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APPENDIX

A CONSISTENCY PROOF FOR FORMAL
NUMBER THEORY

The first consistency proof for first-order number theory S was given
by Gentzen [1936, 1938b]. Since then, other proofs along similar lines
have been given by Ackermann [1940], Lorenzen [1951], Schiitte [1951,
1960], and Hlodovskii [1959]. As can be expected from Godel’s Second
Theorem (cf. page 148), all these proofs use methods which apparently
are not available in 8. Our exposition will follow Schiitte’s proof
[1951].

The consistency proof will apply to a system S, which is much
stronger than 8. S, is to have the same individual constant 0 and the
same function letters +, -, "as S (cf. pp. 102-103), and the same predi-
cate letter =. Thus, Sand S, have the same terms and, hence, the same
atomic formulas (i.e., formulas s = ¢, where s and ¢ are terms). How-
ever, the primitive propositional connectives of S, will be v and ~,
whereas S had > and ~ as its basic connectives. We define a wf of
S, to be an expression built up from the atomic formulas by a finite
number of applications of the connectives v and ~ and of the
quantifiers (z;) (i = 1,2,...). We let &/ > Z stand for (~7) v Z;
then any wf of S is an abbreviation of a wf of S,.

A closed atomic wf s = ¢ (i.e., an atomic wf containing no variables)
is called correct, if, when we evaluate s and ¢ according to the usual
recursion equations for + and -, the same value is obtained for s and ¢;
if different values are obtained, s = ¢ is said to be incorrect. Clearly,
one can effectively determine whether a given closed atomic wf is
correct or incorrect.

As azioms of S, we take: (a) all correct closed atomic wfs;
(b) negations of all incorrect closed atomic wfs. Thus, for example,
(0")-(0") + 0" = (0")-(0") and 0" + 0” % 0’-0” are axioms of S.

S has the following rules of inference:
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I. Weak Rules

CEVvVAIVEBVND
CVvVABYVSIVNGD

LNV NVNGD
VD

(a) Exchange:

(b) Consolidation:

. Strong Rules

(a) Dilution: (where & is any closed wf)

R

LN D

~ N D ~BN D
~(L VBN D

L VD

~~d VD
~AL({t)V D

(~(@)L () v 2

(b) DeMorgan:
(c) Negation:

(d) Quantification:

(where ¢ is a closed term)

L@ v D for all natural numbers n
() () v Z

C v A ~d VD
€ v D

In all these rules, the wfs above the line are called premisses, and the
wis below the line, conclusions. The wfs denoted by € and & are called
the side wifs of the rule; in every rule either or both side wfs may be
absent—except that 2 must occur in a dilution (II(a)), and at least one

of € and Z in a cut (III). For example,

% is an instance of DeMorgan’s Rule, II(b). In any rule, the
wifs which are not side wfs are called the principal wis; these are the wifs
denoted by &/ and Z in the presentation above of the rules. The
principal wf .27 of a cut is called the cut wf; the number of propositional
connectives and quantifiers in ~ .7 is called the degree of the cut.

We still must define the notion of a proof in S,. Because of the
Rule of Infinite Induction this is much more complicated than the
notion of proof in 8. A G-tree is defined to be a graph the points of
which can be decomposed into disjoint “levels’ as follows: At level 0,
there is a single point, called the terminal point; each point at level
i + 11is connected by an edge to exactly one point at level i; each point
P atleveliis connected by edges to either zero, one, two, or denumerably

(e) Infinite Induction:

ITI. Cut:

I ~A VD
7

is a cut, and
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many points at level i + 1 (these latter points at level i + 1 are called
the predecessors of P); each point at level i is connected only to points
atleveli — lori + 1;a point at level i not connected to any points at
level i + 1 is called an initial point.

Examples of G-trees.

(1) C Level 4
A B Level 3

D Level 2

Level 1

E Level 0

A, B, C, D, are initial points. E is the terminal point.

(2)

A

E
A, B, C,, C,, Cs,. . .are the initial points. E is the terminal point.

