish the learning effect, we ensured that each participant
watched videos on different topics, as well as videos created by var-
ious authors. We also distributed the videos so that the participants
could complete the study within 25 to 45 minutes since research
has shown that significant error rates linked with cognitive fatigue
appear after engaging in a task for longer than 60 minutes [24].

After the 57 participants completed the study, we obtained the
set of manual tags for the videos. We refer to the set of tags assigned
by a user to a video as an annotation. In particular, we obtained 56

videos with three annotations, 14 videos with two annotations, and
five videos with only one annotation.

After manually inspecting the annotations, we identified that
28.8% of the tags provided by the users were composite tags, which
are tags composed of one or more words (e.g., exception-handling,
arrayvsarraylist). We processed the tags provided by developers to
extract single-term tags to do a fair comparison with the single-term
tags produced by the evaluated automatic approaches. In particular,
we split all composite tags by special characters and spaces, keeping
unique single-term tags and removing the original composite tags.
Also, we manually inspected the list of single-term tags to split any
composite tags where special character separators were not used
(e.g., niopackage — nio, package).

We used the resulting single-term tags for the evaluation. Each
annotation had between 3 and 75 single-term tags, with an average
of 9.55 single-term tags per video.

The Pyramid Method. The Pyramid Method is a summariza-
tion assessment methodology from the document summarization
field [21] that has been successfully employed in Software Engineer-
ing for similar tasks to ours [14, 29]. We chose to use the pyramid
method as it provides a reliable assessment of content selection
quality in tagging and summarization and it allows building the
ground truth from multiple annotations for the same video [21, 29].
In our study, this translates to each video having an associated
pyramid-shaped, multi-tier partition of the ground truth tags pro-
vided by the annotators, where each tier in the pyramid contains
only the tags with the same weight. The weight of a tag in the
pyramid is the number of participants that used that tag in their
annotation. The higher the tier on which a tag is found in the pyra-
mid, the more people used that tag in their annotations. The bottom
tier of the pyramid contains all the tags that were recommended by
only one of the annotators of the video, while the top tier contains
the tags that were recommended by the most annotators. Figure

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

Esteban Parra, Javier Escobar-Avila, and Sonia Haiduc

Table 1: Average pyramid scores for term-based summarization approaches

Unprocessed Singular Stem
Approach 5 10 5 10 5 10
TF-IDF 0.51 0.49 0.53 0.52 0.50 0.49
LDA 0.06 0.05 0.11 0.08 0.11 0.08
BM25F(0,0,1) 0.56 0.56 0.61 0.59 0.60 0.57
BM25F(0,1,0) 0.41 0.38 0.43 0.41 0.43 0.40
BM25F(1,0,0) 0.51 0.40 0.54 0.41 0.54 0.41
BM25F(1,1,0) 0.47 0.40 0.50 0.43 0.49 0.43
BM25F(1,1,1) 0.63 0.59 0.65 0.62 0.65 0.61
BM25F(1,1,2) 0.60 0.59 0.65 0.61 0.64 0.60
BM25F(1,2,0) 0.45 0.40 0.48 0.43 0.47 0.42
BM25F(1,2,4) 0.60 0.58 0.64 0.61 0.64 0.59
BM25F(1,4,2) 0.62 0.58 0.63 0.61 0.64 0.60
BM25F(2,1,0) 0.50 0.43 0.52 0.45 0.51 0.45
BM25F(2,2,1) 0.63 0.57 0.65 0.61 0.65 0.60
BM25F(4,2,1) 0.64 0.59 0.66 0.62 0.66 0.61
Cortical.io 0.56 0.48 0.56 0.51 0.43 0.37
SO-based tagging(LMDirichlet) 0.15 0.12 0.12 0.06 0.06 0.06
SO-based tagging(LM]Jelinek) 0.15 0.12 0.12 0.06 0.06 0.06
TagMulRec 0.35 0.30 0.35 0.32 0.35 0.32
GVI 9.30E-4 | 7.80E-4 | 9.30E-4 | 7.80E-4 | 8.70E-4 | 7.50E-4

1 exemplifies the creation of a pyramid (P) and the assignment
of weights given the sets of tags (i.e., annotations) provided by
three developers. Since pyramids built from a single annotation are
known to be unreliable [21], we removed five videos from our eval-
uation, which received only one annotation each. The remaining
70 videos had two or three annotations each, which allowed the
construction of valid pyramids.

Given a pyramid, we obtain the informativeness of a set of au-
tomatically recommended tags T by computing its pyramid score,
which is the ratio of the sum of the weights of the tags in T to the
sum of the weights of an optimal set of tags with the same number
of tags as T. An optimal set of tags would contain all the tags from
the higher tiers before including tags from lower tiers. By design,
recommended tags that do not appear in the ground truth pyramid
are assigned a weight of zero.

