Introduction to MATLAB

Arturo Donate

Introduction

What is MATLAB?

Servironment

MATLAB Basics

Programming

Toolboxes

Comparison

Conclusion

Matrix laboratory

programming environment
high-performance language
Windows, OSX, Linux/UNIX
Matrix/Vector computations
linear equations, eigenvectors, etc...
LINPACK, EISPACK, LAPACK, BLAS, etc...

Ø Uses:

math & computation
algorithm development
modeling and simulation
data analysis and visualization
application development

Toolboxes

image processing
filtering, transforms, analysis, enhancement
statistics
linear models, probability dist., HMMs
optimization
max/minimization, least squares, line fitting

Toolboxes

fixed-point

fixed-point data type & arithmetic
others:
symbolic math
signal processing
virtual reality

Environment

MATLAB										7 🖸 🛛 🗏	- * 奈 •)) 🗈 (70%)	Sun 11:48 PM 🝳
000				<	Student Versio	n> MATLA	B 7.4.0 (R	2007a)				
File Edit Debug	g Desktop Window Help	2										
D 🚅 🕹 🖿 🛱	3.ເວດ 🕞 🛒 🗐 👂	Current Dire	ctory: /Users/arturodonate/	/Docur	ments/stereo		•	E				
Shortcuts E How t	to Add 🖸 What's New	1	, , , , , , , , , , , , , , , , , , , ,									
Curr	ent Directory	5 X	Workspace		X Z			<	Student Ve	ersion> Command Wi	ndow	
ta 🖬 🏭 🌆 🎢 🚺 🖌 Stack: Base 🗧				To get started, select MATLAB Help or Demos from the Help menu.							×	
Name A	Value	Min	Мах	- 1	0.8048	0.8048	0.8048	0.8048	0.8000			6
H ans	[1.5.0.45.0.45.1.1.5]	0.45	1.5	10	0.8095	0.8048	0.8048	0.8048	0.8048			
H dd	<111x131 double>	0	1		0.8143	0.8095	0.8095	0.8095	0.8095			
🕂 disp	<111x131 double>	0	10.5		0.8143	0.8143	0.8143	0.8143	0.8143			
🗄 iml	<480x640 uint8>	19	255		0.8286	0.8238	0.8238	0.8238	0.8238			
imr 🔛	<480x640 uint8>	17	255		0.8333	0.8333	0.8333	0.8333	0.8333			
Heft left	<15589x2 double>	1	131		0.8381	0.8333	0.8333	0.8333	0.8333			
pts	<15589x3 double>	0	Inf		0.8429	0.8429	0.8429	0.8429	0.8429			
	<15589x2 double>	40	135		0.8667	0.8476	0.8667	0.8667	0.8667			
		0	125		0.8714	0.8714	0.8762	0.8762	0.8762			
					0.8810	0.8810	0.8857	0.8857	0.8810			
					0.8857	0.8857	0.8857	0.8857	0.8857			
					0.8952	0.8905	0.8905	0.8952	0.8952			
					0.8952	0.8952	0.8952	0.8952	0.8952			
					0.9000	0.9000	0.9000	0.9000	0.9000			
					0.9048	0.9048	0.9048	0.9048	0.9048			
					0.9143	0.9143	0.9143	0.9143	0.9143			
					0.9238	0.9190	0.9238	0.9238	0.9238			
					0.9286	0.9238	0.9286	0.9286	0.9286			
					0.9333	0.9333	0.9333	0.9333	0.9381			
					0.9381	0.9381	0.9429	0.9429	0.9429			
				- U	0.9429	0.9429	0.9476	0.9476	0.9476			
		<u>_</u>			0.9476	0.9476	0.9571	0.9619	0.9619			
× 7	Comman	d History			0.9619	0.9619	0.9667	0.9667	0.9667			
min(left(:	,2))			6	0.9667	0.9667	0.9714	0.9714	0.9714			
<pre>max(left(: max(left(:</pre>	,2))				0.9714	0.9714	0.9714	0.9714	0.9762			
[disp pts]	= stereo(left, right);				0.9762	0.9810	0.9810	0.9810	0.9810			
imagesc(dis [disp pts]	<pre>sp), colormap gray = stereo(left, right);</pre>				0.9810	0.9857	0.9857	0.9810	0.9857			
imagesc(di	sp), colormap gray											
<pre>max(disp(: min(disp(:</pre>))				EDU>> ad = d EDU>> images	c(dd), col	.(uisp(:)); .ormap gray					
dd = disp; dd = disp	(max(disp(+))				EDU>> figure	<pre>, imagesc(imagesc()</pre>	iml), colo	rmap gray	av			
dd = disp	<pre>./ max(disp(:));</pre>				EDU>> colorm	ap jet	region), c	orormap gr	~J			
imagesc(dd figure.im), colormap gray agesc(iml), colormap gray	,			EDU>> colorm EDU>> figure	ap jet , imagesc(iml)					
figure, ima	agesc(region), colormap g	gray			EDU>> c	, magebo(
colormap jo figure. im/	et agesc(iml)				777 Undefine	a runction	or variab	Te .c.				C C
C figure int				-	EDU>> figure	, imagesc(region), c	olormap gr	ay			
figure, ima	agesc(region), colormap g agesc(iml), colormap gray	jray /		Ŧ	EDU>> Ilgure	, imagesč(imi), colo	rmap gray				Ŧ
C		* * * * * *) ()	•								
A Start												