(3)

A is the only initial point.
E is the terminal point.
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By a proof-tree, we mean an assignment of wfs of S, to the points of
a G-tree such that

(1) The wfs assigned to the initial points are axioms of S,;

(2) The wis assigned to a non-initial point P and to the predecessors
of P are, respectively, the conclusion and premisses of some rule of
inference;

(3) There is a maximal degree of the cuts appearing in the proof-tree.
This maximal degree is called the degree of the proof-tree. If there are
no cuts, the degree is 0;

(4) There is an assignment of an ordinal number to each wf occurring
in the proof-tree such that (a) the ordinal of the conclusion of a weak
rule is the same as the ordinal of the premiss; (b) the ordinal of the
conclusion of a strong rule or a cut is greater than the ordinals of
the premisses.

The wf assigned to the terminal point of a proof-tree is called the
terminal wf; the ordinal of the terminal wf is called the ordinal of the
proof-tree. The proof-tree is said to be a proof of the terminal wf, and
the theorems of S, are defined to be the wfs which are terminal wfs of
proof-trees. Notice that, since all axioms of S, are closed wfs and the
rules of inference take closed premisses into closed consequences, all
theorems of S, are closed wfs.

A thread in a proof-tree is a finite or denumerable sequence &, %, . . .
of wfs starting with the terminal wf and such that each wf &/, ., is a
predecessor of .«7;. Hence, the ordinals ¢, «,, ... assigned to the wfs
in a thread do not increase, and they decrease at each application of a
strong rule or a cut. Since there cannot exist a denumerably decreasing
sequence of ordinals, it follows that only a finite number of applications -
of strong rules or cuts can be involved in a thread. Also, to a given wf, | wulsy |
only a finite number of applications of weak rules are necessary. !
Hence, we can assume that there are only a finite number of consecutive
applications of weak rules in any thread of a proof-tree. (Let us make
this part of the definition of “proof-tree”.) Then every thread of a
proof-tree is finite.

If we restrict the class of ordinals which may be assigned to the wfs
of a proof-tree, then this restricts the notion of a proof-tree, and,
therefore, we obtain a (possibly) smaller set of theorems. If one uses
various ‘‘constructive’” segments of denumerable ordinals, then the '
systems so obtained and the methods used in the consistency proof
below may be considered more or less “constructive”.
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EXERCISE

(¢ v &) v,@and(év (& v &)
€ v (& Vv X (Vv L)V A
are derivable from the exchange rule, assuming association to the left.
Hence, parentheses may be omitted from a disjunction.

Prove that the associative rules

Lemma A-1.  Let o/ be a closed wf having n connectives and quantifiers.
Then there is a proof of ~Z v A of ordinal <2n + 1 (in which no
cut 18 used).

PROOF. Induction on n.

(1) n = 0. Then o is a closed atomic wf. Hence, either o7 or ~.o7
is an axiom, because 27 is either correct or incorrect. Hence, by one
application of the Dilution Rule, one of the following is a proof-tree.

~ D
[\f g O dilution
dilution or AV ~A)
e GyH J
|~ v L a ? IS ~ exchange
| 0 :
Sadhi ~ot v A\
b Yo

Hence, we can assign ordinals so that the proof of ~.o7 v ./ has
ordinal 1.
(2) Assume true for all k < n.

Case (i): o/ is &/, v &Z,. By inductive hypothesis, there are
proofs of ~o/; v o/, and ~oZ, vV &/, of ordinals <2(n — 1) + 1 =
2n — 17 By dilution, we obtain proofs of ~.«7, v &7, v &7, and
~&y V &y V o, respectively, of order 2n, and, by DeMorgan’s
Rule, a proof of ~ (&7, v ;) v &7, v o, of ordinal 2n + 1.

Case (ii): o7 is ~Z#. Then, by inductive hypothesis, there is a
proof of ~%# v # of ordinal 2n — 1. By the Exchange Rule, we
obtain a proof of # v ~Z of ordinal 2n — 1, and then, applying the
Negation Rule, we have a proof of ~ ~# v ~%,ie., of ~o v o, of
ordinal 2n < 2n + 1.