The pyramid score of a set of tags is mathematically expressed
in Equation (2), where x is the number of tags in the set; P is a
pyramid; S is a set of ordered tags; weight(P, t) is the weight of
tag ¢ in the pyramid P; S; is the i-th tag in the set S from top to
bottom; and P; is the j-th tag in the pyramid from top to bottom.
A pyramid score ranges from 0 to 1, with higher scores indicating
better sets of tags. Figure 1 presents a concrete example based on a
recommendation of five tags.

7., weight(P, S;)

Zle weight(P, P;) @)

PyramidScore(P, S, x) =

4 RESULTS

We make all of our data and results used in this paper available in
our replication package!l.

Uhttps://www.cs.fsu.edu/~serene/parra-icpc2018

4.1 RQ1.1- Best tagging approach

We initially consider recommendations of 10 tags for each of the
approaches, in order to resemble the average number of tags that
developers used to tag the videos in our study (i.e., 9.55 tags). For
each tagging approach, we computed the average pyramid score
of the recommended sets of tags across the 70 videos with two or
three annotations. The average pyramid scores for 10 tags for each
approach are presented in the column Unprocessed-10 in Table 1.

The tags produced by GVI are the least informative with average
pyramid scores under 0.01, followed by LDA and the two variations
of the SO-based tagging technique, all with scores lower than 0.20.
The TagMulRec-based approach performs better than other abstrac-
tive approaches with an average pyramid score of 0.30. However,
none of the abstractive approaches can surpass the extractive ones.

The best performing approaches are BM25F(4,2,1), BM25F(1,1,2),
and BM25F(1,1,1) which all achieve an average pyramid score of
0.59 when recommending 10 tags. In other words, the tags obtained
using these extractive approaches contain on average up to 59%
of the information considered to be relevant by developers for
describing the videos, whereas the tags provided by abstractive
approaches only contain up to 35% such information. Since all the
worst performing approaches are abstractive, we inspected the tags
recommended by these approaches and noticed that they capture
high-level information that is not as useful to quickly assess the
content of a software development video.

Our results indicate that extractive tagging approaches are better
suited for tagging software development videos. Moreover, con-
figurations of BM25F that give non-zero weight to terms in the
transcript are more informative than configurations leveraging
only terms from the title and description. Moreover, considering
only the transcript (i.e., BM25F(0,0,1)) leads to an average pyra-
mid score of 0.56, whereas configurations considering only terms

Automatic Tag Recommendation for Software Development Video Tutorials

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

0.9
0.8
BM25F(0,0,1)
0.7 —+-BM25F(0,1,0)
——BM25F(1,0,0)
BM25F(1,1,0)
g 0.6 BM25F(1,1,1)
8 BM25F(1,1,2)
2 os —-BM25F(1,2,0)
s —-BM25F(1,2,4)
> -~ BM25F(1,4,2)
0.4 -~ BM25F(2,1,0)
—--BM25F(2,2,1)
—--BM25F(4,2,1)
0.3 . LDA
—TF-IDF
0.2 —=Cortical.io
—+—SO-LMDirichlet
—+-S0O-LMJelinek
0.1 —GVI
W/X%:>> e el =SS e ——— ——TagMulRec
0.0

Number of Tags

Figure 2: Average pyramid scores with variable number of tags

from title and description achieve average pyramid scores of up
to 0.43 (i.e., for BM25(2,1,0)), indicating that the transcript is an
essential source of information for producing informative tags. This
differences in score between the BM25F approach using only the
transcript and the variants using only the title and description are
statistically significant, as confirmed using Wilcoxon rank sum tests
with 95% confidence interval (p-values<0.05 and a medium Cliff’s
delta effect size).

Number of Recommended Tags

The number of tags recommended can affect the effectiveness
of the tagging approaches. Moreover, there is no existing work
investigating how many tags should be used to label a software
development video.

Initially, we choose to recommend 10 tags to resemble the aver-
age number of tags that developers used when tagging software
development videos in our study - an average of 9.55 tags per
video. However, there was a high variation in the number of tags
assigned by individual developers in our study. Specifically, some
developers used three tags, whereas one developer used up to 75
tags to annotate a single software development video.

We use the variation of pyramid score when recommending a
different number of tags to determine the number of tags that we
should recommend when using automatic approaches. In particu-
lar, we computed the pyramid scores for all the approaches when
varying the number of tags from one to ten to investigate whether
changing the number of recommended tags has an impact on the
performance of the approaches. The average pyramid scores for all
the approaches when recommending a varying number of tags are
shown in Figure 2.

The results indicate that the overall pyramid score of the ap-
proaches decreases as we increase the number of tags recommended,
with the exception of BM25F(1,0,0), SO-LMDirichlet, SO-LM]Jelinek,
and LDA, which increase when recommending two or three tags

but start decreasing when recommending four or more tags. This
shows that the informativeness of the set of recommended tags is
impacted not only by the number of tags, but also by the rank of
the most relevant tags.