Environment

00	🖯 Editor – /Users/arturodonate/Document
File Ec	dit Text Go Cell Tools Debug Desktop Window Help
к л х	🗋 🖆 📓 🕺 ங 🛍 🕫 🖙 🥌 👫 🖛 🗣 🗲 🗧 😵 🗐 🖷 🛍 🗊 🕼 🛣 Stack: Base 💠
	$ [] \downarrow \square] - 1.0 + \div 1.1 \times \% \% \%] 0] $
1 1	<pre>function [s t] = eigencluster(A_orig, level)</pre>
3 - 4 - 5 -	<pre>if(exist('level')==0) level=1; end</pre>
6 7 - 8 -	<pre>A = A_orig; [num_vect] = size(A,1);</pre>
9 - 10 -	<pre>for i=1:num_vect A(i,:) = A(i,:)./sum(A(i,:));</pre>
11 - 12 - 13	AAt = A*A';
14 - 15 -	<pre>p = zeros(num_vect, 1); R = zeros(num_vect);</pre>
16 -	D = zeros(num_vect);
19 - 20 -	for $i=1:num_vect$ p(i) = sum(AAt(i,:));
21 - 22	end
23 24 -	<pre>%step 2: pi = (1/sum(p(:))) * p; for i=1:pum uppt</pre>
26 -	R(i,i) = p(i); D(i,i) = sgrt(p(i));
28 - 29	end
30	%step 3:

Basic Console Commands

help
ls
who, whos
clear, pack
load, save

eval
disp
what, type
lookfor, which
exit, quit

Basic Math Commands

Operations

mean, median, mode

👁 sum, abs

⌀ sin, sinh, asin, etc...

👁 sqrt, log, exp

Iloor, ceil, round

🛛 hist, plot

Constants

Ø pi = 3.14159...

ø i, j = sqrt(−1)

realmin, realmax

Inf, NaN

Creating

Accessing

 \oslash M = ones(10,10)

zeros, rand, randn, eye, magic)

M = [1 2 3; 4 5 6; 7 8
9]

O M(1,1) = 23

M = [eye(6) rand(6)]

@ M(x, y)

Deleting

Ø M = []

Operations

@ + - * / ^ `

👁 any, all

@ diag

@ rank

@ eig

@ svd

@ trace

@ prod

Sample expressions:
A = B * C
num = abs(3 + 4i)
vector = sin(1:50)
B = [A' C']
B(:,2) = []

determ = det(C)
index = find(C > 0)
x = ~isprime(y)
num = numel(x)
[x y] = size(C)

Colon notation

1:50
1:2:50
A(:, 2)

A(1:3, 2)
A(2:4, :)
sin(0 : pi/20 : 2*pi)

Graphics

@ 2D Example: plot(sin(0 : pi/20 : 2*pi))

Graphics

SD example - plot 3D point cloud

Functions

- function [X Y] =
 func_name(arg1,
 arg2)
- primary vs subfunctions
- nested function declaration/definition

- ø private functions
- function overloading (int vs double)
- global variables
- pre-allocation
- vectorization

script vs function
if, elseif, else
for, while
switch, case
continue, break
return

Ø Data Structures

Matrix

ø basic data type

Cell

 multi-dimensional matrices String

o character array

Structure

type with various fields

Simple Example: SVD

Create a function that:
takes a matrix as input
make sure the matrix is square
computes the SVD decomposition
returns the first singular value
"answer = my_func(matrix)"

Simple Example: Sort

Oreate a function that:

sorts the list

returns a list with sorted values

@ "answer = my_func(matrix)"

Toolbox used for image processing, computer vision, and signal processing tasks

image transformation

registration

filtering

Image analysis/enhancement/de-blurring

segmentation

@ etc...

Noise reduction example
salt & pepper noise
mean, median filter
filter2(fspecial(`average', 3), image) / 255
medfilt2(image, [3 3])

Color segmentation example @ cform = makecform(`srgb2lab') @ lab_img = applycform(image, cform) $ab = double(lab_img(:,:,2:3))$ o nrows = size(ab, 1) o ncols = size(ab, 2) ab = reshape(ab, nrows*ncols, 2)

@ [cluster_idx, cluster_center] = kmeans(ab, 3, `distance', `sqEuclidean', `Replicates', 3);

@ label = reshape(cluster_idx, nrows, ncols, 1);

Texture segmentation example
E = entropyfilt(I);
Eim = mat2gray(E);
BW1 = im2bw(Eim, 0.8);
BWao = bwareaopen(BW1, 2000);
nhood = true(9);

closeBWao = imclose(BWao, nhood);
roughmask = imfill(closeBWao, `holes');
I2 = I; I3 = I;
I2(roughmask) = 0;
I3(~roughmask) = 0;

MATLAB Clones

Packages: Scilab, Octave, Rlab Similar: matrix is basic data type complex number support ø built-in mathematical functions ø powerful library ø user-defined functions

MATLAB Clones

Scilab

Onix-like

www.scilab.org

ø best support & docs

good compatibility

@ Octave

<u>www.gnu.org/</u>
<u>software/octave</u>

most compatible

@ Rlab

rlab.sourceforge.net

 attempts to improve syntax/semantics

least compatible

Conclusions

interactive programming environment ø high performance language algorithm design modeling & simulation analysis & visualization 🛛 linear algebra toolboxes

References

MATLAB: www.mathworks.com

MATLAB Tutorial: www.math.ufl.edu/help/matlab-tutorial/

MATLAB Comparison: www.dspguru.com/sw/opendsp/mathclo2.htm