Case (iil): o/ is (x)#(x). By inductive hypothesis, for every
natural number k, there is a proof of ~#(k) v #(k) of ordinal <2n — 1.
Then, by the Quantification Rule, for each k there is a proof of

(~(@)Z(x)) v #(k) of ordinal < 2n and, hence, by the Exchange Rule, a

proof of Z(k)
of the Infinite
of ordinal <¢
(x)%(x) of orc

LEMMA A-
with x as 1
theorem of |

PROOF. Ir
the same val
all occurrence
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~ZMm) v oI
~sL(s) v L[
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proof of Z(k) v ~ (x)%(x) of ordinal < 2n. Finally, by an application
of the Infinite Induction Rule, we obtain a proof of ((2)#(z)) v ~ (x)%(x)
of ordinal <2n + 1,and, by the Exchange Rule, a proof of (~ (z)%(z)) v
()% (x) of ordinal <2n + 1.

LemMa A-2. For any closed terms t and s, and any wif of(x)
with x as its only free variable, the wf s £ t v ~(s) v () is a
theorem of S, and is provable without applying the Cut Rule.

PROOF. In general, if a closed wf Z(t) is provable in S, and s has
the same value as ¢, then #(s) is also provable in Se. (Simply replace
all occurrences of ¢ which are “deductively connected” with the ¢ in the
terminal wf Z(t) by s.) Now, if s has the same value @i as ¢, then, since
~&/(A) v (W) is provable, it follows by the previous remark that
~&(s) v 2(t)is provable. Hence, by dilution, s # ¢ v ~oL(s) v H(t)
is provable. If s and ¢ have different values, s = ¢ is incorrect; hence,z
8 # t is\an axiom. So, by dilution and exchange, s # ¢t v ~.Z(s) v ¢
() is & Yheorem. Syror,vable Snt ,',la(nwp\] a theevew, 2

Lemma A-3, Ewvery closed wf which is a theorem of S is also a theorem
of 8.

PROOF. Let .o/ be a closed wf which is a theorem of §. Clearly,
every proof in S can be represented in the form of a finite proof-tree,
where the initial wfs are axioms of S and the rules of inference are
modus ponens and generalization. Let n be an ordinal assigned to such
a proof-tree for o7,

If n = 0, then .« is an axiom of S (cf. page 103).

(1) Lis B> (¥ >B),ie, ~Bv (~€¢ v %#). But, ~# v B is
provable in S, (Lemma A-1). Hence, so is ~Z v ~¥% v & by a
dilution and an exchange. }

() A is (B>F>22)>(B>%) > (Z > 9)), ie., ~(~% v
~EN DN ~(~BNVE) Y (~B vV %). By Lemma A-1, we have
~(~BNVE)V ~B Vv Band (~BY ~EV D) v ~(~HB NV ~F Vv D).
Then, by exchange, a cut (with € as cut formula), and consolidation,
~N(~BY ~ENV D)V ~(~BVE YV ~B YV Dis provable.

() Lis(~Z > ~) > ((~B > ) > B)),ie., ~(~~B NV ~H)
Va~(~~Z v ) v #. Now, by Lemma A-1 we have ~Z v #, and
then, by the Negation Rule, ~~~%Z v &, and, by dilution and
exchange,

@) ~~~nB VvV ~(~~B Vv A)V B
Similarly, we obtain ~ ~~Z v ZV ~~oZ and ~L v B v ~ ~,
and by DeMorgan’s Rule, ~(~ ~%Z v A)V BV ~~g; then, by
exchange,

xws D
’\LQO\q
N

A
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(b) ~~A V ~(~~B Vv A)V B.
From (a) and (b), by DeMorgan’s Rule, we have ~(~~% v ~&) v
~(~~B NV L)V AB.

(4) o is (2)B(x) > B(t),i.e., (~(x)B(x)) v #(t). Then, by Lemma
A-1, we have ~Z(t) v #(t); by the Quantification Rule, (~ (x)%(x))
v #(t).