In addition to the overall tendency for the scores to decrease, we
notice that the largest difference on the value of the pyramid score
tends to occur between recommending one tag and recommend-
ing three tags, a 0.11 drop for BM25F(4,2,1) — the best performing
approach. Also, the scores do not vary significantly after recom-
mending five tags, indicating that the most informative tags are
recommended first. This was confirmed after comparing the pyra-
mid scores of 5 tags and 10 tags using Wilcoxon sum rank test
(p-value = 0.794 after using Holm-Bonferroni correction). Due to
space limitation, we only present a detailed overview of the vari-
ation of pyramid scores when recommending five and ten tags in
Table 1.

One of the best performing approaches when recommending ten
tags, namely BM25F(4,2,1), outperforms all the other approaches
when recommending one to nine tags. In particular, the average
pyramid score of the tags recommended by BM25F(4,2,1) increases
from 0.59 when recommending ten tags to 0.64 when recommending
only five tags, whereas the average pyramid scores of the tags
recommended by other configurations do not surpass 0.63 when
recommending five tags. Based on these results, we believe five
to be a good number of tags for tagging software development
videos, given also that five tags have been proven to work well for
other software development related documents (i.e., Q&A posts
in StackOverflow). Moreover, the extractive tagging approaches
exhibit comparable performance when recommending a various
number of tags, and the informativeness of the automatic tags
produced does not deteriorate quickly after recommending five
tags.

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

4.2 RQ1.2 - Singularization and Stemming

Morphological transformations, particularly stemming, can increase
the informativeness of automatically extracted tags by reducing
the ambiguity of specific terms in the corpus, as well as resolv-
ing, to a degree, differences between the tags provided by users.
Consider the case where participant A annotates a video with the
following tags {column, importing, nullable, class}, and participant
B annotates the same video with {imports, nullable, classes, row}.
A pyramid built with the previous annotations will result in only
one highly ranked tag — nullable, despite the fact that there are
other tags that should be ranked higher because they provide the
same semantic information (i.e., class and classes; imports and im-
porting). After stemming, the annotations from A and B become
{column, import, nullabl, class}, and {import, nullabl, class, row},
respectively. A pyramid built from the stemmed annotations will
have the three most informative tags — nullabl, class, import — on
the top level. In this example, stemming creates a pyramid that
is semantically stronger at reflecting the concepts considered to
be important by the annotators. Moreover, if the video does not
use the words imports or importing but frequently uses the word
imported, the stemming of the documents allows for the tag import
to be recommended by extractive approaches.

To measure the impact of using morphological transformations,
we created a singularized corpus and a stemmed corpus by applying
the respective morphological transformation to the text documents
that represent the video tutorials. We also singularized and stemmed
the tags provided by the developers and built singularized and
stemmed pyramids. We computed the pyramid scores using the
corresponding pyramids and documents.

The average pyramid scores when recommending five and ten
tags after using each morphological transformation are shown
in columns 3-6 of Table 1. Our results are within the range of
pyramid scores of three-tier pyramids for human annotations in
general natural language tasks [21], which between 0.52 and 0.83.
Our results are also higher than the average scores of a six-tier
pyramid obtained by Haiduc et al. [14] when using LSI for term-
based summaries of source code methods, which was around 0.3.

As seen in Table 1, we achieve the best results when using sin-
gularization and BM25F(4,2,1). By using this combination, we can
recommend tags that describe 66% and 62% of the information rel-
evant to describe what the video is about when recommending
five tags and ten tags, respectively. We also analyzed the effect of
changing the number of tags recommended on the pyramid score of
the tags when using singularization and stemming. We found that
all the approaches exhibit the same behavior reported in Section 4.1
when recommending singularized and stemmed tags. Specifically,
the score of the recommendations decreases as the number of tags
recommended increases. Also, the most informative tags are rec-
ommended within the first five recommendations, and the pyramid
score does not change drastically after the fifth tag is recommended.

4.3 RQ2 - Tag Provenance

Tagging is most useful when it provides information that is not
readily available to the user. If the extracted tags are included in the
title, they may not be useful as complementary information because
the title is usually provided in the results of an online search. To

Esteban Parra, Javier Escobar-Avila, and Sonia Haiduc

establish whether our approach can be useful at providing novel
information that is not readily available to the user, we analyze
the provenance of all the relevant tags recommended by our best
configuration, namely BM25F(4,2,1).

In total, 52.94% of all the tags recommended by BM25F(4,2,1)
were relevant tags, i.e., tags that appear in any tier of a video’s
pyramid. For each video, we compiled the relevant tags extracted
by BM25(4,2,1) and identified in which metadata field(s) each tag
appeared!?. We used this information to compute the percentage
of relevant tags extracted from each metadata field, shown in Table
2. In particular, each cell represents the percentage of tags that
appeared in the intersection of the fields given by the respective
row and column. Note that the numbers in the diagonal represent
the percentage of tags found exclusively each field. On average
across all videos, 53.18% of the relevant tags appeared in the title of
the video, 79.11% of them appeared in the description, and 95.53%
of the tags appeared in the transcript. Additionally, none of the
relevant tags appeared only in the title of the video, 1.43% of the tags
appeared only in the description, while 15.43% of the tags appeared
only in the audio transcript. Finally, 44.68% of the tags appeared in
the intersection of all the fields of the video.

Table 2: Provenance of relevant tags extracted by
BM25F(4,2,1) with singularization

‘ Title Description Transcript
Title 0.00% 3.04% 5.46%
Description | 3.04% 1.43% 29.96%
Transcript | 5.46% 29.96% 15.43%

Given that almost all of the relevant tags recommended by
BM25F(4,2,1) appear in the transcripts and some appear only there,
transcripts seem to be a crucial source of information when aiming
for informative video tags. Moreover, the results indicate that ex-
tractive tagging approaches are a viable solution also in cases where
the title and description are missing or not descriptive. Also, the
high degree of tags that appear in both transcripts and description
indicates that the content of the video is important not only for
extracting relevant terms but also for increasing the relevance of
informative terms that appear in the title and description.

Conversely, we computed the provenance of the tags in the
ground truth — provided by the users in the study - in order to
compare them with the provenance of the tags recommended by
our best approach. These results, presented in allow us to explore
if the provenance of the tags affects the performance of the tagging
approaches for tagging software development videos.

Table 3: Provenance of tags provided by developers

‘ Title Description Transcript
Title 0.29% 1.73% 2.93%
Description | 1.73% 1.21% 25.13%
Transcript | 2.93% 25.13% 33.70%

On average across all videos, 26.05% of the tags provided by deve-
lopers appeared in the title of the video, 49.17% of them appeared
in the description, and 82.86% of the tags appeared in the transcript.
An interesting finding is that 33.70% of the tags provided by the

12 After applying singularization

Automatic Tag Recommendation for Software Development Video Tutorials

developers appear only in the transcript, whereas only 1.73% of
the tags appear only in the title or description. Moreover, 25.13%
of the tags provided by developers appear in the combination of
description and transcripts, and 21.10% of the tags appeared in the
intersection of all the fields of the video, whereas 13.92% of the tags
provided by developers do not appear in any of the metadata fields
or the transcript of the video (i.e., abstractive terms).

By contrasting the provenance of the tags provided by developers
with the tags produced by the best automatic approach, we see that
developers tend to extract more terms that appear exclusively in
the transcript. Also, they extracted more terms that appear in all
the fields of a video compared to the best automatic approach.

Abstractive terms

Extractive tags are terms that are automatically extracted from
the metadata fields of the video (i.e., title and description) or from
its audio transcripts, whereas abstractive tags are terms that are
not present in any of these sources [20].

Our results on the provenance of tags provided by developers
showed that 13.92% of the tags provided by the participants in
the study are abstractive and 86.08% of them are extractive. Our
best performing approach, BM25F(4,2,1), is an extractive tagging
approach that works by selecting tags from the available metadata
(title and description) and the transcripts. Therefore, it is possible
that the presence of the abstractive tags in the pyramids could lower
the results of our best approach. In order to assess whether this is
the case, we proceeded to build a version of the pyramids using
only the tags given by the participants that are present in at least
one of the metadata fields or the transcript. We then recomputed
the pyramid scores for the different configurations of BM25F using
these exclusively extractive pyramids.

Our results show that the average pyramid scores for all ap-
proaches are not heavily impacted when considering only the ex-
tractive tags. The average pyramid scores of the approaches increase
slightly when we consider only extractive terms. In particular, the
average pyramid score of BM25F(4,2,1) in combination with sin-
gularization increases from 0.6614 to 0.6625, when recommending
five terms. These results are encouraging as they indicate that our
approach is not negatively impacted by the presence of abstractive
tags. Moreover, it shows that we can automatically extract tags that
encompass up to 66% of the information that developers consider
to be relevant to outline the content of a software development
video using extractive tagging approaches.

We inspected the pyramids with and without abstractive tags
and found that the abstractive tags are located in the lowest tier
of the pyramid, in most cases only one developer used a particular
abstractive tag. The low ranking of abstractive tags explains why
the removal of abstractive tags from the ground truth rarely affects
the optimal score of the pyramids.

In conclusion, the approach that performs the best in our ex-
periments is the semi-structured Information Retrieval approach
BM25F(4,2,1). The results indicated that the content of the video in
the form of transcripts is a major contributor to the informativeness
of the tags. In addition, the higher weights given to the title and
description with respect to the transcript in the best performing
approach are effective because both title and description are meant
to provide an overview of the video. Thus, assigning more weight
to these fields ensures that important terms from the metadata

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

fields will be extracted. However, metadata fields are not enough to
provide informative tags when the title and description are missing,
uninformative, or used for SEO (e.g., tag-stuffing). In these cases,
the terms of the transcript will aid in boosting relevant terms and
decrease the weight of uninformative terms from the metadata
fields.