(6) A is (x)(B > €) = (# > (x) €), where z is not free in £, i.e.,
~@Z)(~FB v €) v ~Z Vv (x)¥(z). Now, by Lemma A-1, for every
natural number n, there is a proof of ~(~Z v ¥(@)) v ~# v €(n).
(Note that the ordinals of these proofs are bounded by 2k + 1, where
k is the number of propositional connectives and quantifiers in
~%B v €(x).)

Hence, by the Quantification Rule, for each n, there is a proof of

~(@(~ZB v €z) v ~F v (@) (of ordinal <2k + 2)
Hence, by exchange and infinite induction, there is a proof of
~(@)(~ZB Vv E) vV ~B V (x)€(x) (of ordinal <2k + 3)

(S1) List; =8, 2 (b, =83 Dty =t3),i.e., 8, #ly Vi #ig Vig=1,
Apply Lemma A-2, with z = ¢; as &/ (), ¢, as s, {5 as ¢.

(S2) o is t, =t D (t) = (), ie, & #t3 vV ({) = (). If ¢
and ¢, have the same value, then so do (£,)" and (t5)’. Hence (¢;)" = (£2)’
is correct and therefore an axiom. By dilution, we obtain ¢; # i, Vv
(t,)’ = (t3)'. If ¢, and ¢, have different values, ¢, # ¢, is an axiom;
hence, by dilution and exchange, ¢, # t, v (f;) = (f3)" is provable.

(S3) o7 is 0 # ¢'. 0 and ¢’ have different values; hence, 0 # ¢’ is an
axiom.

(S4) Lis () = (b)) Dt = by, 1., (8;) # (82) V & = ;. (Exercise.)

(S5) &/ ist+ 0 =¢ ¢+ 0 and ¢t have the same values. Hence,
t + 0 = ¢ is an axiom.

(S6)—(S8) follow similarly from the recursion equations for evaluating
closed terms.

(89)  is #(0) > ((x)(Z(x) = AB(x')) = (x)%(x)), i.e.,
~%B(0) v ~ (@) (~Bx) v B(x') Vv (2)B(2)
(1) Clearly, by Lemma A-1, exchange and dilution,
~B(0) Vv ~(@)(~ZB(x) v Z(z')) v #(0) is provable.

(2) For k > 0, let us prove by induction that the following wf is
provable: y

~BO)V ~(~BO) v BL) V...V ~(~Bk) v BK)) v BK.

(a)
dilution
Hence,
A1), a1

(b)

o

@

s

©

@

!

©

ar

Now, a;
result of (

s, ~I

@

and, by ¢
Hence, to

Then, by

Thus, &
now that
Z oA
We may @
any sucli{
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(@) Fork = 0; —g_ ~~%(0) v ~%(0) v #(1) by Lemma A-1,
dilution, and exchange; similarly, ~g_ ~%(I) v ~Z(0) v Z(1).
Hence, by DeMorgan’s Rule, +~g_ ~(~%(0) v #(1)) v ~%(0) v
#(1), and, by exchange,

s, ~#B(0) v ~(~Z(0) v 2(0)) v 8(1)

(b) Assume for k:
~BO) v ~(~B0) v BI) V...

vV ~(~BE) v Zk')) v BK')
Hence, by exchange, negation, and dilution,
~~BE)YV ~BO) YV ~(~BO0) v BI) V...

V ~(~BE) v BE)) v BE")

Also, by Lemma A-1 for #Z(k"), dilution and exchange,

~BE) vV ~BO) v ~(~BO) v BI) V...
v ~(~%k) v Bk')) v BK")

g

®

Hence, by DeMorgan’s Rule,

~(~BE) v BE')V ~BO) vV ~(~F(0) v Z1) V...
v ~(~Bk) v Zk')) v BK")

and, by exchange, the result follows for k + 1.