As seen in our results, the best performing approach BM25F(4,2,1)
can recommend the most informative tags within the first five
tags. Moreover, the peak pyramid score of most of the extractive
approaches in this paper is achieved when recommending the first
tag. The first and second tags could prove useful for describing
groups of related videos. In particular, when clustering similar
videos, the first tag of each video in a cluster could be used to
represent to a degree the content of the group of videos.

5 THREATS TO VALIDITY

Our study is not immune to threats to validity. In this section we
describe the threats we faced and how we addressed them.

The threats to internal validity in our study include the impact
of learning and fatigue effects on the quality of the participants’
responses. To mitigate the fatigue effect, we only considered videos
with a length of up to 7 minutes and distributed the videos such that
the participants could complete the study within 25 to 45 minutes.
Moreover, we recorded the time the participants spent annotating
each video to ensure that the they spent a reasonable amount of
time per video - enough time to watch the video entirely and
write tags. Although we did not measure the participant’s cognitive
fatigue, research has shown that significant error rates appear after
engaging in a task for longer than 60 minutes [24]. In order to
mitigate the potential learning effect, we made sure the videos
watched by each participant varied in topic and author.

As for threats to external validity, due to the size of the dataset,
our results may not be generalizable to all the software development
videos available. Nonetheless, we aimed at increasing the gener-
alization of the findings for Java videos by including videos on a
wide variety of topics and created by multiple creators. Moreover,
our approach applies to any existing video, yielding a reasonable
performance also when no transcripts are available.

Threats to construct validity refer to how we measured the ef-
fectiveness of the approaches. We mitigated threats to construct
validity by employing the pyramid method, which is a well establish
measurement approach that has been successfully used in the fields
of Information Retrieval [21] and Software Engineering [14, 29].
Moreover, the pyramid score provides a reliable assessment of con-
tent selection quality in tagging and summarization where there
are multiple annotations available, as in our study.

6 RELATED WORK

Our work is closely related to several fields. Therefore, we divide
the related work into three categories. First, we outline the work
on keyword extraction and term-based summarization in Software
Engineering. Second, we present work on the analysis of software
development videos.

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

6.1 Keyword Extraction and Term-based
Summarization in Software Engineering

Keyword extraction and term-based summarization techniques
have been widely used in Software Engineering research to describe,
summarize, categorize, and increase the discoverability of a wide
variety of software artifacts (e.g., source code [9, 11, 14], software
repositories [35], Q&A posts [30], developer communications [23],
and change requests [10]). Moreover, these techniques have been
applied to support developers in a wide variety of tasks, such as
software summarization [9, 11, 14], software documentation [23,
33], and bug triage [43]. However, there is no work on applying
term-based summarization techniques to obtain keywords that
describe the content of software development videos.

Research efforts have aimed a tagging Q&A posts on StackOver-
flow [1, 4, 16, 30, 34, 37, 39, 40, 44]. Stanley and Byrne [34] devel-
oped a model to predict the tags that users assign to a post. Several
tag propagation approaches that leverage tags in existing Q&A
posts to produce tags for new posts have been proposed, Xia et
al. [39, 40] present TagCombine, a multi-label ranking component
which considers tag recommendation as a multi-label learning prob-
lem. TagCombine uses the relationship between different terms and
tags, to recommend tags. Similarly, Wang et al. [37] developed En-
TagRec. EnTagRec uses a statistical model based on historical tag
assignments to recommend tags for new Q&A posts. More recently,
Zhou et al. [44] introduced TagMulRec, an approach that assigns a
relevance score to tags based on the similarity of the posts currently
labeled with it and the new post. We used TagMulRec as one of the
approaches on the paper as it outperforms all the other existing
approaches on SE Q&A tagging.

Tagging software development videos is different from tagging
StackOverflow posts in two ways: the lack of predefined tags and
the existence of additional information that is not available on
StackOverflow posts.

In addition to tagging, keyword extraction approaches have been
applied to StackOverflow posts to obtain additional information
from the posts [5, 26, 31, 36]. Barua et al. [5] used LDA to capture
the main topics discussed in Stack Overflow posts automatically.
Similarly, Linares-Vasquez et al. [17] used LDA to extract the topics
of posts discussing Android development. Rigby and Robillard [31]
present a classifier that uses IR to obtain terms that describe source
code elements from Q&A posts.

6.2 Analysis of Software Development Videos

Software development videos have been recently studied as a source
of information to support software developers [19, 27]. MacLeod
et al. [19] report the results of a set of interviews with creators of
software development videos. The creators stated that they “make
videos to document what they wished they had known before they
started a task" and to “spare others from having to go through
the same discovery process." Ponzanelli et al. [28] present Code-
Tube, a search engine for software development videos that enables
developers to search and view specific fragments of software devel-
opment videos, whereas, Yadid and Yahav [41] present ACE, a tool
that combines language models and image processing techniques
to extract source code from software development videos. More
recently, Poché [25] leveraged the term frequency of words in the

Esteban Parra, Javier Escobar-Avila, and Sonia Haiduc

comments of software development videos to identify and extract
general user concerns about the video.

7 CONCLUSIONS

In this paper, we present an evaluation of tagging approaches to-
wards recommending relevant terms to label software development
videos. We evaluate a total of 19 configurations across seven dif-
ferent tagging approaches in a user study conducted with 57 deve-
lopers and 70 software development videos. The results of our study
show that BM25F, a semi-structured IR approach, can produce tags
that can describe up to 66% of the information that developers
perceive to be important about software development videos.

We found that the informativeness of tags obtained by automatic
approaches decreases as the number of tags increases. However, it
does not significantly decay after the first five recommendations.
We believe five tags to be a good start for automatic tagging pur-
poses, despite the fact that participants suggested an average of ten
tags per video. This is due to the fact that five tags led to better re-
sults than ten in our evaluation and five tags have also been proven
to be useful in the case of StackOverflow.

The place of origin of tags used by developers and recommended
by the best tagging approach indicate that the underlying informa-
tion in the transcripts of the video is vital and needs to be exploited
when creating tags. We also found that developers use a combina-
tion of extractive and abstractive tags to describe software develop-
ment videos, with a broader use of extractive tags. Moreover, the
abstractive tags they used tend to be different from developer to
developer. Therefore, they are unlikely to have a large impact on the
evaluation of extractive summarization approaches. This finding
suggests that work is needed on the improvement of extractive tags
as well as on the generation of abstractive tags.

We believe that our results on the generation of automatic tags
can potentially reduce the manual effort involved in searching and
discovering relevant videos for a developers’ information need. The
presence of informative tags can enable developers to make a quick
assessment of the content of the video and their relevance to their
information need without having to watch the entire video or read
a long description.

Our future work will focus on improving the IR techniques we
found to work best and complementing them with software-specific
information. In particular, we plan on using glossaries to identify
and explicitly include software-specific aspects in the tags, such as
APIs found in the video, common errors, the IDEs used, etc. Also,
we will further explore abstractive summarization techniques to
complement the information provided in tags. Additionally, while
current automatic transcripts lack in quality, we plan to improve
automatic speech-to-text transcriptions for software development
videos.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation
grant CCF-1526929. The authors thank Annibale Panichella for
providing the implementation of LDA-GA.

REFERENCES

[1] Miltiadis Allamanis and Charles Sutton. 2013. Why, When, and What: Analyzing
Stack Overflow Questions by Topic, Type, and Code. In Proceedings of the 10th

=

=

IEEE Working Conference on Mining Software Repositories (MSR’13). IEEE, San
Francisco, CA, USA, 53-56.

Hrishikesh Aradhye, George Toderici, and Jay Yagnik. 2009. Video2Text: Learning
to Annotate Video Content. In Proceedings of the 9th IEEE International Conference
on Data Mining Workshops (ICDMW’09). IEEE, Miami, FL, USA, 144-151.
Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern Information Re-
trieval. Addison-Wesley.

Ebrahim Bagheri and Faezeh Ensan. 2016. Semantic Tagging and Linking of
Software Engineering Social Content. Automated Software Engineering 23, 2
(March 2016), 147-190.

Anton Barua, Stephen Thomas, and Ahmed Hassan. 2012. What Are Developers
Talking About? An Analysis of Topics and Trends in Stack Overflow. Empirical
Software Engineering 19, 3 (Nov. 2012), 619-654.

David Blei, Andrew Ng, and Michael Jordan. 2003. Latent Dirichlet Allocation.
The Journal of Machine Learning Research 3 (Jan. 2003), 993-1022.

Stefan Buttcher, Charles Clarke, and Gordon Cormack. 2010. Information Retrieval:
Implementing and Evaluating Search Engines. The MIT Press.

Leonardo Canseco, Lori Lamel, and Jean-Luc. Gauvain. 2005. A Comparative
Study Using Manual and Automatic Transcriptions for Diarization. In Proceedings
of the 4th IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU’05). IEEE, Canctin, Mexico, 415-419.

Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale Panichella, and
Sebastiano Panichella. 2012. Using IR Methods for Labeling Source Code Artifacts:
Is It Worthwhile?. In Proceedings of the 20th IEEE International Conference on
Program Comprehension (ICPC’12). IEEE, Passau, Germany, 193-202.

Giuseppe A. Di Lucca, Massimiliano Di Penta, and Sara Gradara. 2002. An
Approach to Classify Software Maintenance Requests. In Proceedings of the 18th
IEEE International Conference on Software Maintenance (ICSM’02). IEEE, Montreal,
Canada, 93-102.