Now, applying the exchange and quantification rules k times to the
result of (2), we have, for each k > 0,

s, ~B0) v ~@)(Bx) v B&)) V...
V ~(@)(~B@) v BE)) v BE)

and, by consolidation, g ~Z%(0) v ~(z)(~Z%(x) v #(z)) Vv BK').
Hence, together with (1), we have, for all k > 0,

s, ~#0) v ~(@)(~%(x) v B')) v B(k)
Then, by infinite induction,

ks, ~B(0) vV ~ (@) (~B(z) v B() Vv (€)B(2)

©

Thus, all the closed axioms of S are provable in S,. We assume
now that n > 0. Then, (i) &/ may arise by modus ponens from % and
& > o, where # and # > o have smaller ordinals in the proof-tree.
We may assume that & contains no free variables, since we can replace.
any such free variables by 0 in Z and its predecessors in the proof-tree.
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Hence, by inductive hypothesis, +~g_ # and +g % 2 o, de
s, ~# v &. Hence, by a cut, we obtain g, o/. The other
possibility (i) is that &7 is ()%(x) and comes by generalization from
#(z). Now, in the proof-tree, working backwards from A (x), replace
the appropriate free occurrences of # by i. We then obtain a proof of
#(7), of the same ordinal. This holds for all n; by inductive hypothesis,
g, Z(M) for all n. Hence, by infinite induction, g  (¥)%(x), ie.,
s .

©

COROLLARY A-4. If S, is consistent, S is consistent.

PROOF. IfS isinconsistent, then —g 0 # 0. Hence, by Lemma A-3,
g, 0 # 0. But, —g_ 0 = 0, since 0 = 0 is correct. For any wf &/
of S,, we would have, by dilution, ~g_ 0 # 0 v &, and, together
with —g_ 0 = 0, by a cut, ~g_ /. Thus, any wf of S, is provable;
s0, S, 1s inconsistent.

By Corollary A-4, to prove the consistency of 8 it suffices to show the
consistency of S.,.

LeEMMA A-5. The rules of DeMorgan, negation, and infinite induction
are invertible, i.e., from a proof of a wf which is a consequence of some
premisses by one of these rules one can obtain a proof of the premisses
(and the ordinal and degree of such a proof are no higher than the ordinal
and degree of the original proof).

PROOF

(1) DeMorgan. 7 is ~(#Z v &) v 2. Take a proof of &Z. Take
‘all those subformulas ~(Z v &) of wfs of the proof-tree obtained by
starting with ~(# v &) in &/ and working back up the proof-tree.
This process continues through all applications of weak rules and
through all strong rules in which ~(Z v &) is part of a side wif. Itcan

F

(B Vv &) v F
F o F
Rule: ~g}; (Vga; g;i ;_J~ The set of all occurrences of ~ (% v &)
obtained by this process is called the history of ~(# v &). Let us
replace all occurrences of ~(Z v &) in its history by ~%. Then we
still have a proof-tree (after unnecessary formulas are erased), and the
terminal wfis ~% v 2. Similarly, if we replace ~(# v &) by ~¢&
we obtain a proof of ~& v Z.

(2) Negation. o is ~~Z% v Z. Define the history of ~ ~Z% as
was done for ~(#Z v &) in (1); replace all occurrences of ~ ~& in its
history by #; the result is a proof of Z v 2.

or applications of DeMorgan’s
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(3) Infinite Induction. o7 is ((#)%(x)) v 2. Define the history of
(2)2(z) as in (1); replace (¥)%(x) in its history by (@) (and if one of the
initial occurrences in its history appears as the consequence of an infinite
induction, erase the tree above all the premisses except the one involving
n); we then obtain a proof of Z(n) v 2.

Lemma A-6 (Schiitte [1951]: Reduktionssatz). Given a proof of o
wn S, of positive degree m and ordinal «, there is a proof of o in S,
of lower degree and ordinal 2% (cf. page 178)

PROOF. By transfinite induction on the ordinal « of the given proof
of &. o« = 0: this proof can contain no cuts and, hence, has degree 0.
Assume the theorem proved for all ordinals < c. Starting from the
terminal wf .7, find the first application of a non-weak rule, i.e., of a
strong rule or a cut. If it is a strong rule, each premiss has ordinal
a; < a. By inductive hypothesis, for these premisses, there are proof-
trees of lower degree and ordinal 2%. Substitute these proof-trees for
the proof-trees above the premisses in the original proof. We thus
obtain a new proof for .2 except that the ordinal of .o/ should be taken
to be 2¢ which is greater than every 2% (cf. Proposition 4.30(9)).