Brian Eddy, Jeffrey Robinson, Nicholas Kraft, and Jeffrey Carver. 2013. Evalu-
ating Source Code Summarization Techniques: Replication and Expansion. In
Proceedings of the 21st IEEE International Conference on Program Comprehension
(ICPC’13). IEEE, San Francisco, CA, USA, 13-22.

[12] Javier Escobar-Avila, Esteban Parra, and Sonia Haiduc. 2017. Text Retrieval-

based Tagging of Software Engineering Video Tutorials. In Proceedings of the
39th IEEE/ACM International Conference on Software Engineering (ICSE’17). IEEE,
Buenos Aires, Argentina, 341-343.

Laura Granka, Thorsten Joachims, and Geri Gay. 2004. Eye-tracking Analysis of
User Behavior in WWW Search. In Proceedings of the 27th ACM SIGIR International
Conference on Research and Development in Information Retrieval (SIGIR’04). ACM,
Sheffield, UK, 478-479.

Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
Use of Automated Text Summarization Techniques for Summarizing Source
Code. In Proceedings of the 17th IEEE Working Conference on Reverse Engineering
(WCRE’10). IEEE, Beverly, MA, USA, 35-44.

Karen Sparck Jones. 1972. A Statistical Interpretation of Term Specificity and Its
Application in Retrieval. Journal of Documentation 28, 1 (Jan. 1972), 11-21.
Arash Joorabchi, Michael English, and Abdulhussain Mahdi. 2015. Automatic
Mapping of User Tags to Wikipedia Concepts: The Case of a Q&A Website U
StackOverflow. Journal of Information Science 41, 5 (May 2015), 570-583.
Mario Linares-Vasquez, Bogdan Dit, and Denys Poshyvanyk. 2013. An Ex-
ploratory Analysis of Mobile Development Issues Using Stack Overflow. In Pro-
ceedings of the 10th IEEE Working Conference on Mining Software Repositories
(MSR’13). IEEE, San Francisco, CA, USA, 93-96.

Craig Macdonald, Richard McCreadie, Rodrygo LT Santos, and Iadh Ounis. 2012.
From Puppy to Maturity: Experiences in Developing Terrier. Open Source Infor-
mation Retrieval (Aug. 2012), 60-63.

Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. 2015. Code, Camera,
Action: How Software Developers Document and Share Program Knowledge Us-
ing YouTube. In Proceedings of the 23rd IEEE International Conference on Program
Comprehension (ICPC’15). 104-114.

Mark Melenhorst, Marjan Grootveld, Mark van Setten, and Mettina Veenstra.
2008. Tag-based Information Retrieval of Video Content. In Proceedings of the
Ist International Conference on Designing Interactive User Experiences for TV and
Video (UXTV’08). ACM, Silicon Valley, CA, USA, 31-40.

Ani Nenkova and Rebecca Passonneau. 2004. Evaluating Content Selection in
Summarization: The Pyramid Method. In Proceedings of the 3rd Annual Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (HLT-NAACL’04), Vol. 4. ACM, Boston, MA, USA,
145-152.

Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimilano Di Penta, Denys
Poshynanyk, and Andrea De Lucia. 2013. How to Effectively Use Topic Models
for Software Engineering Tasks? An Approach Based on Genetic Algorithms. In
Proceedings of the 35th ACM/IEEE International Conference on Software Engineering
(ICSE’13). IEEE, San Francisco, CA, USA, 522-531.

Automatic Tag Recommendation for Software Development Video Tutorials

[23

[24

[25

[26]

[27]

[28

[29

[30

&
=

[32

[33

[34

@
i

[36

[37

[38

[39

S
=

[41

[42

[43

[44

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

Sebastiano Panichella, Jairo Aponte, Massimiliano Di Penta, Andrian Marcus,

and Gerardo Canfora. 2012. Mining Source Code Descriptions From Developer
Communications. In Proceedings of the 20th IEEE International Conference on

Program Comprehension (ICPC’12). IEEE, Passau, Germany, 63-72.

Nathalie Pattyn, Xavier Neyt, David Henderickx, and Eric Soetens. 2008. Psy-
chophysiological Investigation of Vigilance Decrement: Boredom or Cognitive
Fatigue? Physiology & Behavior 93, 1 (Jan. 2008), 369-378.

Elizabeth Heidi Poché. 2017. Analyzing User Comments On YouTube Coding
Tutorial Videos. mathesis. Louisiana State University, Baton Rouge, LA, USA.
Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: Stack
Overflow in the IDE. In Proceedings of the 35th ACM/IEEE International Conference
on Software Engineering (ICSE’13). IEEE, San Francisco, CA, USA, 1295-1298.
Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco
Oliveto, Mir Hasan, Barbara Russo, Sonia Haiduc, and Michele Lanza. 2016. Too
Long; Didn’t Watch!: Extracting Relevant Fragments from Software Development
Video Tutorials. In Proceedings of the 38th ACM/IEEE International Conference on
Software Engineering (ICSE’16). Austin, TX, USA, 261-272.

Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco
Oliveto, Barbara Russo, Sonia Haiduc, and Michele Lanza. 2016. CodeTube:
Extracting Relevant Fragments from Software Development Video Tutorials. In
Proceedings of the 38th ACM/IEEE International Conference on Software Engineering
(ICSE’16). ACM, Austin, TX, USA, 645-648.

Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. 2010. Summarizing Software
Artifacts: A Case Study of Bug Reports. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE’10). ACM, Cape Town,
South Africa, 505-514.

Smrithi Rekha, N. Divya, and Sivakumar Bagavathi. 2014. A Hybrid Auto-tagging
System for StackOverflow Forum Questions. In Proceedings of the 1st International
Conference on Interdisciplinary Advances in Applied Computing (ICONIAAC’14).
ACM, Amritapuri, India, 1-5.

Peter Rigby and Martin Robillard. 2013. Discovering Essential Code Elements
in Informal Documentation. In Proceedings of the 35th ACM/IEEE International
Conference on Software Engineering (ICSE’13). IEEE, San Francisco, CA, USA,
832-841.

Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Frame-
work: BM25 and Beyond. Foundations and Trendsé in Information Retrieval 3, 4
(April 2009), 333-389.

Paige Rodeghero. 2016. Discovering Important Source Code Terms. In Proceedings
of the 38th ACM/IEEE International Conference on Software Engineering (ICSE’16).
ACM, Austin, TX, USA, 671-673.

Clayton Stanley and Michael Byrne. 2013. Predicting Tags for StackOverflow
Posts. In Proceedings of 12th International Conference on Cognitive Modelling
(ICCM’13). Carleton, CA, 414-419.

Kai Tian, Meghan Revelle, and Denys Poshyvanyk. 2009. Using Latent Dirichlet
Allocation for Automatic Categorization of Software. In Proceedings of the 6th IEEE
Working Conference on Mining Software Repositories (MSR’09). IEEE, Vancouver,
Canada, 163-166.

Yuan Tian, David Lo, and Julia Lawall. 2014. SEWordSim: Software-specific Word
Similarity Database. In Companion Proceedings of the 36th IEEE/ACM International
Conference on Software Engineering (ICSE’14). ACM, Hyderabad, India, 568-571.
Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander Serebrenik. 2014.
EnTagRec: An Enhanced Tag Recommendation System for Software Informa-
tion Sites. In Procedings of the 30th IEEE International Conference on Software
Maintenance and Evolution (ICSME’14). IEEE, Victoria, BC, Canada, 291-300.
Francisco De Sousa Webber. 2015. Semantic Folding Theory And its Application
in Semantic Fingerprinting. CoRR abs/1511.08855 (2015).

Xin Xia, David Lo, Xinju Wang, and Bo Zhou. 2013. Tag Recommendation in
Software Information Sites. In Proceedings of the 10th IEEE Working Conference on
Mining Software Repositories (MSR’13). IEEE, San Francisco, CA, USA, 287-296.
Xin Xia, David Lo, Xin-Yu Wang, and Bo Zhou. 2015. TagCombine: Recommend-
ing Tags to Contents in Software Information Sites. Journal of Computer Science
and Technology 30, 5 (Sept. 2015), 1017-1035.

Shir Yadid and Eran Yahav. 2016. Extracting Code from Programming Tutorial
Videos. In Proceedings of the 6th ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward!’16). ACM,
Amsterdam, The Netherlands, 98-111.

YouTube. [n. d.]. Statistics - YouTube. ([n. d.]). https://www.youtube.com/yt/
press/statistics.html

Tao Zhang, He Jiang, Xiapu Luo, and Alvin Chan. 2015. A Literature Review of
Research in Bug Resolution: Tasks, Challenges and Future Directions. Comput. §.
(Dec. 2015), 741-773.

Pingyi Zhou, Jin Liu, Zijiang Yang, and Guangyou Zhou. 2017. Scalable Tag Rec-
ommendation for Software Information Sites. In Proceedings of the 24th IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER’17).
IEEE, Campobasso, Italy, 272-282.

https://www.youtube.com/yt/press/statistics.html
https://www.youtube.com/yt/press/statistics.html

	Abstract
	1 Introduction
	2 Automatic Tagging for Software Engineering Videos
	2.1 Information Retrieval-based Approaches
	2.2 StackOverflow-based Approaches
	2.3 Closed-Source Commercial Approaches

	3 Study Design
	3.1 Participants
	3.2 Video Dataset
	3.3 User Tags and the Ground Truth

	4 Results
	4.1 RQ1.1 - Best tagging approach
	4.2 RQ1.2 - Singularization and Stemming
	4.3 RQ2 - Tag Provenance

	5 Threats to Validity
	6 Related Work
	6.1 Keyword Extraction and Term-based Summarization in Software Engineering
	6.2 Analysis of Software Development Videos

	7 Conclusions
	Acknowledgments
	References