The remaining case is that of a cut.

CVAEB ~BVvD
€ v 2

If the ordinals of ¥ v # and ~%Z v 2 are «,, e, then, by inductive
hypothesis, we can replace the proof-trees above them so that the
degrees are reduced and the ordinals are 2%, 2%, respectively. We shall
distinguish various cases according to the form of the cut formula 4.

(a) 4 is an atomic wf. Either Z or ~% must be an axiom. Let %
be the non-axiom of # and ~%. By inductive hypothesis, the proof-
tree above the premiss containing " can be replaced by a proof-tree
with lower degree having ordinal 2% (i = 10r2). Inthisnew proof-tree,
consider the history of # (as defined in the proof of Lemma A-5).
The initial wfs in this history can arise only by dilutions. So, if we
erase all occurrences of " in this history, we obtain a proof-tree for &
or for Z of ordinal 2%; then, by a dilution, we obtain € v 2, of ordinal
2%, The degree of the new proof-tree is less than m.

CV ~E ~~EV YD
v D

(b) Zis ~ &:

There is a proof-tree for ~ ~& v Z of degree <m and ordinal 2%.
By Lemma A-5, there is a proof-tree for & v 2 of degree <m and
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ordinal 2%. There is also, by inductive hypothesis, a proof-tree for
% v ~& of degree <m and ordinal 2%:. Now, construct

EV D €V ~&

Exchange RV ; s S Exchange
oy 2 Cut
Fvy
m Exchange

The degree of the indicated cut is the degree of ~ & which is one less
than the degree of ~ ~ &, which, in turn, is <m. The ordinal of
9 v € can be taken to be 2. Hence, we have a proof of lower degree
and ordinal 2¢

CVEVF ~EVF)VD
€ v D

There is a proof-tree for ~ (& v &) v 2 of lower degree and ordinal
2%, Hence, by Lemma A-5, there are proof-trees for ~& v £ and
~F Vv 2 of degree <m and ordinal 2%z. There is also a proof-tree for
€ v & v & of degree <m and ordinal 2%2. Construct:

() ZBis & v F:

EVEVF ~FVI

N\

Cut \

€vEVD
Exchange |

CvIvE ~E N D
Cut \ By

€CvoI2VvD
Consolidation
€ Lv 9

The cuts ir
degree <m
and then tl

d) B is |

By induectiv
by one witl
remark at -
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Now, the p1
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The cuts indicated have degrees <m; hence, the new proof-tree has
degree <m; the ordinal of € v & v 2 can be taken as 2max@,. @) 1 5
and then the ordinal of € v 2 v Zand ¥ v 2 as 2°.

€V ()¢ (~@)&) v 2
€ v

(d) Zis ()¢

By inductive hypothesis, the proof-tree above ¥ v (2)& can be replaced
by one with smaller degree and ordinal 2% . By Lemma A-5 and the
remark at the beginning of the proof of Lemma A-2, we can obtain
proofs of ¥ v &(t) of degree <m and ordinal 2% for any closed term ¢.
Now, the proof-tree above the right-hand formula (~(®)€) v Z can be
replaced, by inductive hypothesis, by one with smaller degree and
ordinal 2%. The history of ~(2)¢& in this proof terminates above
either at dilutions or as principal wfs in applications of the Quantification
Rule:

~(9@(t1) \ gi

(~@)€) v ¢,
Replace every such application by the cut

¢ v &) (~&@) v 9,

€ v 9,

Replace all occurrences in the history of ~ (2)&(x) by €. The result is
still a proof-tree, and the terminal wfis € v 2. The proof-tree has
degree <m, since the degree of ~ &(t,) is less than the degree of ~ (z)&.
Replace each old ordinal 8 of the proof-tree by 2% +,8. If B was the
ordinal of the premiss ~ &(f) v %, of an eliminated Quantification Rule
application above, and if y was the ordinal of the conclusion (~(x)&) v ¥,,
then, in the new cut introduced, € v &(t) has ordinal 2%, ~&(t;) v %,
has ordinal 2% + , B, and the conclusion ¢ v & yhas ordinal 2% + ;4 >
max(2%, 2% 4, B8). At all other places, the ordinal of the conclusion
is still greater than the ordinal of the premisses, since § < o ¢ implies
2% +48 <¢2% +,pu. Finally, the right-hand premiss (~ (2)&)v 2
(originally of ordinal a,) goes overinto ¢ v Z with ordinal 2% + 2% <
9max(a, , @) +, gmax(a;, @) _ _Z'Yr"l’aﬁé(al, @y) % 5 9 = 9max(a;,a,)+,1 & 2zz./;\ If

this is < (2%, the ordinal of ¥ v 2 can be raised to 2¢.

HOWKQ{O& L\{ 31*4’\“5‘
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CorOLLARY A-7. Ewvery proof of & of ordinal o and degree m can be
; 2(2%)

replaced by a proof of & of ordinal 22" and degree 0 (i.e., a

cut-free proof ).

ProrosiTioN A-8. S is consistent.

PROOF. Consider any wf & of the form (0 # 0) v (0 # 0) v...
v (0 s 0). If there is a proof of &/, then by Corollary A-7, there is a
cut-free proof of 7. By inspection of the rules of inference, &/ can
be derived only from other wfs of the same form: (0 # 0) v ... v (0 # 0).
Hence, the axioms of the proof would have to be of this form. But
there are no axioms of this form; hence, 7 is unprovable. Therefore,
S, is consistent.

EXERCISE

If no restriction is placed upon the class of ordinals which can be
attached to proofs: (1) S, is w-consistent (Hint: Corollary A-7,
Proposition A-8, and the Rule of Infinite Induction). (2) Every closed
wf of S, which is true for the standard model is provable. Hence, S,
would be complete.

To reduce the non-constructive aspect of the consistency proof, one
can restrict the class of ordinals which can be assigned to wfs of a
proof-tree. Consider the set of ordinals {w, w®, w®”,...} (defined
inductively by: vy = w, yp+1 = w’s). Let us denote the least upper
bound of this set by e,. If we use only ordinals <, &y, then all the
proofs given above still go through (for, if § <, &, then 2% < &y).
In addition, the ordinals < , &, canbe written down in a certain standard
“polynomial” notation: (i) the ordinals < ;w® can be written in the form

(@1 Xomy) +o (W2 Xong) +¢... 40 (@ xom)

where ki, ky, ...,k is a decreasing sequence of finite ordinals, and
n;, Ny, ..., n; are finite ordinals; (ii) the ordinals between w® and w®”
can be written in the form (w® x,n;) 44 (W% Xgny) +4...+,
(w* x o) where oy, ag, . . ., o isa decreasing sequence of ordinals < ,w®
and n,, ny, ..., n, are finite ordinals, etc. (cf. Bachmann [1955], III;
Gentzen [1938b]).

The chief non-constructive aspect of the consistency proof was the
use of transfinite induction in the proof of Lemma A-6. The principle
of transfinite induction up to a given ordinal has been formalized and
studied by Gentzen [1943] and Schiitte [1951, 1960]; as was to be
expected, transfinite induction up to &, is not derivable in S. Whether

or not ce:
and tran
structive
details a1
Hilbert-I
[1959].
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or not certain concepts and assumptions (such as denumerable ordinals
and transfinite induction up to ¢,) should really be considered “con-
structive” seems ultimately to be a subjective matter. For further
details and discussion, in addition to the references already given, cf.

Hilbert-Bernays [1939], Rosser [1937], Miiller [1961], and Shoenfield
[1959].




